The aim of this work is the fabrication of a cheap sol-gel Pt-doped TiO2 thin film sensor on silicon substrate, evaluate electrical performances of electrical interconnections and responses of sensitive film in severe environment like exhaust of combustion process. The sensor will be implemented as microsensors for NOx or oxygen detection, while a preliminary investigation on real operative conditions shows that the transducers perform a response time (t90) in real condition smaller than 1 second at 600 °C. Application field of this type of transducer will be evaluated in a real spark ignition engine, to monitor air/fuel ratio and also monitoring the combustion quality in other industrial combustion processes like domestic heating systems. The production process of this devices, and particularly thin film deposition, can be carried out on a 3" silicon wafer and obtaining with a single batch process more than 300 sensors for wafer, 2x2 mm2. The sensors are provided with an integrated heater and a thermometer to perform temperature compensation. Actually this work try to develop an affordable process to integrate cheap sol-gel deposition process with silicon technology; a particular study is devoted to a complete photolithographic patterning of titania sensitive film, that is very difficult to etch after complete annealing, in order to have sensitive film only onto well defined areas of wafer. Same process, with little modification, can be applied to different kind of sensitive film, pure and doped ones. Different strategies on protective coating were evaluated to reduce electrical contacts degradation at high temperatures, obtaining long time stability of overall microsensor.

Cheap silicon technology integrated sol-gel combustion sensor

FICARELLA, Antonio
2005-01-01

Abstract

The aim of this work is the fabrication of a cheap sol-gel Pt-doped TiO2 thin film sensor on silicon substrate, evaluate electrical performances of electrical interconnections and responses of sensitive film in severe environment like exhaust of combustion process. The sensor will be implemented as microsensors for NOx or oxygen detection, while a preliminary investigation on real operative conditions shows that the transducers perform a response time (t90) in real condition smaller than 1 second at 600 °C. Application field of this type of transducer will be evaluated in a real spark ignition engine, to monitor air/fuel ratio and also monitoring the combustion quality in other industrial combustion processes like domestic heating systems. The production process of this devices, and particularly thin film deposition, can be carried out on a 3" silicon wafer and obtaining with a single batch process more than 300 sensors for wafer, 2x2 mm2. The sensors are provided with an integrated heater and a thermometer to perform temperature compensation. Actually this work try to develop an affordable process to integrate cheap sol-gel deposition process with silicon technology; a particular study is devoted to a complete photolithographic patterning of titania sensitive film, that is very difficult to etch after complete annealing, in order to have sensitive film only onto well defined areas of wafer. Same process, with little modification, can be applied to different kind of sensitive film, pure and doped ones. Different strategies on protective coating were evaluated to reduce electrical contacts degradation at high temperatures, obtaining long time stability of overall microsensor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/367489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact