The chapter describes the optimal usage of an internal combustion engine in an intelligent hybrid electric vehicle able to sense its surrounding and adapt the energy management strategy to the actual driving conditions. After an introduction on hybrid electric vehicles and their challenges, the chapter describes the role of Information and Communication Technologies in the reduction of greenhouse emissions. Then, the chapter focuses on different approaches presented in literature on the usage of information about traffic and weather conditions for the optimal energy management of hybrid electric vehicles. In particular, the chapter describes the application of the prediction&maps approach developed at the University of Salento for the optimization of the engine usage in the ITAN500 plug-in hybrid electric vehicle. Finally, the chapter proposes four metrics to evaluate the performance of the proposed method: the percentage of mission performed before reaching the lowest allowed value for battery state of charge (CBD%), the percentage of mission execute with the engine turned ON (EngON%), the average efficiency of the engine (AEE), calculated according to its actual temperature and the overall well-to-wheel emissions of CO2.

Intelligent usage of internal combustion engines in hybrid electric vehicles

DONATEO, Teresa
2012-01-01

Abstract

The chapter describes the optimal usage of an internal combustion engine in an intelligent hybrid electric vehicle able to sense its surrounding and adapt the energy management strategy to the actual driving conditions. After an introduction on hybrid electric vehicles and their challenges, the chapter describes the role of Information and Communication Technologies in the reduction of greenhouse emissions. Then, the chapter focuses on different approaches presented in literature on the usage of information about traffic and weather conditions for the optimal energy management of hybrid electric vehicles. In particular, the chapter describes the application of the prediction&maps approach developed at the University of Salento for the optimization of the engine usage in the ITAN500 plug-in hybrid electric vehicle. Finally, the chapter proposes four metrics to evaluate the performance of the proposed method: the percentage of mission performed before reaching the lowest allowed value for battery state of charge (CBD%), the percentage of mission execute with the engine turned ON (EngON%), the average efficiency of the engine (AEE), calculated according to its actual temperature and the overall well-to-wheel emissions of CO2.
2012
9789535108566
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/365932
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact