In this paper we present a Maximum Likelihood (ML) trajectory estimation of a mobile node from Received Signal Strength (RSS) measurements. The reference scenario includes a number of nodes in fixed and known positions (anchors) and a target node (blind) in motion whose instantaneous position is unknown. We first consider the dynamic estimation of the channel parameters from anchor-to-anchor measurements, statistically modeled according to the well-known Path-Loss propagation model. Then, we address the ML estimation problem for the position and velocity of the blind node based on a set of blind-to-anchor RSS measurements. We compare also the algorithm with a ML-based single-point localization algorithm, and discuss the applicability of both methods for slowly moving nodes. We present simulation results to assess the accuracy of the proposed solution in terms of localization error and velocity estimation (modulus and angle). The distribution of the localization error on the initial and final point is analyzed and closed-form expressions are derived.

Maximum Likelihood trajectory estimation of a mobile node from RSS measurements

COLUCCIA, ANGELO;RICCIATO, FABIO
2012-01-01

Abstract

In this paper we present a Maximum Likelihood (ML) trajectory estimation of a mobile node from Received Signal Strength (RSS) measurements. The reference scenario includes a number of nodes in fixed and known positions (anchors) and a target node (blind) in motion whose instantaneous position is unknown. We first consider the dynamic estimation of the channel parameters from anchor-to-anchor measurements, statistically modeled according to the well-known Path-Loss propagation model. Then, we address the ML estimation problem for the position and velocity of the blind node based on a set of blind-to-anchor RSS measurements. We compare also the algorithm with a ML-based single-point localization algorithm, and discuss the applicability of both methods for slowly moving nodes. We present simulation results to assess the accuracy of the proposed solution in terms of localization error and velocity estimation (modulus and angle). The distribution of the localization error on the initial and final point is analyzed and closed-form expressions are derived.
2012
9781457717215
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/364499
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact