The aim of this work is to develop a realistic virtual model of the human brain that could be used in a neurosurgical simulation for both educational and preoperative planning purposes. The goal of such a system would be to enhance the practice of surgery students, avoiding the use of animals, cadavers and plastic phantoms. A surgeon, before carrying out the real procedure, will, with this system, be able to rehearse by using a surgical simulator based on detailed virtual reality models of the human brain, reconstructed with real patient’s medical images. In order to obtain a realistic and useful simulation we focused our research on the physical modelling of the brain as a deformable body and on the interactions with surgical instruments. The developed prototype is based on the Mass-Spring-Damper Model and, in order to obtain deformations similar to the real ones, a three tiered structure has been built. In this way, we have obtained local and realistic deformations using an ad-hoc point distribution in the volume where the contact between the brain surface and a surgical instrument takes place.
Virtual Model of the Human Brain for Neurosurgical Simulation
DE PAOLIS, Lucio Tommaso;ALOISIO, Giovanni
2009-01-01
Abstract
The aim of this work is to develop a realistic virtual model of the human brain that could be used in a neurosurgical simulation for both educational and preoperative planning purposes. The goal of such a system would be to enhance the practice of surgery students, avoiding the use of animals, cadavers and plastic phantoms. A surgeon, before carrying out the real procedure, will, with this system, be able to rehearse by using a surgical simulator based on detailed virtual reality models of the human brain, reconstructed with real patient’s medical images. In order to obtain a realistic and useful simulation we focused our research on the physical modelling of the brain as a deformable body and on the interactions with surgical instruments. The developed prototype is based on the Mass-Spring-Damper Model and, in order to obtain deformations similar to the real ones, a three tiered structure has been built. In this way, we have obtained local and realistic deformations using an ad-hoc point distribution in the volume where the contact between the brain surface and a surgical instrument takes place.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.