Thanks to their low fabrication costs and the well established surface-functionalization techniques which allow their merging into a wide range of materials, wet-chemical synthesized colloidal nanocrystals are finding broad application in several fields, from pharmacology to cosmetics, food industry, textiles, optics and so on. In particular, semiconductor nanocrystals are widely exploited as quantum optical emitters, showing very high quantum yield (close to unity), stability, low tendency to photobleaching and possibility to be tuned from ultraviolet to infrared range. The realization of high performing photonic devices based on this class of emitters is therefore an extremely intriguing challenge; on the other hand, the best way to manipulate these emitters and integrate them in solid matrices, without dramatically decreasing their optical properties, is still under debate. Here we present a method for the fabrication of the main building blocks of photonic circuits by exploiting the localization of colloidal nanocrystals dispersed in polymeric matrices through lithographic techniques. The realization of waveguide structures, suspended stripes and photonic crystal nanocavities is shown as a demonstration of this approach.

Design and fabrication of photonic devices based on colloidal nanocrystals

CINGOLANI, Roberto;DE VITTORIO, Massimo
2008-01-01

Abstract

Thanks to their low fabrication costs and the well established surface-functionalization techniques which allow their merging into a wide range of materials, wet-chemical synthesized colloidal nanocrystals are finding broad application in several fields, from pharmacology to cosmetics, food industry, textiles, optics and so on. In particular, semiconductor nanocrystals are widely exploited as quantum optical emitters, showing very high quantum yield (close to unity), stability, low tendency to photobleaching and possibility to be tuned from ultraviolet to infrared range. The realization of high performing photonic devices based on this class of emitters is therefore an extremely intriguing challenge; on the other hand, the best way to manipulate these emitters and integrate them in solid matrices, without dramatically decreasing their optical properties, is still under debate. Here we present a method for the fabrication of the main building blocks of photonic circuits by exploiting the localization of colloidal nanocrystals dispersed in polymeric matrices through lithographic techniques. The realization of waveguide structures, suspended stripes and photonic crystal nanocavities is shown as a demonstration of this approach.
2008
9781424426256
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/334066
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact