The rigorous characterization of the behaviour of a radiobase antenna for wireless communication systems is a hot topic both for antenna or communication system design and for radioprotection-hazard reasons. Such a characterization deserves a numerical solution, and the use of a Finite-Difference Time-Domain (FD-TD) approach is one of the most attractive candidates. Unfortunately it has strong memory and CPU-time requirements. Numerical complexity can be successfully afforded by using parallel computing. In this work we discuss the parallel implementation of the FD-TD code, individuating the theoretical lower bound for its parallel execution time, and we present the findings achieved on the APE/Quadrics SIMD massively parallel systems. Results, obtained from the simulation of actual radiobase antennas, clearly demonstrate that massively parallel processing is a viable approach to solve EM problems, allowing the simulation of radiating devices, which could not be modeled through conventional computing systems. The tests on actual systems evidenced sustained computational speed equal to 17% of the theoretical maximum

Parallel Simulation of Radio-Base Antennas on Massively Parallel Sistems

CATARINUCCI, Luca;TARRICONE, Luciano
2001-01-01

Abstract

The rigorous characterization of the behaviour of a radiobase antenna for wireless communication systems is a hot topic both for antenna or communication system design and for radioprotection-hazard reasons. Such a characterization deserves a numerical solution, and the use of a Finite-Difference Time-Domain (FD-TD) approach is one of the most attractive candidates. Unfortunately it has strong memory and CPU-time requirements. Numerical complexity can be successfully afforded by using parallel computing. In this work we discuss the parallel implementation of the FD-TD code, individuating the theoretical lower bound for its parallel execution time, and we present the findings achieved on the APE/Quadrics SIMD massively parallel systems. Results, obtained from the simulation of actual radiobase antennas, clearly demonstrate that massively parallel processing is a viable approach to solve EM problems, allowing the simulation of radiating devices, which could not be modeled through conventional computing systems. The tests on actual systems evidenced sustained computational speed equal to 17% of the theoretical maximum
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/119198
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact