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Abstract
Normal and anomalous diffusion are ubiquitous in many physical complex systems. Here we define a system of diffusion

equations generalized in time and space, using the conservation principles of mass and momentum at channel scale by a

master equation. A numerical model for describing the steady one-dimensional advection-dispersion equation for solute

transport in streams and channels imposed with point-loading is presented. We find the numerical model parameter as the

solution of this system by estimating the transition probability that characterizes the physical phenomenon in the diffusion

regime. The results presented (Part I) refer to the channel scale and represent the first part of a research project that has

been extended to the basin scale.
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1 Introduction

Dispersion models in rivers play a crucial role in under-

standing the transport and spread of contaminants in nat-

ural channel networks. These models simulate the

movement and distribution of pollutants, providing infor-

mation for water resource management and pollution

control (Rodriguez-Iturbe et al. 2009; Rinaldo et al. 2018).

Dispersion models can be used to evaluate the potential

impact of sources of pollution and to design effective

strategies for mitigating the risk to human health and the

environment (Chatwin and Allen 1985; Duarte and

Boaventura 2008). By utilizing mathematical and compu-

tational methods, dispersion models can simulate the

movement of contaminants and help identify the most

vulnerable areas, allowing for proactive measures to be

taken to minimize the impact of pollution on the ecosystem

(Chatwin and Allen 1985; Duarte and Boaventura 2008;

Deng and Jung 2009; Alley 2007; Altenburger et al. 2015;

Novotny 1994). The accuracy and effectiveness of these

models depend on several factors, including the quality of

input data, the choice of model structure, and the appro-

priate calibration and validation of the model (Chatwin and

Allen 1985; Duarte and Boaventura 2008; Rodriguez-

Iturbe et al. 2009; Rinaldo et al. 2018). Other models often

require large amounts of data and intensive computational

processing, making them challenging to use in real-time

applications (for example Hydrodynamic Models or

Lagrangian Models). Additionally, they can be computa-

tionally expensive and may require high-performance

computing resources, which can be difficult to obtain

(Alley 2007; Altenburger et al. 2015; Novotny 1994). The

complexity of the models and the large data sets used can

also make them difficult to use for non-technical users,

limiting their application in decision-making processes.

Nevertheless, despite these problems, dispersion models
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remain an essential tool for promoting sustainable water

resource management and protecting the health and well-

being of communities and ecosystems (Alley 2007;

Altenburger et al. 2015; Novotny 1994). This information

is essential for decision-makers, water resource managers,

and environmental scientists in developing effective man-

agement strategies to minimize the impact of pollutants on

water quality and ecosystem health, and however, it should

be used in conjunction with other methods in order to gain

a comprehensive understanding of pollutant behavior in

rivers (Alley 2007; Altenburger et al. 2015; Novotny 1994;

Rodriguez-Iturbe et al. 2009; Rinaldo et al. 2018). In river

networks or environmental catchments, the movement of

polluting particles generally from a region of higher con-

centration to a region of lower concentration, is ubiquitous

and well-known as diffusion. In the absence of obstacles to

diffusion and traps, the diffusive particles describe a ran-

dom walk motion on the channels of the river network,

such that their mean squared displacements scale linearly

with time. This process is known as normal diffusion.

However, the existence of obstacles in the river network

may trigger long-jumps of the diffusive particle (King and

Turner 2021), such that the mean displacement of the

particles is bigger than that of the normally diffusing ones

in the same period (King and Turner 2021). This type of

process is known as super-diffusive (King and Turner

2021). On the other hand, the river network may have

regions acting as traps for the particles, where they are

retained for longer times than in a normal diffusive pro-

cess. In this case the process is known as sub-diffusive

(King and Turner 2021). The scope of the present work is

to propose a numerical technique that is computationally

less expensive than the existing diffusive methods. Our

approach in the framework of geomorphology river net-

work offers interesting information in terms of instability,

numerical dispersion and oscillations of diffusive phe-

nomena. This technique, from a physical point of view, is

based on two physical conservation laws: the principle of

mass conservation, expressed through the use of master

equations (MEs), and the principle of momentum conser-

vation, that is condensed into the parameter Pij, expressing

the transition probability between two nodes on a channel

network graph. MEs describe the probability time evolu-

tion of the different states in the system, with the dynamics

being due to transitions between these states (Fernengel

and Drossel 2022; Van Kampen 1992; Honerkamp 2012).

The most common form is an initial value problem of a

linear differential equation (Van Kampen 1992). The ME

peculiarity is that of probabilities flowing between states

like a fluid, where their total amount is being conserved

(Van Kampen 1992). For example, a ME special case is

the Fokker-Planck equation, which describes the time

evolution of continuous probability distribution (Keizer

1972; Van Kampen 1992; Gardiner et al. 1985). Pij, the

transition probability plays a critical role in transport

scales, especially in the case of river networks. River net-

works are complex geomorphological systems, in which

the scaling behaviour of network structures is of funda-

mental importance to describe the phenomena of many

hydraulics and hydrological processes (De Bartolo et al.

2006, 2009a, 2022). The scales essentially are two: basin

scale (Rodriguez-Iturbe and Rinaldo 2001) and channel

scale (Raudkivi 2020). Regarding to the first scale, there

are numerous applications in the fluvial-environmental

domain (Botter et al. 2011, 2010; Rodriguez-Iturbe et al.

2009; Rinaldo et al. 2018), in which the parameter Pij is

not directly found to be dependent on resistance laws,

namely, associated with motion (steady and unsteady

conditions). Generally, it is validated through relationships

of a local nature dictated by the presence of more or less

tributaries incident at junctions (Rodriguez-Iturbe et al.

2009; Rinaldo et al. 2018). At channel scale, Pij turns out

to be well focused and mainly related to the physical

phenomena of motion resistance. Specifically, Pij is strictly

related to solid transport and equilibrium conditions

(degradation-aggradation) of the longitudinal and

transversal channel geomorphology (Raudkivi 2020). In

this framework, the motion types can be uniform, steady

and unsteady. Therefore, the Pij parameter plays a critical

role in defining the transport principle between two nodes

in the same channel. At the basin scale, the complexity of

Pij is averaged, node by node, over the entire graph-tree

structure of the river network (Rodriguez-Iturbe et al.

2009; Rinaldo et al. 2018). Specifically, the node repre-

sents a junction between two streams or channels, if the

former are hierarchized according to a numerical ordering

(see for example, Horton-Strahler (De Bartolo et al.

2009b, a)). At the channel scale, this same approach can be

simplified and developed using the same methodology as

above indicated, applying it between two consecutive

nodes belonging to the same channel.

The aim of this work is to highlight what are the ele-

ments of validation, applicability and limits of the basin-

scale methodology over the channel-scale. Specifically, the

analysis of the data provided by the USGS was performed

and the same master equations laws were applied on a

channel reach belonging to the Maumee River basin in

Ohio (USA) and finally the results were obtained. The

results presented here refer to the first part (Part I) of our

research conducted at the channel scale.
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2 Methods

A numerical method for solving the steady one-dimen-

sional advection-dispersion problem for solute transport in

streams and channels imposed with multiple point-loading

is presented. The proposed method requires a partition of

the channel into smaller reaches here defined as computa-

tion lines, Lij. The inter-lines boundaries, referred to as the

internal nodes, are the locations where the unknown con-

centrations are evaluated at subsequent time steps. Since

the flow parameters are assumed to remain constant over

time, t, as we shall see, the dispersion and decay coeffi-

cients are also assumed to remain time-invariant (Fischer

et al. 1979; Chapra 2008), although their spatial variations

may be accepted. Therefore, each segment assumes in time

line-constant parameters of velocity, dispersion coefficient,

or transition probability. This assumption, although limit-

ing in the initial phase of phenomena of pollutant disper-

sion in rivers, represents the minimum condition of

constraint respect to the data available for experimentation.

In the absence of available data on riverbed geometries,

sections and velocity scale measurements these assump-

tions can provide first approximation results. In this

framework our model and methodology will exhibit the

first experimental comparisons.

The proposed method models the spatial variation of the

solute concentration within a stream by an analytical

expression in terms of the concentrations at two boundary

nodes of the segment and the influx rate of point-loading, if

any, located within the lines (see Fig. 1a). The channel

length is partitioned into segments and the solution aims to

evaluate the concentrations at the segment interfaces or the

internal nodes, at prescribed time steps. The results are

computed starting from a specified time level with a known

spatial concentration within the domain. It is assumed that

the boundary nodes at the two ends of the channel, one

each at the upstream and the downstream, are specified, at

all times, with solute concentration values or their spatial

gradient. The solute-loading rates of the source points

discharging in the channel are also considered, possibly

varying with time, t. The computed concentration values of

the solute along the channel length may thus vary with

time, although, the flow velocities in the channel are

assumed to be in a steady state. In particular, the spatial

variation of the solute concentration is obtained as a

solution of a system of linear equations: the principle of

mass conservation, expressed through the use of MEs, and

the principle of momentum conservation, condensed into

the Pij parameter. Solute concentrations or their gradients

at the upstream and downstream channel boundaries,

defined as time-dependent functions, are used for closing

the solution and performing the model. The main objective

of this work is to find the transition probabilities, Pij, by a

non-direct best fitting procedure. In the next section the

mathematical formulations of this methodology is

provided.

2.1 Master equations and mathematical
formulation at the channel scale

The computation steps explained in this section assume

that the channel is one-dimensional and devoid of any

transient storage, thus allowing to be accepted as a suit-

able model for simulating the solute transport in open

channels. Therefore, we seek to find the solution for the

one dimensional equation governing the longitudinal

spread (dispersion) of the solute concentration in space and

time (Benedini and Tsakiris 2013). Considering a stream of

length L, it can be discretized, using n nodes, in small

reaches of length, Lij, where i and j are the extreme-

boundaries of each reach. The simplest discretization is the

elemental structure of two nodes and one line, namely,

upperstream and downstream nodes and the stream L.

As shown in Fig. 1a, considering the elemental structure

of two nodes i, j and one line-cell Lij we can apply the well-

know local conservation mass equation as a ME in a

Fig. 1 a Discretization of the channel in the monodimensional domain using nodes and arcs. b Balanced minimal tree-like structure for local

interaction
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discrete form (Rodriguez-Iturbe et al. 2009; Rinaldo et al.

2018):

qiðtkÞ ¼ qiðtk�1Þ þ Pijqjðtk�1Þ ð1Þ

where qi and qj express the solute concentration over time

(discrete time tk) in nodes i and j, and Pij represents the

transition probability of the reach Lij. This equation is

obtained considering the stream mean velocity constant

over time (vi ¼ vj ¼ v, steady flow) as consequence of the

real mass conservation on the temporal size (tf � ti) in

which the phenomenon occurred. Hence, the integral form

of the mass conservation is:

Z tf

ti

dtqiðtÞvi ¼
Z tfþDt

tiþDt
dtqjðtÞvj ð2Þ

where ti, tf are the time interval extremes, Dt is the shift-

time travel interval along the channel from the initial node

to the final node and vi ¼ vj ¼ v the mean stream velocity.

Simplifying the constant mean velocity, equation (2) turns

in a simple form:

Z tf

ti

dtqiðtÞ ¼
Z tfþDt

tiþDt
dtqjðtÞ ð3Þ

It is important to highlight that if the condition expressed in

equation (3) is not satisfied the mass balance along the two

nodes i and j loses its significance. This approach described

for a single node is applied for each node of the discretized

stream in order to define a system whose solutions are the

transition probabilities, Pij. An example of this approach is

shown in the next paragraph. The procedure is repeated

over discrete time steps, till a specified final-time is

reached. A matrix formulation of the equation set (1) is

here described and used to solve the system and finally, to

find the transition probabilities:

~qðtkÞ ¼~qðtk�1Þ þ~Pu~quðtk�1Þ �~Pd~qdðtk�1Þ ð4Þ

in which~qðtkÞ,~qðtk�1Þ are the solute concentration vectors

at the time tk and tk�1, and~Pu,~Pd are the transition prob-

ability matrices estimated considering each local reaction.

Moreover,~quðtk�1Þ,~qdðtk�1Þ are the solute concentrations

at the upper and lower nodes at the time tk�1, respectively.

For example, considering the scheme in Fig. 1b, Eq. (4)

turns into his complete local form:

qjðtkÞ ¼ qjðtk�1Þ þ Pmjqmðtk�1Þ þ Pnjqnðtk�1Þ � Pjiqjðtk�1Þ
ð5Þ

or equivalently,

qjðtkÞ ¼ qjðtk�1Þ � Pjiqjðtk�1Þ þ
Xm
l¼n

Pljqlðtk�1Þ: ð6Þ

Moreover, Fig. 1a shows a hypothetical stretch of a typical

one-dimensional channel that is subdivided into m seg-

ments of which n are loaded with single-point sources

(where n�m). The coordinate axis, X, varies from the

upstream end of the channel, pointing downstream and

represents the abscissa curvilinea of the stream. A repre-

sentative reach, having boundary coordinates Xi and Xj,

and bound by nodes i and j, respectively, may be assumed

to contain a solute-loading point. The load point can be the

j node itself or confluent in j from an external stream.

Therefore, the nodal concentrations vary in time and log-

ically can be written, for any node along the computational

domain. The formulation presented here (Part I) will be

extended to the basin scale (Part II) taking into account the

recursive process of the river network structure in view of

one of the known hierarchical criteria in quantitative fluvial

geomorphology, namely that of Horton-Strahler (De Bar-

tolo et al. 2009a, 2016).

2.2 Study area and sampling dataset localization

Calibration of the model previously defined, is performed

considering the physiographic hydrologic unity of the

Maumee river network in the State of Ohio (USA). One of

Table 1 Summary results for ammonia solute NH3

Curve tp½d� qNH3
[kg/d] Time-lag [d] Error %

Scheme(a) PA0B0 ¼ 0:65

Experimental data A 3.0 365.14 – –

Experimental data B 5.1 287.12 – –

Simulated data A’ 3.0 366.23 0.0 0.29

Simulated data B’ 4.6 312.44 0.5 8.81

Scheme (b) PA0C0 ¼ PC0B0 ¼ 0:51

Experimental data A 3.0 365.14 – –

Experimental data B 5.1 287.12 – –

Simulated data A’ 2.7 361.17 0.3 0.01

Simulated data B’ 4.6 284.19 0.5 1.02

Simulated data C’ 3.7 315.89 – –

Scheme (c) PA0C0 ¼ PC0D0 ¼ PD0B0 ¼ 0:39

Experimental data A 3.0 365.14 – –

Experimental data B 5.1 287.12 – –

Simulated data A’ 2.8 347.66 0.2 4.78

Simulated data B’ 5.3 271.57 0.2 5.76

Simulated data C’ 3.7 305.19 – –

Simulated data D’ 4.4 278.41 – –
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his tributaries, the St. Marys River channel is characterized

by different hydrological sub-basins, connected to each

other in the river network of the Maumee catchment, as

shown in Fig. 2. The main stream of St. Marys River sub-

basin has a length of about 33 kms, and in the same Fig. 2

it is represented in yellow color.

The Maumee River is a river network running from

northeastern Indiana into northwestern Ohio and drains a

primarily rural farming region in the watershed of Lake

Erie (for further details see (Martin and Pederson 2022;

Stothers and Tucker 2006)). This river network can be

represented by a tree-graph, characterized by segments

(arcs) and nodes. We focus on the St. Marys River

considering the elemental structure scheme characterized

by two nodes and one stream (arc). Subsequently, we

consider a more complex system adding internal nodes to

define how the transition probability varies.

Different types of solute concentration can be analyzed:

for each one of these a transition probability can be carried

out. To achieve this objective the equation system defined

in the paragraph (2.2) is performed over the dataset pro-

vided by the USGS (see https://www.usgs.gov). The data-

set consists of daily average pollutant concentration data

measured from 2015 to the present. Considering the his-

torical context, the environmental problems were caused by

sediment contamination and agricultural runoff. The runoff

Fig. 2 Map of the Maumee river hydrological network in the State of Ohio (USA) with water quality gauging stations represented as points. In

yellow the St. Marys tributary taken into consideration for the present work (geographic coordinates 41�04’58’’ N 85�07’56’’ W)

Fig. 3 Topographic map of St. Marys tributary river, schematized with boundary nodes

Stochastic Environmental Research and Risk Assessment (2023) 37:3807–3817 3811
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caused large amounts of phosphorus to spread into the St.

Marys River, eventually leading to cultural eutrophication

in Lake Erie (Fryar et al. 2000). Sediments at the site

contained high levels of polychlorinated biphenyls and

heavy metals, which came from old dumps, contaminated

industrial sites, combined sewer overflows and disposal of

dredged materials (Fryar et al. 2000). It was found that

about 90 % of toxic discharges were nitrates, ammonia and

phosphorus, including farm runoff and waste water from

industrial processes such as steel production. In consider-

ation of this environmental status, different solutes have

been taken in consideration in our analysis: ammonia fil-

tered and unfiltered, phosphorus, nitrate plus nitrite,

ammonia plus organic nitrogen, ortophosphates and

moreover suspended sediments. Some results are given in

the following paragraph.

Fig. 5 Development of

ammonia concentrations (qNH3
)

versus time considering

scheme (a). The peaks and their

respective times are highlighted

Fig. 4 Domain discretization

configurations considered in the

computational analysis. A’, B’,

C’ and D’ are the internal nodes,

while the external nodes are the

Inlet and Outlet respectively

Table 2 Summary results for nitrate solute NO�
3

Scheme (a) PA0B0 ¼ 0:66

First peak tp½d� qNO�
3
[mg/L] Time-lag [d] Error %

Experimental data A 3.3 6.82 – –

Experimental data B 4.4 6.57 – –

Simulated data A’ 3.7 7.09 0.4 3.95

Simulated data B’ 5.1 6.68 0.7 7.91

Second peak tp½d� qNO�
3
[mg/L] Time-lag [d] Error %

Experimental data A 6.8 6.86 – –

Experimental data B 8.3 6.56 – –

Simulated data A’ 6.8 6.81 0.0 0.72

Simulated data B’ 8.0 6.65 0.3 1.37
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3 Results and discussion

The computations are handled by a first-order scheme in

discrete time.

Two simulation cases are given below. The first case

analyzed concerns the ammonia solute NH3. The different

schemes used for this first case are shown in Fig. 4

(schemes (a), (b) and (c)). All three schemes are used to

better highlight the differences in results respect to the

increasing system complexity. The second case concerns

the nitrate solute NO�
3 . In this case, the only scheme used is

(a) in order to better highlight the differences in results by

considering several peaks of the pollutant wave. The data,

provided by the USGS, for the first case refers to the entire

month of October 2018, while for the second case they

range from February to mid-March 2021.

Considering Fig. 3 and the schemes shown in Fig. 4, the

upstream node and the downstream node correspond to

nodes A � A0 and B � B0 respectively. For the ammonia

solute, we analyze the first concentration peak. Results are

shown in Table (1). In the case of scheme (a), the optimal

results were obtained by solving the MEs system with a

PA0B0 transition probability equal to 0.65. In this case, but

also in the subsequent cases reported, the optimal PA0B0

value is obtained in an iterative manner by finding a sim-

ulated concentration curve that comes closest to the

experimental one and thus, minimising the errors between

the concentration peaks and the respective time lags. The

trend of the concentrations is shown in Fig. 5.

The percentage error defined as
jqN�qN0 j

qN
(where N is the

generic node) is evaluated for all nodes in all cases. Thus,

for node A0 it is 0.29 %, while for node B0 it is higher and

about 8.81 %. In addition, there is a time-lag of 0.5 days in

the peak B node compared to the simulated peak B0.
In scheme (b) the system becomes more complex with

the addition of a central node in the stream, namely C0

node, for which an ammonia concentration trend can be

assumed (see Fig. 6). The transition probability PA0C0 ¼
PC0B0 found is 0.51, while the percentage errors evaluated

are, for node A, 0.01 % and, for node B, 1.02 %, respec-

tively, with an estimated time-lags of 0.3 and 0.5 days

(about 7.2 and 12 h) (tp;A �! tp;A0 and tp;B �! tp;B0).

Finally, in scheme (c) the system becomes even more

complex with the addition of two central nodes in the

stream, C0 and D0 nodes. The concentration trends are

shown in Fig. 7. The transition probability PA0C0 ¼ PC0D0 ¼
PD0C0 identified is 0.39, while the percentage errors evalu-

ated are for A node equal to 4.78 % and for B node equal to

5.76 %, respectively, with estimated time-lag of 0.2 days

(about 4.8 h) for both nodes (tp;A �! tp;A0 and

tp;B �! tp;B0). We can observe that by adding more nodes,

the discretized system changes, and for each node the

transition probability also changes. Similar behaviours can

be found in other frameworks and investigations (Rodri-

guez-Iturbe et al. 2009; Rinaldo et al. 2018). At the

channel scale, this makes it possible to extrapolate fore-

casts of the pollutant wave, at intermediate nodes.

In the case of nitrate solute instead, the upstream node

and downstream node correspond to A � A0 and B � B0

nodes in scheme (a) as shown in Fig. 4.

The concentration trends are shown in the Fig. 8.

Compared with the previous case, the two peaks’ values of

the concentration curves are given in Table (2). The tran-

sition probability estimated by the MEs resolution is equal

to 0.66.

Fig. 6 Development of

ammonia concentrations (qNH3
)

versus time considering

scheme (b). The peaks and their

respective times are highlighted
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For the first peak, the percentage errors evaluated in A0

and B0 nodes are equal to 3.95 % and 7.91 %, respectively,

with a time-lag in A0 and B0 nodes of 0.4 days and 0.7 days

(about 9.6 h and 16.8 h). For the second peak (in Fig. 9),

the percentage errors evaluated in A and B nodes are equal

to 0.72 % and 1.37 %, respectively, with a time-lag in B0

node of 0.3 days. It should be noted that for all cases

reported, the conditions expressed in relation (3) are veri-

fied. Although dispersion models in rivers provide valuable

indications of how pollutants are spread, it is important to

recognize their limitations. According to (Huang et al.

2022; Ito 1992; Ajami et al. 2007; Van Kampen 1992;

Hervouet 2007), dispersion models are based on a set of

assumptions and mathematical representations of physical

processes, which can introduce uncertainties and errors into

the predictions. The model relies on quality data inputs,

including information on river flows, water quality

parameters, (and meteorological conditions can be intro-

duced), which may not always be available or accurate (Ito

1992; Hervouet 2007). Additionally, the model may cap-

ture the complexities of real-world river systems, such as

irregular shaped channels, variable water flow patterns, and

the presence of structures that can affect the dispersion of

pollutants and thus, affecting the transition probability, a

parameter that takes into account all these variables and

here numerically defined (Rodriguez-Iturbe et al. 2009;

Rinaldo et al. 2018). It is important to consider the limi-

tations of dispersion models when using them to make

decisions, including field measurements and observational

data, to validate the results: the process considered must be

Fig. 7 Development of

ammonia concentrations (qNH3
)

versus time considering

scheme (c). The peaks and their

respective times are highlighted

Fig. 8 Development of nitrate

concentrations (qNO�
3
) versus

time considering scheme (a).

The first peak and their

respective time and lags are

highlighted
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a normal-diffusive type (as defined previously). Further-

more, the model evidences in the results a time-lag in

dispersion considering the peaks but it is approximately

7–12 h, considering the complete time span in which the

dispersion phenomenon takes place (about 15–20 days).

Despite these limitations, dispersion models continue to

play an important role in the management of water quality

in rivers, and the model here described provides valuable

information for reducing the impact of pollutants on the

environment. It is of paramount importance to emphasize

the choice of the number of intermediate nodes. In our

case, this optimal number was greater than or equal to one,

for a minimum complexity of three nodes connected by

two arcs (streams). By increasing the complexity and thus,

the number of internal nodes, the error on the peak con-

centration in the downstream nodes may also increase This

investigation will be extended in Part II to a basin scale and

this number will be defined on the basis of minimal Hor-

tonian structures. Based on the comforting results obtained,

it will be interesting to investigate the hydrodispersive

behaviour on complex hydrographic networks character-

ized by a larger number of nodes and channels. This

investigation will be supported by a system of recursive

MEs on hydrographic network structures ordered accord-

ing to the criteria of quantitative fluvial geomorphology

(De Bartolo et al. 2022, 2009a, b).

4 Conclusions

In this work the dispersion analysis of some contaminants

within the catchment area of the St. Marys River in the

Ohio State (USA) was addressed at channel scale (Part I).

Specifically, a set of data concerning ammonia and nitrates

were analyzed, on the basis of data provided by the

American USGS service. The time period concerned the

months October 2018 for ammonia, and February-March

for nitrates. The analysis on the geomorphological channel

scale concerned a reach of approximately 33 kms. The

hydrodynamic dispersion model used for this purpose has

been derived from a particular class of dynamical differ-

ential system, derived from the Fokker-Planck equations,

called master equations, MEs. The MEs model here pro-

posed, according to (Rodriguez-Iturbe et al. 2009; Rinaldo

et al. 2018), based on mass and momentum conservation

principles, has been implemented on an equivalent graph to

the channel reach, characterized by a single arc (stream)

and two terminal nodes. The MEs proposed transcends the

difficulties of large amounts of data and intensive compu-

tational processing and, based on the analyzed data. The

model in its peculiar characteristics has offered interesting

results in terms of peak time and maximum solute con-

centration. It allows a reconnaissance of the dispersion

phenomenon at the channel scale to be carried out quickly

and rapidly with an interesting low percentage error (0.1–9

%) and time-lag (7–12 h). Moreover, according to the

scientific literature (Rodriguez-Iturbe et al. 2009; Rinaldo

et al. 2018; Botter et al. 2010, 2011; Rodriguez-Iturbe and

Rinaldo 2001), numerical validity was given to the tran-

sition probabilities, Pij, considering real cases. In fact,

having identified these latter for each node, it also makes it

possible to carry out forecasts of pollutant dispersion in the

channel-scale river network in the study basin and all those

with similar geomorphological characteristics. These are

the first results for future purposes, including that of

extending the described method to the basin scale in order

Fig. 9 Development of nitrate

concentrations (qNO�
3
) versus

time considering scheme (a).

The second peak and their

respective time and lags are

highlighted
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to carry out analyses and forecasts of pollutant dispersions.

The extension of the method to the basin should imply a

variation to the definition of the transition probabilities Pi;j

in order to take into account the possible local delays or

accelerations occurring at the channel scale and thus the

different velocities. Consequently, the transition probabil-

ities Pi;j will not be constant over time but time-dependent.

Moreover, it was found that the optimal number of channel

partitions is two (with one internal node) and as the number

of partitions increases, the percentage error at the maxi-

mum concentration increases at the nodes following the

upstream one. Based on these encouraging results obtained,

the model proposed here can be further generalized through

a formal recursive development of the same MEs, which

can take into account a greater complexity of the river

network, for example Hortonian structures characterized by

a large number of internal and external nodes (Part II).

Supplementary information The analyzed data can be found and

downloaded from the public domain USGS website (https://www.

usgs.gov/).
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