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Abstract
A set-theoretical solution of the pentagon equation on a non-empty set X is a function
s : X × X → X × X satisfying the relation s23 s13 s12 = s12 s23, with s12 = s × idX ,
s23 = idX × s and s13 = (idX × τ)s12(idX × τ), where τ : X × X → X × X is the flip map
given by τ(x, y) = (y, x), for all x, y ∈ X . Writing a solution as s(x, y) = (xy, θx (y)),
where θx : X → X is a map, for every x ∈ X , one has that X is a semigroup. In this paper,
we study idempotent solutions, i.e., s2 = s, by showing that the idempotents of X have a
crucial role in such an investigation. In particular, we describe all such solutions on monoids
having central idempotents. Moreover, we focus on idempotent solutions defined onmonoids
for which the map θ1 is a monoid homomorphism.
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1 Introduction

If V is a vector space over a field F , a linear map S : V ⊗V → V ⊗V is said to be a solution
of the pentagon equation on V if it satisfies the relation

S12S13S23 = S23S12, (1)

where S12 = S ⊗ idV , S23 = idV ⊗ S, S13 = (idV ⊗�) S12 (idV ⊗�), with � the flip
operator on V ⊗ V , i.e., �(u ⊗ v) = v ⊗ u, for all u, v ∈ V . The pentagon equation
classically originates from the field of Mathematical Physics, but it has several applications
and appears in different areas of mathematics, also with different terminologies (see, for
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instance, [1, 2, 11, 12, 14, 19, 24, 25]).To know more about contexts in which the pentagon
equation appears, we refer to the introduction of the paper by Dimakis and Müller-Hoissen
[8] along with the references therein.

In 1998, Kashaev and Sergeev [13] explicitly first highlighted an existing link between
solutions on a vector space viewed as the space FX of all functions from a finite set X to F
and maps from X × X into itself satisfying a certain relation. Into the specific, to any map
s : X × X → X × X one can associate a linear operator S : FX×X → FX×X defined as
S( f )(x, y) = f (s(x, y)), for all x, y ∈ X . If the map s satisfies the “reversed” pentagon
relation

s23s13s12 = s12s23, (2)

where s12 = s × idX , s23 = idX ×s, s13 = (idX ×τ) s12 (idX ×τ), with τ(x, y) = (y, x),
for all x, y ∈ X , then the linear map S is a solution of the pentagon equation on FX . We call
the map s as above set-theoretical solution of the pentagon equation, or briefly solution, on
X . In the pioneering paper [13], one can also find the first systematic way to obtain solutions
on closed under multiplications subsets of arbitrary groups. However, set-theoretical-type
solutions had already appeared before in the form of pentagonal transformations on differ-
ential manifolds and on measured spaces in two papers: those by Zakrzewski [25] and Baaj
and Skandalis [2], respectively. One can transcribe these solutions in purely algebraic terms
e note that they are the first instances of bijective solutions.

Attention only to set-theoretical solutions has been recently given in [3]. Following the
notation therein, writing a solution s : X × X → X × X as s(x, y) = (xy, θx (y)), where θx
is a map from X into itself, for every x ∈ X , one has that X is a semigroup and

θx (y)θxy(z) = θx (yz), (P1)

θθx (y)θx y = θy, (P2)

for all x, y, z ∈ X . In [3, Theorem 15], a complete description of all solutions defined on a
group is given. In this case, it holds that θx (y) = θ1(x)−1θ1(xy), for all x, y ∈ X , where 1 is
the identity of the group X , and it is sufficient to study the set ker θ1 = {x ∈ X | θ1(x) = 1}
that it a normal subgroup of X , even if, in general, θ1 is not a homomorphism. However,
describing all solutions on arbitrary semigroups seems very difficult since there are many
even in the case of small-order semigroups. For instance, it is sufficient to look [18, Appendix
B], where, as suggested by Rump, all the 202 non-isomorphic solutions on semigroups of
order 3 have been computed.

A first step could be studying specific classes of solutions. In this regard, a characterization
of all involutive solutions, i.e., s2 = idX×X , has been provided byColazzo, Jespers, andKubat
in their recent paper [6].Moreover, in [4], Catino,Mazzotta, and Stefanelli described the class
of solutions that satisfy both the pentagon equation and the quantum Yang–Baxter equation
(see [9]). Indeed, as one can note, the pentagon equation is the quantumYang–Baxter equation
with the middle term missing on the right-hand side. An easy example of a map that satisfies
both equations is given by s(x, y) = ( f (x), g(y)), with f , g idempotent maps from a set X
into itself such that f g = g f . In this last paper, one can also find some methods to construct
solutions of the pentagon equation such as, for instance, on the matched product S �� T of
two semigroups S and T (see [4, Definition 1]), namely a new semigroup on the cartesian
product of S and T including the classical Zappa product of S and T (see [15, Definition
1.1]).

Recently, idempotent left non-degenerate solutions of the Yang–Baxter equation have
been completely described (see [7, 16, 23] and the classifications therein). A similar study
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can also be done for the pentagon equation, motivated by the fact that already for semigroups
of small order there are several of idempotent type, i.e., s2 = s. The question of studying this
class of solutions arose explicitly during the talk held in the occasion of “First UMI meeting
of PhD students” [17].

In this paper, we deal with idempotent set-theoretical solutions of the pentagon equation.
One can easily check that a solution s(x, y) = (xy, θx (y)) on a semigroup X is idempotent
if and only if

xyθx (y) = xy, (I1)

θxyθx (y) = θx (y), (I2)

for all x, y ∈ X . We show that the idempotents of X have a crucial role in finding them
and, for that, we exhibit some useful properties of the maps θx involving the idempotents.
In particular, we focus on solutions defined on monoids, by showing that, unlike solutions
defined on groups, it is not possible to find a way to write the maps θx by means of the map
θ1, where 1 is the identity of the monoid. We provide a description theorem for idempotent
solutions on monoids M having central idempotents, namely, E(M) ⊆ Z(M), by illustrating
that it is enough to construct specific idempotent maps θe, for every e ∈ E(M). Furthermore,
in this situation, the map θ1 is an idempotent monoid homomorphism, and, for this reason, we
deepen idempotent solutions on monoids satisfying this additional property. In this case, all
the maps θx have to be derived considering the kernel congruence of the function θ1, namely,
the set ker θ1 = {(x, y) ∈ M × M | θ1(x) = θ1(y)} (see [22] for more details). Indeed,
(θx (y), y) ∈ ker θ1, for all x, y ∈ M , and θ1(M) is a system of representatives of M/ ker θ1.

Finally, we collect some properties of idempotent solutions on arbitrary semigroups, that
could be useful in a future study of these maps in the more general case.

2 Basics on solutions

In this section, we give some basics on the solutions. Moreover, we introduce some classes
of solutions and provide several examples.

From now on, following the notation used in [3, Proposition 8], given a semigroup X , we
will briefly call solution on X any map s : X × X → X × X given by s(x, y) = (xy, θx (y)),
where θx is a map from X into itself, satisfying (P1) and (P2).

Example 1 (cf. [19]) Let X be a set and f , g : X → X idempotent maps such that f g = g f .
Set x · y = f (x), for all x, y ∈ X , one has that (X , ·) is a semigroup and the map s(x, y) =
(x · y, g (y)) is a solution on X .

Note that the previous example belongs to the class of P-QYBE solutions, namely the
maps that are solutions both to the pentagon and the Yang–Baxter equations [4].

Definition 1 Let (X , ·) and (Y , ∗) be two semigroups and s(x, y) = (x · y, θx (y)) and
r(a, b) = (a∗b, ηa(b)) two solutions on X and Y , respectively. Then, s and r are isomorphic
if there exists a semigroup isomorphism f : X → Y such that

f θx (y) = η f (x) f (y), (3)

for all x, y ∈ X , or, equivalently, ( f × f )s = r( f × f ).
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A complete description in the case of a group is given in [3, Theorem 15]. For the sake of
completeness, we recall such a result below.

Theorem 2 Let G be a group. Consider a normal subgroup K of G and a system of repre-
sentatives R of G/K such that 1 ∈ R. If μ : G → R is a map such that μ(x) ∈ Kx, for
every x ∈ G, then the map s(x, y) = (

xy, μ (x)−1 μ (xy)
)
, for all x, y ∈ G, is a solution

on G.
Conversely, if s is a solution on G, then the set K = {x ∈ G | θ1(x) = 1} is a

normal subgroup of G for which Im θ1 is a system of representatives of G/K that contains
1, θ1(x) ∈ Kx, for every x ∈ G, and s(x, y) = (

xy, θ1 (x)−1 θ1 (xy)
)
, for all x, y ∈ G.

By Theorem 2 and making explicit the condition (3), it is easy to check that two solutions
s(x, y) = (xy, θx (y)) and r(x, y) = (xy, ηx (y)) on the same group G are isomorphic via
f ∈ Aut(G) if and only if f θ1 = η1 f , i.e., f sends the system of representatives θ1(G) into
the other one η1 f (G).

However, describing all the solutions, up to isomorphisms, on arbitrary semigroups turns
out to be very hard. Indeed, even in the case of semigroups of small order, there are a lot of
solutions, as one can see in [18, Appendix B]. A first step could be studying specific classes
of solutions. In this regard, one can find in [6, Theorem 5.5] a complete description of all
involutive solutions.

Definition 3 Let X be a semigroup and s(x, y) = (xy, θx (y)) a solution on X . We say that
the map s is

– non-degenerate if θx is bijective, for every x ∈ X ;
– involutive if s2 = idX×X ;
– idempotent if s2 = s.

Example 2 1. [3, Examples 2-2.] Let X be a semigroup and γ : X → X a map. Then, the
map s(x, y) = (xy, γ (y)) , for all x, y ∈ X , is a solution if and only if γ ∈ End(X)

and γ 2 = γ . One can easily check that such a solution s is non-degenerate if and only if
γ = idX .

2. As a particular case of 1., if X is a semigroup and e ∈ E(X), where E(X) denotes the set
of the idempotents of X , the map s(x, y) = (xy, e) , for all x, y ∈ X , is an idempotent
solution.

3. Let X be a semigroup belonging to the variety S := [abc = bc] (see [20, p. 370]). Then,
the map s (x, y) = (xy, xy) , for all x, y ∈ X , is an idempotent solution.

4. Every Clifford semigroup X gives rise to the idempotent solution s given by s(x, y) =(
xy, y−1y

)
, for all x, y ∈ X . Recall that a Clifford semigroup X is a semigroup in which

every x ∈ X admits a unique x−1 ∈ X such that xx−1x = x, x−1xx−1 = x−1, and
xx−1 = x−1x (see [21, Exercise II.2.14]).

5. [18, Appendix B] Let X = {0, a, b} and S the null semigroup on X , i.e., xy = 0, for all
x, y ∈ X . Consider the maps θ0 = idS and θa = θb such that θa(0) = 0, θa(a) = b,
and θa(b) = a. Then, the map s(x, y) = (0, θx (y)) is an idempotent and non-degenerate
solution on S.

Other classes of solutions that can be studied are the commutative and the cocommutative
ones (see [3, Definition 6]). These kinds of solutions are in analogy to the commutative and
the cocommutative multiplicative unitary operators, i.e., solutions of (1) defined on Hilbert
spaces (see [1, Definition 2.1]).
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Definition 4 A solution s : X × X → X × X is said to be

– commutative if s12s13 = s13s12;
– cocommutative if s13s23 = s23s13.

If X is a semigroup and s(x, y) = (xy, θx (y)) a solution on X , it is a routine computation
to check that the map s is commutative if and only if

xzy = xyz (C1) θx = θxy (C2)

for all x, y, z ∈ X . Instead, s is cocommutative if and only if

xθy(z) = xz (CC1) θxθy = θyθx (CC2)

for all x, y, z ∈ X .
There exist solutions that are both commutative and cocommutative, such as the maps in

Example 1. Moreover, according to [6, Corollary 3.4], if s is an involutive solution, then s is
both commutative and cocommutative.

IfM is amonoid, it follows by (CC1) that the unique cocommutative solution onM is given
by s(x, y) = (xy, y), for all x, y ∈ M . In the next result, we describe all the commutative
solutions on a monoid.

Proposition 5 Let M be a monoid. Then, a solution s(x, y) = (xy, θx (y)) on M is commu-
tative if and only if M is a commutative monoid and θx = γ , with γ ∈ End(M), γ 2 = γ , for
every x ∈ M.

Proof By Example 2-1., s(x, y) = (xy, γ (y)), is a commutative solution on M . Conversely,
let us assume that s(x, y) = (xy, θx (y)) is commutative. Then, by substituting x = 1 in
(C1), the monoid M is commutative and, by (C2), θ1 = θy , for every y ∈ M . Thus, by (P1)
and (P2) the claim follows. 	


3 Properties of themaps �x involving the idempotents

In this section, we provide some properties of the maps θx which involve the idempotents of
arbitrary semigroups and that will be used in the next.

Firstly, according to [10, p. 69], among the idempotents in any semigroup X , there is a
natural partial order relation by the rule that

∀ e, f ∈ E(X) e ≤ f ⇐⇒ e f = f e = e.

Thus, we can collect the following easy properties for the maps θe on X .

Lemma 6 Let X be a semigroup, e, f ∈ E(X) such that e ≤ f , and s(x, y) = (xy, θx (y)) a
solution on X. Then, the following hold:

1. θe( f ) ∈ E(X),
2. θe(e) ≤ θe( f ),
3. θ f = θθe( f )θe.

Now, following [5, p. 22], given a semigroup X and e ∈ E(X), then e is a left identity (or
right identity) if ex = x (or xe = x), for every x ∈ X , and the sets

eX = {x ∈ X | ex = x} Xe = {x ∈ X | xe = x}
are respectively the principal right and left ideals of X generated by e. Moreover, we set
eXe = eX ∩ Xe. We can check the following properties.
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Lemma 7 Let X be a semigroup, e ∈ E(X), and s(x, y) = (xy, θx (y)) a solution on X.

1. If x ∈ Xe, then θx (e) ∈ E(X),
2. if x ∈ eX, then θe(x) ∈ θe(e)X,

Proof Initially, assume that x ∈ Xe. Then, by (P1), θx (e) = θx (e)θxe(e) = θx (e)θx (e).
Now, assume that x ∈ eX . Thus, using (P1), we have that θe(x) = θe(ex) = θe(e)θe(x).

Hence, since by Lemma 6-1. θe(e) ∈ E(X), we get θe(x) ∈ θe(e)X . 	

As a direct consequence of the previous lemma, we have the following properties for

arbitrary solutions defined on a monoid.

Lemma 8 Let M be a monoid with identity 1 and s(x, y) = (xy, θx (y)) a solution on M.
Then, the following hold:

1. θx (1) ∈ E(M),
2. θ1 = θθx (1)θx ,
3. θ1(x) ∈ θ1(1)M,
4. θx = θθ1(x)θx ,

for every x ∈ M.

In particular, it follows by Lemma 8-4. that the only non-degenerate solution on a monoid
M is that for which θx = idM , for every x ∈ M .

We conclude this section focusing on solutions on semigroups having central idempotents,
i.e., it holds xe = ex , for all e ∈ E(X) and x ∈ X . Obviously, in this case, Xe = eX . The
result we provide is consistent with Lemma 11 and the equation (4) of [3]. Let us first recall,
that if e ∈ E(X), the set

He = {x ∈ Xe | ∃ y ∈ Xe xy = yx = e}
is a group with identity e. In particular, if e and f are distinct idempotents, then He and H f

are disjoint. If x ∈ He, let us denote by x− the inverse of x in He.

Proposition 9 Let X be a semigroup having central idempotents, e ∈ E(X), x ∈ He, and
s(x, y) = (xy, θx (y)) a solution on X. Then, the following hold:

1. θe(e) ≤ θx (e);
2. θe(x) ∈ Hθe(e) and in particular θe(x)− = θx

(
x−)

;
3. if f ∈ E(X) is such that f ≤ e and y ∈ H f , then θx (y) = θe (x)− θe(xy).

Proof At first, we have that, by Lemma 6-1., θe(e) ∈ E(X), and, by Lemma 7-a., it holds
that θx (e) ∈ E(X). Thus,

θe(e)θx (e) = θe
(
xx−)

θx (e) = θe(x)θex
(
x−)

θx (e) = θe(x)θex (e)θex
(
x−)

= θe(xe)θex
(
x−) = θe(x)θex

(
x−) = θe

(
xx−) = θe(e),

and so 1. follows. Besides, by Lemma 7-c., θe(x) ∈ Xθe(e) and also θx
(
x−) ∈ Xθe(e), since

θx
(
x−)

θe(e) = θx
(
x−e

) = θx
(
x−)

. Hence, we get

θe(x)θx
(
x−) = θe(x)θex

(
x−) = θe

(
xx−) = θe(e)

and

θx
(
x−)

θe(x) = θx
(
x−)

θe(x)θe(e) θx
(
x−) ∈ Xθe(e)

123



Idempotent set-theoretical solutions…

= θx
(
x−x

)
θe(e)

= θx (e)θe(e)

= θe(e).

Finally, if f ∈ E(X) is such that f ≤ e and y ∈ H f , then, by 2., we obtain

θx (y) = θx (e f y) = θx
(
xx− f y

) = θx
(
x−)

θe(xy) = θe (x)− θe(xy),

which completes the proof. 	


4 Properties of themaps �x of idempotent solutions

In this section, we collect some properties of the maps θx of idempotent solutions on arbitrary
semigroups.

Initially, it is a routine computation to check that a solution s(x, y) = (xy, θx (y)) on a
semigroup X is idempotent if and only if

xyθx (y) = xy, (I1)

θxyθx (y) = θx (y), (I2)

for all x, y ∈ X . In particular, by (I1), if X is a group the unique idempotent solution on X
is the map s(x, y) = (xy, 1); such a solution s belongs to the class of solutions discussed
in Example 2-1.. On the other hand, considering this class of solutions on monoids, one can
easily check the following result.

Proposition 10 Let M be a monoid and γ : M → M a map. Then, s(x, y) = (xy, γ (y)) is
an idempotent solution on M if and only if γ ∈ End(M), γ 2 = γ , and xγ (x) = x, for every
x ∈ M.

By the previous proposition, in particular, the solution s(x, y) = (xy, y) on M is
idempotent if and only if M is an idempotent monoid.

However, takingmonoids even of small orders, one can note that among the solutions there
are several of the idempotent type that do not belong to the class of solutions in Example
2-1.. The following is an easy example.

Example 3 [18, Appendix B] Let X = {1, a, b} and M be the commutative monoid on X
with identity 1 and multiplication given by a2 = a, ab = a, b2 = 1. Then, there are three
idempotent solutions up to isomorphism:

1. s(x, y) = (xy, 1);
2. r(x, y) = (xy, γ (y)), with γ : M → M defined by γ (1) = γ (b) = 1 and γ (a) = a;
3. t(x, y) = (xy, θx (y)), with θx : M → M the map given by θx (1) = 1, θx (a) = a, for

every x ∈ X , and θ1(b) = θb(b) = 1 and θa(b) = b.

Based on the above arguments, in the next, we will focus on idempotent solutions.We first
give the following properties, which hold, in general, for idempotent solutions on arbitrary
semigroups and whose proof is a routine computation.

Proposition 11 Let X be a semigroup and s(x, y) = (xy, θx (y)) an idempotent solution on
X. Then, the following hold:
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1. θθx (y) = θy,

2. θy = θyθxy,

3. θx (yz) = θx (yz)θy(z),

for all x, y, z ∈ X.

Proposition 12 Let X be a semigroup, e ∈ E(X), and s(x, y) = (xy, θx (y)) an idempotent
solution on X.

1. If x ∈ Xe, then

a. x ∈ Xθx (e),
b. ∀y ∈ X θy(x) ∈ Xθx (e),
c. θe = θeθx .

2. If x ∈ eS, then

d. θe(x) ∈ E(X),
e. x ∈ X θe(x),
f. ∀y ∈ X θy(x) ∈ Xθe(x),
g. θx is an idempotent map.

Proof Initially, assume that x ∈ Xe. Then, by Lemma7-a., θx (e) ∈ E(X). Moreover, by (I1),
we get x = xe = xeθx (e) = xθx (e). Besides, if y ∈ X , by Proposition 11-3., we have that

θy(x) = θy(xe) = θy(xe)θx (e) = θy(x)θx (e),

and so b. follows. Finally, by Proposition 11-2., θe = θeθxe = θeθx , i.e., c. holds.
Now, suppose that x ∈ eX . At first, by (I1), we obtain that x = ex = exθe(x) = xθe(x)

and so

θe(x) = θe (xθe (x)) = θe(x)θexθe(x) = θe(x)
2,

where in the last equality we apply (I2). Thus, d. and e. follow. Moreover,

θx = θθe(x) by Proposition 11-1.

= θθex θe(x)θexθe(x) by (P2)

= θθe(x)θx by (I2)−(I1)

= θxθx by Proposition 11-1.

hence θx is an idempotent map. Finally, if y ∈ X , by Proposition 11-3., we have that

θy(x) = θy(ex) = θy(ex)θe(x) = θy(x)θe(x).

Therefore, the claim follows. 	

As a consequence of the previous proposition, we obtain the following result.

Corollary 13 Let X be a semigroup, e ∈ E(X), x ∈ eXe, and s(x, y) = (xy, θx (y)) an
idempotent solution on X. Then, the following hold:

1. θe(x) ∈ E(X),
2. x ∈ Xθe(x) ∩ Xθx (e),
3. θe = θeθx ,
4. ∀y ∈ X θy(x) ∈ Xθe(x) ∩ Xθx (e),
5. θx is idempotent.
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Remark 1 Note that if s is an idempotent solution on a monoid M with identity 1, in general,
θ1(E(M)) �= E(M). Indeed, if we consider the set X = {1, a, b} and the commutative
monoid M on X with identity 1, E(M) = {1, a}, and such that ab = a, we have that the only
idempotent solution is s(x, y) = (xy, 1).

5 Idempotent solutions onmonoids having central idempotents

In this section, we focus only on idempotent solutions defined on monoids. In particular, we
will give a description theorem for idempotent solutions defined on monoids having central
idempotents. In addition, we will show that specific idempotent solutions are strictly linked
to the kernel congruence of an idempotent monoid homomorphism.

Initially, given an idempotent solution s on M , all the statements of Corollary 13 hold
for the identity 1. In particular, θ1(x) ∈ E(M) and x ∈ Mθ1(x), for every x ∈ M . As a
consequence, we have the following:

Proposition 14 Let M be a cancellative monoid. Then, s(x, y) = (xy, 1) is the unique
idempotent solution on M.

Proof Since the identity is the unique idempotent of M , then θ1(x) = 1, for every x ∈ M .
Moreover, by Proposition 11-1., θx = θθ1(x), for every x ∈ M , and so the claim follows. 	


Thus, from now on we will consider not cancellative monoids. We have the following
properties.

Proposition 15 If M is a monoid and s(x, y) = (xy, θx (y)) an idempotent solution on M,
then

1. θ1(1) = 1,
2. θx = θθ1(x),
3. θ1(x) ≤ θx (1),
4. θx is idempotent,

for every x ∈ M.

Proof The first statement directly follows by (I1). The second one follows by Proposition
11-1. and the fourth one by g. in Proposition 12. Moreover, if x ∈ M , then θ1(x) = θ1(x1) =
θ1(x)θx (1). On the other hand, by (I2), it holds θxθ1(x) = θ1(x), and so we obtain

θx (1)θ1(x) = θx (1)θxθ1(x) = θx (1θ1(x)) = θxθ1(x) = θ1(x),

i.e., θ1(x) ≤ θx (1). 	

Given a monoid M , recall that a right unit is an element r of M for which there exists

r ′ ∈ M such that rr ′ = 1. Analogously, l ∈ M is a left unit of M if there exists a left inverse
l ′ ∈ M such that l ′l = 1. Next, we prove some properties that hold for any right unit of a
monoid M and that can be shown also for any left unit l ∈ M (exchanging the roles of r and
l ′ and of r ′ and l, respectively).

Proposition 16 Let M be a monoid and s(x, y) = (xy, θx (y)) an idempotent solution on M.
If r ∈ M is a right unit of M, then the following hold:

1. θr
(
r ′) = 1, where r ′ ∈ M is such that rr ′ = 1,
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2. θ1(r) = 1,
3. θ1 = θr .

Proof The equality θr
(
r ′) = 1 follows by setting x = r and y = r ′ in (I1). As a consequence,

we have that θ1(r) = θ1(r) · 1 = θ1(r)θr
(
r ′) = θ1

(
rr ′) = θ1(1) = 1. Moreover, by Lemma

8-4., it follows that θr = θθ1(r) = θ1. 	

In general, it is not true that θx

(
M×) ⊆ M×, where MX is the group of units of a monoid

M , as we show in the next example.

Example 4 [18, Appendix B] Let us consider the set X = {1, a, b} and the idempotent
commutative monoid M on X with identity 1 and such that ab = b. Clearly, MX = {1}.
Then, there exists an idempotent solution on M for which θb(1) = a. Such a solution is
defined considering the maps θ1 = θa : M → M given by θ1(1) = θa(1) = 1 and θ1(b) = b
and the map θb : M → M given by θb(1) = θb(a) = a and θb(b) = b.

In the last part of this section, we will focus on idempotent solutions on monoids M for
which θ1 is also a homomorphism from M to E(M). This assumption is not restrictive, as we
show in the next result. Indeed, it is a necessary condition for idempotent solutions defined
on monoids in which the idempotents are central. In the following, let us denote by Z(M)

the center of M .

Proposition 17 Let M be a monoid such that E(M) ⊆ Z(M) and s(x, y) = (xy, θx (y)) an
idempotent solution on M. Then, the map θ1 is an idempotent monoid homomorphism from
M to E(M).

Proof Initially, by Proposition 15-4., themap θ1 is idempotent. Besides, recalling that θ1(x) ∈
E(M), for any x ∈ M , we have that

θ1(xy) = θ1(x)θx (y)θ1(x) by Corollary 13-1.

= θ1θ1(x)θθ1(x)(y)θ1(x) by Proposition 11-1.

= θ1 (θ1(x)y) θ1(x) by (P1)

= θ1 (yθ1(x)) θ1(x)

= θ1(y)θyθ1(x)θ1(x) by (P1)

= θ1(y)θ1(x)θyθ1(x)

= θ1(y)θ1(x)θθ1(y)θ1(x) by Proposition 11-1.

= θ1(y)θ1(x) by (I1)

for all x, y ∈ M . Finally, by Proposition 15-1., it holds that θ1(1) = 1, hence the claim
follows. 	


Note that the converse of Proposition 17 is not true. Indeed, the map s(x, y) = (xy, 1) is
a solution in any monoid.

Lemma 18 Let M be a monoid such that E(M) ⊆ Z(M) and s(x, y) = (xy, θx (y)) a
solution on M for which θ1 is an idempotent monoid homomorphism from M to E(M) such
that x = xθ1(x), for every x ∈ M. Then, s is idempotent if and only if (I2) is satisfied.

Proof It is enough to notice that (I1) holds since, by (P1),

xy = xθ1(x)yθ1(y) = xyθ1(xy) = xyθ1(x)θx (y) = xθ1(x)yθx (y) = xyθx (y),

for all x, y ∈ M . 	
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The next result is a description of all idempotent solutions on a monoid M having central
idempotents.

Theorem 19 Let M be a monoid for which E(M) ⊆ Z(M) and μ an idempotent monoid
homomorphism from M to E(M) such that, for every x ∈ M, μ(x) = ex , with ex ∈ E(M) a
right identity for x. Moreover, let {θe : M → M | e ∈ Imμ} be a family of maps such that
θ1 = μ, and for every e ∈ Imμ,

θe(xy) = θe(x)θ f (y), (4)

for all x, y ∈ M, with f = μ(ex), and

θe = θeθe f , (5)

for every f ∈ Imμ, and

θe f θe(x) = θe(x), (6)

for every x ∈ M, with f = μ(x). Then, set θx = θμ(x), for every x ∈ M, one has that the
map s : M × M → M × M given by s(x, y) = (xy, θx (y)) is an idempotent solution on M.
Conversely, every idempotent solution on M can be so constructed.

Proof Let x, y, z ∈ M . Then, using (4) we obtain (P1), since

θx (y)θxy(z) = θμ(x)(y)θμ(μ(x)y)(z) = θμ(x)(yz) = θx (yz).

Moreover,

θθx (y)θxy(z) = θμθx (y)θμ(x)μ(y)(z)

= θθ1θx (y)θθ1(x)θ1(y)(z)

= θθ1(y)θθ1(x)θ1(y)(z) by (5) since θ1 = θ1θx

= θy(z) by (5)

and so (P2) is satisfied. Thus, by Lemma 18, (I1) holds. Finally, applying (6), we get

θxyθx (y) = θμ(x)μ(y)θμ(x)(y) = θμ(x)(y) = θx (y).

Therefore, s(x, y) = (xy, θx (y)) is an idempotent solution on M .
Vice versa, if we assume that s(x, y) = (xy, θx (y)) is an idempotent solution on M , then

by Proposition 17, μ = θ1 is an idempotent monoid homomorphism, and, by Proposition
12-2.(e), we have that x ∈ Mθ1(x), for every x ∈ M . In addition, by Proposition 15-2.,
θx = θθ1(x), for every x ∈ M . Hence, by(P1), we obtain (4). Now, let e, f ∈ Im θ1, thus there
exist x, y ∈ M such that e = θ1(x) and f = θ1(y). Besides, by (P2),

θe = θθ1(x) = θx = θθy(x)θyx = θθ1(x)θθ1(y)θ1(x) = θeθ f e,

and so (6) holds. Finally, by (I2), if e ∈ Im θ1, x ∈ M , and f = θ1(x), we obtain

θe f θe(x) = θθ1(xy)θθ1(x)(y) = θxyθx (y) = θx (y) = θθ1(x)(y) = θe(y),

for every y ∈ M , hence (6) holds. 	

Remark 2 Unlike solutions definedongroups, in the case of idempotent solutions onmonoids,
it is not possible to find a way to write the maps θx by means of the map θ1 as in Theorem
2. Indeed, if we look at the idempotent solutions on the monoid M in Example 4, one can
see that there are three different solutions having the same map θ1 : M → M given by
θ1(1) = θa(1) = 1 and θ1(b) = b.
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The next result narrows down that choice of the maps θe in Theorem 19. Indeed, given
an idempotent solution on a monoid M such that θ1 is a monoid homomorphism from M to
E(M), one has that the kernel of θ1, i.e., the set

ker θ1 = {(x, y) ∈ M × M | θ1(x) = θ1(y)}
is a congruence relationonM . Thus, one cannaturally consider the quotientmonoidM/ ker θ1
(see [22] for more details). Additionally, we have the following properties.

Theorem 20 Let M be a monoid and s(x, y) = (xy, θx (y)) an idempotent solution on M
such that θ1 is a monoid homomorphism from M to E(M). Then,

1. θ1(M) is a system of representatives of M/ ker θ1 that contains the identity;
2. (θx (y), y) ∈ ker θ1, for all x, y ∈ M.

Proof The first part is a consequence of the idempotence of themap θ1 by 4. in Proposition 15.
In fact, Proposition 15-1., we have that 1 = θ1(1) ∈ θ1(M). Moreover, since by Proposition
15-4. θ1 is an idempotent map, we easily obtain that (θ1(x), x) ∈ ker θ1, for every x ∈ M .
Besides, if x, y ∈ M are distinct and such that (θ1(y), x) ∈ ker θ1, then we get θ1(y) =
θ1(θ1(y)) = θ1(x).

The second part follows by Corollary 13-3., since θ1θx (y) = θ1(y), for all x, y ∈ M , and
so (θx (y), y) ∈ ker θ1. Therefore, we get the claim. 	

Corollary 21 Let M be a monoid for which E(M) ⊆ Z(M) and s(x, y) = (xy, θx (y)) an
idempotent solution on M. Then, θ1(M) is a system of representatives of M/ ker θ1 that
contains the identity and (θx (y), y) ∈ ker θ1.

Proof It is a consequence of Theorem 20, since, by Proposition 17, the map θ1 is a monoid
homomorphism from M to E(M). 	

Remark 3 Let M be a monoid for which E(M) ⊆ Z(M) and s(x, y) = (xy, θx (y)) and
r(x, y) = (xy, ηx (y)) two idempotent solutions on M . Then, by (3), if such solutions are
isomorphic, there exists an isomorphism f of M such that f θ1 = η1 f , i.e., f sends the
system of representatives θ1(M) of M/ ker θ1 into the other one η1 f (M).

Funding Open access funding provided by Università del Salento within the CRUI-CARE Agreement.

Data Availability Statement No data are used in the present article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann.
Sci. Éc. Norm. Sup. 26(4), 425–488 (1993). http://eudml.org/doc/82346

123

http://creativecommons.org/licenses/by/4.0/
http://eudml.org/doc/82346


Idempotent set-theoretical solutions…

2. Baaj, S., Skandalis, G.: Transformations pentagonales. C. R. Acad. Sci. Paris Sér. IMath. 327(7), 623–628
(1998). https://doi.org/10.1016/S0764-4442(99)80090-1

3. Catino, F., Mazzotta, M., Miccoli, M.M.: Set-theoretical solutions of the pentagon equation on groups.
Commun. Algebra 48(1), 83–92 (2020). https://doi.org/10.1080/00927872.2019.1632331

4. Catino, F., Mazzotta, M., Stefanelli, P.: Set-theoretical solutions of the Yang-Baxter and pentagon equa-
tions on semigroups. SemigroupForum 100(3), 1–26 (2020). https://doi.org/10.1007/s00233-020-10100-
x

5. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. I, Mathematical Surveys, No.
7. American Mathematical Society, Providence (1961)

6. Colazzo, I., Jespers, E., Kubat, Ł: Set-theoretic solutions of the pentagon equation. Commun.Math. Phys.
380(2), 1003–1024 (2020). https://doi.org/10.1007/s00220-020-03862-6

7. Colazzo, I., Jespers, E., Kubat, Ł., Van Antwerpen, A., Verwimp, C.: Finite idempotent set-theoretic
solutions of the Yang–Baxter equation (2022). arxiv:2212.07361

8. Dimakis, A., Müller-Hoissen, F.: Simplex and polygon equations. SIGMASymmetry Integrability Geom.
Methods Appl. 11 Paper 042, 49 (2015). https://doi.org/10.3842/SIGMA.2015.042

9. Drinfel’d, V.G.: On some unsolved problems in quantum group theory. In: Quantum Groups (Leningrad,
1990), Lecture Notes in Mathematics, vol. 1510. Springer, Berlin, pp. 1–8 (1992). https://doi.org/10.
1007/BFb0101175

10. Howie, J.M.: Fundamentals of semigroup theory, London Mathematical Society Monographs, vol. 12.
New Series, The Clarendon Press, Oxford University Press, New York, Oxford Science Publications
(1995)

11. Jiang, L., Liu,M.:On set-theoretical solution of the pentagon equation.Adv.Math. (China) 34(3), 331–337
(2005)

12. Kashaev, R.: Fully noncommutative discrete Liouville equation. In: Infinite Analysis 2010–Developments
in Quantum Integrable Systems, RIMS Kôkyûroku Bessatsu, B28, Res. Inst. Math. Sci. (RIMS), Kyoto,
pp. 89–98 (2011)

13. Kashaev, R.M., Sergeev, S.M.: On pentagon, ten-term, and tetrahedron relations. Commun. Math. Phys.
195(2), 309–319 (1998). https://doi.org/10.1007/s002200050391

14. Kawamura, K.: Pentagon equation arising from state equations of a C*-bialgebra. Lett. Math. Phys. 93(3),
229–241 (2010). https://doi.org/10.1007/s11005-010-0413-5

15. Kunze, M.: Zappa products. Acta Math. Hungar. 41(3–4), 225–239 (1983). https://doi.org/10.1007/
BF01961311

16. Lebed, V.: Cohomology of idempotent braidings with applications to factorizable monoids. Int. J. Algebra
Comput. 27(4), 421–454 (2017). https://doi.org/10.1142/S0218196717500229

17. Mazzotta, M.: Conference talk “Recent developments of the set-theoretical solutions to the pentagon
equation’, FirstUMImeeting of PhD students, Padova, 26–27May (2022). https://www.100umi800unipd.
it/?page_id=362#parallel-sessions

18. Mazzotta, M.: Recent developments of the set-theoretical solutions to the pentagon equation, Ph.D. thesis
Università del Salento (2020). https://doi.org/10.13140/RG.2.2.16416.40969

19. Militaru, G.: The Hopf modules category and the Hopf equation. Commun. Algebra 26(10), 3071–3097
(1998). https://doi.org/10.1080/00927879808826329

20. Monzo, R.A.R.: Pre-compatible almost endomorphisms and semigroupswhose cube is a band. Semigroup
Forum 67(3), 355–372 (2003). https://doi.org/10.1007/s00233-001-0004-y

21. Petrich, M.: Inverse semigroups, Pure and Applied Mathematics (New York). Wiley, New York (1984)
22. Rhodes, J., Tilson, B.: The kernel of monoid morphisms. J. Pure Appl. Algebra 62(3), 227–268 (1989).

https://doi.org/10.1016/0022-4049(89)90137-0
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