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A B S T R A C T

In this work we present a rigorous and straightforward method to detect the onset of the
instability of replica-symmetric theories in information processing systems, which does not
require a full replica analysis as in the method originally proposed by de Almeida and Thouless
for spin glasses. The method is based on an expansion of the free-energy obtained within
one-step of replica symmetry breaking (RSB) around the RS value. As such, it requires solely
continuity and differentiability of the free-energy and it is robust to be applied broadly to
systems with quenched disorder. We apply the method to the Hopfield model and to neural
networks with multi-node Hebbian interactions, as case studies. In the appendices we test the
method on the Sherrington–Kirkpatrick and the Ising 𝑃 -spin models, recovering the AT lines
known in the literature for these models, as a special limit, which corresponds to assuming
that the transition from the RS to the RSB phase can be obtained by varying continuously the
order parameters. Our method provides a generalization of the AT approach, which does not
rely on this limit and can be applied to systems with discontinuous phase transitions, as we
show explicitly for the spherical P-spin model, recovering the known RS instability line.

1. Introduction

Replica symmetry breaking in neural networks has attracted increasing attention in recent years [1–5], however there is, as yet,
no general broken replica-symmetry theory for these systems and no simple method to systematically detect their transition from
the replica-symmetric (RS) to the replica-symmetry-broken (RSB) phase.

While the first point is still out of reach, the second question can be addressed by adapting approaches originally developed for
spin glasses. Indeed, the instability line of the RS phase in the Sherrington–Kirkpatrick (SK) spin glass model was derived by de
Almeida and Thouless (AT) many decades ago [6], using a method based on replicas. Since their seminal work, rigorous techniques
have been developed and tested in archetypical mean-field as well as short-ranged spin glass models, by many researchers (see
e.g. [7–14]).

As neural networks are particular realizations of spin glasses, it is quite natural to ask if we can devise a systematic method to
derive the RS instability line also for these systems. In this work we answer affirmatively to this question, using the Hopfield model
of neural networks and a model of dense associative memory, which extends Hebbian learning to multi-node interactions, as case
studies. To this purpose, we devise a method inspired by the approach proposed by Toninelli in [15], which builds on Guerra’s work
on broken replica-symmetry bounds [16]. As a technical note we remark that at difference with conventional spin glasses, here we
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focus on the RS instability in the parameter space (𝛼, 𝑇 ) where 𝛼 is the storage load of the network and 𝑇 is the noise level, rather
than in the space (ℎ, 𝑇 ) (i.e. magnetic field, temperature) conventionally used in spin glasses.

For the Hopfield model, our method recovers the instability line obtained by Coolen [17] using the AT approach, as a special
limit, which corresponds to assuming a continuous transition from the RS to the RSB phase, in the order parameters. Therefore, our
method provides a generalization of the AT approach, which can be applied to systems with a discontinuous transition from the RS
to the 1RSB phase. Another advantage of our method, when compared to the involved calculations of the AT method in the Hopfield
model [17], is its remarkable simplicity. This allows for straightforward application to more complex neural network models, such
as dense associative memories with 𝑃 -node interactions. We supplement the results in the main text with Appendix A where we
show our method at work on conventional spin-glass models, namely the Sherrington–Kirkpatrick model, the Ising 𝑃 -spin and the
spherical 𝑃 -spin model, the latter providing an example of system which exhibits a discontinuous phase transition from the RS to
the RSB phase. In all cases, we retrieve the AT lines known for these models [6,17–19] in a specific limit, confirming the validity of
our approach as a generalization of the AT method. As expected from the decomposition theorem of multi-node Hebbian networks
proved in [1], for dense associative memories with 𝑃 -node interactions we retrieve the instability line of the Ising 𝑃 -spin model
derived in Appendix A. Appendices B and C provide further technical details.

2. The Hopfield model

In this section we illustrate the method for the Hopfield model with 𝑁 Ising neurons 𝜎𝑖 ∈ {1,−1}, 𝑖 = 1,… , 𝑁 and 𝐾 = 𝛼𝑁
stored patterns 𝝃𝜇 , 𝜇 = 1,… , 𝐾. Each pattern 𝝃𝜇 is a sequence of 𝑁 Rademacher entries (i.e. Bernoulli variables) 𝜉𝜇𝑖 , 𝑖 = 1,… , 𝑁 ,
with distribution

P(𝜉𝜇𝑖 ) =
1
2

(

𝛿𝜉𝜇𝑖 ,+1 + 𝛿𝜉𝜇𝑖 ,−1
)

. (2.1)

he Hamiltonian of the model is

𝐻𝑁 (𝝈|𝝃) = − 1
𝑁

𝑁,𝑁
∑

𝑖,𝑗=1,1

𝐾
∑

𝜇=1
𝜉𝜇𝑖 𝜉

𝜇
𝑗 𝜎𝑖𝜎𝑗 (2.2)

nd we denote the associated Boltzmann factor, at inverse temperature 𝛽 = 1∕𝑇 , as

𝑁 (𝝈|𝝃) = 𝑒−𝛽𝐻𝑁 (𝝈|𝝃)

𝑍
, 𝑍 =

∑

𝝈
𝑒−𝛽𝐻𝑁 (𝝈|𝝃). (2.3)

In the so-called ‘retrieval’ phase, the equilibrium local configurations are correlated only with a single pattern, say 𝜈. As the
ouplings 𝐽𝑖𝑗 =

∑𝐾
𝜇=1 𝜉

𝜇
𝑖 𝜉

𝜇
𝑗 are symmetric w.r.t. permutations of the patterns, it is assumed without loss of generality that 𝜈 = 1. It

s then convenient to define as the order parameters of the system, the so-called Mattis magnetization

𝑚(𝝈) ∶= 1
𝑁

𝑁
∑

𝑖=1
𝜉1𝑖 𝜎𝑖 (2.4)

hich quantifies the alignment of the system configuration 𝝈 with the retrieval pattern 𝝃1, and the two-replica overlap

𝑞(𝝈(1),𝝈(2)) ∶= 1
𝑁

𝑁
∑

𝑖=1
𝜎(1)𝑖 𝜎(2)𝑖 (2.5)

which quantifies the correlations between two configurations 𝝈(1),𝝈(2) of the system, with the same realization of the patterns
(i.e. quenched disorder).

The RS analysis assumes that the order parameters 𝑚 and 𝑞 self-average around their equilibrium values �̄� and 𝑞, in the
hermodynamic limit, namely

lim
𝑁→+∞

𝑃𝑁 (𝑚) =𝛿(𝑚 − �̄�), (2.6)

lim
𝑁→+∞

𝑃 ′
𝑁 (𝑞) =𝛿(𝑞 − 𝑞), (2.7)

here 𝑃𝑁 (𝑚) = E𝝃
∑

𝝈 𝑁 (𝝈|𝝃)𝛿(𝑚 − 𝑚(𝝈)) and 𝑃 ′
𝑁 (𝑞) = E𝝃

∑

𝝈(1) ,𝝈(2) 𝑁 (𝜎(1)|𝝃)𝑁 (𝝈(2)
|𝝃)𝛿(𝑞 − 𝑞12(𝝈(1),𝝈(2))), with E𝝃 denoting the

xpectation over the pattern distribution (or ‘quenched’ disorder). Under this assumption, the free-energy, averaged over the pattern
istribution, 𝑓 , is given by (see [20])

−𝛽𝑓𝑅𝑆 (�̄�, 𝑞|𝛽, 𝛼) = ln 2 − 𝛼
2
ln(1 − 𝛽(1 − 𝑞)) −

𝛽
2
�̄�2 +

𝛼𝛽𝑞
2(1 − 𝛽(1 − 𝑞))

−
𝛼𝛽2

2
𝑞(1 − 𝑞)

(1 − 𝛽(1 − 𝑞))2
+ E ln cosh

(

𝛽𝑧

√

𝛼𝑞
(1 − 𝛽(1 − 𝑞))2

+ 𝛽�̄�

)

, (2.8)

here 𝑧 is a random Gaussian variable with zero average and unit variance, E denotes the average over 𝑧 and 𝛼 is the load capacity
f the network. In this limit, the order parameters 𝑞 and �̄� fulfill the celebrated Amit–Gutfreund–Sompolinsky self-consistency
quations [20,21]:

𝑞 = E tanh2
(

𝛽�̄� + 𝛽

√

𝛼𝑞
2
𝑧

)

, (2.9)
2

(1 − 𝛽(1 − 𝑞))
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�̄� = E tanh

(

𝛽�̄� + 𝛽

√

𝛼𝑞
(1 − 𝛽(1 − 𝑞))2

𝑧

)

. (2.10)

n the other hand, within one step of the replica-symmetry breaking (1RSB) scheme [22–24] it is assumed that the distribution of
he two-replica overlap 𝑞, in the thermodynamic limit, displays two delta-peaks at the equilibrium values 𝑞0 and 𝑞1 > 𝑞0 and the
oncentration on these two values is ruled by the parameter 𝜃 ∈ [0, 1], while 𝑚 self-averages as in the RS case :

lim
𝑁→+∞

𝑃𝑁 (𝑚)= 𝛿(𝑚 − �̄�1), (2.11)

lim
𝑁→+∞

𝑃 ′
𝑁 (𝑞) = 𝜃𝛿(𝑞 − 𝑞0) + (1 − 𝜃)𝛿(𝑞 − 𝑞1), (2.12)

Within this assumption, the disorder-averaged free-energy is given by (see e.g. [24])

− 𝛽𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝛽, 𝛼, 𝜃) = ln 2 − 𝛼
2
ln
(

𝛥1(𝛽, 𝑞1)
)

+ 𝛼
2𝜃

ln
(

𝛥1(𝛽, 𝑞1)
𝛥2(𝛽, 𝜃, 𝑞0, 𝑞1)

)

+
𝛼𝛽𝑞0

2𝛥2(𝛽, 𝜃, 𝑞0, 𝑞1)

−
𝛽
2
�̄�2
1 +

1
2
𝛼𝛽2𝜃

𝑞20
𝛥2
2(𝛽, 𝜃, 𝑞0, 𝑞1)

+ 1
𝜃
E1 lnE2 cosh

𝜃 𝑔𝜃(𝛽, 𝛼, �̄�1, 𝑞0, 𝑞1)

− 1
2
𝛼𝛽2𝜃𝑞1

(

𝑞0
𝛥2
2(𝛽, 𝜃, 𝑞0, 𝑞1)

+
𝑞1 − 𝑞0

𝛥1(𝛽, 𝑞1)𝛥2(𝛽, 𝜃, 𝑞0, 𝑞1)

)

− 1
2
𝛼𝛽2(1 − 𝑞1)

(

𝑞0
𝛥2
2(𝛽, 𝜃, 𝑞0, 𝑞1)

+
𝑞1 − 𝑞0

𝛥1(𝛽, 𝑞1)𝛥2(𝛽, 𝜃, 𝑞0, 𝑞1)

)

(2.13)

here, for mathematical convenience, we defined

𝛥1(𝛽, 𝑞1) ∶= 1 − 𝛽(1 − 𝑞1) (2.14)

𝛥2(𝛽, 𝜃, 𝑞0, 𝑞1) ∶= 1 − 𝛽(1 − 𝑞1) − 𝛽𝜃(𝑞1 − 𝑞0) (2.15)

𝑔𝜃(𝛽, 𝛼, �̄�1, 𝑞1, 𝑞0) ∶= 𝛽�̄�1 +
𝛽𝑧(1)

√

𝛼𝑞0
𝛥2(𝛽, 𝜃, 𝑞0, 𝑞1)

+ 𝛽𝑧(2)
√

𝛼(𝑞1 − 𝑞0)
𝛥1(𝛽, 𝑞1)𝛥2(𝛽, 𝜃, 𝑞0, 𝑞1)

(2.16)

nd we have denoted with E1, E2 the averages w.r.t. the standard normal variables 𝑧(1) and 𝑧(2), respectively. From now on, we
mply the dependence of all the functions on 𝛽 and 𝛼. By extremizing the 1RSB free-energy w.r.t. its order parameters 𝑞0, 𝑞1, �̄�1, it
s possible to show that the latter fulfill the following self-consistency equations

�̄�1 = E1

[

E2 cosh
𝜃 𝑔𝜃(�̄�1, 𝑞1, 𝑞0) tanh 𝑔𝜃(�̄�1, 𝑞1, 𝑞0)
E2 cosh

𝜃 𝑔𝜃(�̄�1, 𝑞1, 𝑞0)

]

,

𝑞1 = E1

[

E2 cosh
𝜃 𝑔𝜃(�̄�1, 𝑞1, 𝑞0) tanh

2 𝑔𝜃(�̄�1, 𝑞1, 𝑞0)
E2 cosh

𝜃 𝑔𝜃(�̄�1, 𝑞1, 𝑞0)

]

,

𝑞0 = E1

[

E2 cosh
𝜃 𝑔𝜃(�̄�1, 𝑞1, 𝑞0) tanh 𝑔𝜃(�̄�1, 𝑞1, 𝑞0)
E2 cosh

𝜃 𝑔𝜃(�̄�1, 𝑞1, 𝑞0)

]2

.

(2.17)

The key idea of our method is to assume that at the onset of the RS instability, one of the two delta-peaks in Eq. (2.12) has vanishing
weight, i.e. either 𝜃 → 0 or 𝜃 → 1. Consistency with the RS theory then requires the dominating peak to be located at the value 𝑞 of
the RS order parameter, so either lim𝜃→0 𝑞1 = 𝑞 or lim𝜃→1 𝑞0 = 𝑞. As we will see below, both these relations are generally satisfied,
hence we appeal to the physical interpretation of RS breaking to determine which scenario applies. Noting that when the RS theory
becomes unstable, a multiplicity of states emerges with mutual overlap 𝑞0 and self-overlap 𝑞1, within the single state (or each of
he states) predicted by the RS theory, it is natural to assume that the value of the mutual overlap between the newly born states
s equal to the self-overlap 𝑞 of the state(s) assumed by the RS theory. Thus, we will assume that at the onset of the RS instability,
𝑞0 → 𝑞, hence 𝜃 → 1. For the Hopfield model, taking this limit in (2.17), and using

𝑔1(�̄�1, 𝑞1, 𝑞0) = 𝛽�̄�1 + 𝛽𝑧(1)
√

𝛼𝑞0
𝛥1(𝑞0)

+ 𝛽𝑧(2)
√

𝛼(𝑞1 − 𝑞0)
𝛥1(𝑞1)𝛥1(𝑞0)

, (2.18)

e get

lim
𝜃→1

𝑞0 = E1

[

E2 sinh 𝑔1(�̄�1, 𝑞1, 𝑞0)
E2 cosh 𝑔1(�̄�1, 𝑞1, 𝑞0)

]2

= E1

⎡

⎢

⎢

⎢

⎢

⎢

exp
(

𝛽2𝛼(𝑞1 − 𝑞0)
2𝛥1(𝑞1)𝛥1(𝑞0)

)

sinh

(

𝛽�̄�1 + 𝛽

√

𝛼𝑞0
(1 − 𝛽(1 − 𝑞0))2

𝑧(1)
)

exp
(

𝛽2𝛼(𝑞1 − 𝑞0)
)

cosh

(

𝛽�̄�1 + 𝛽

√

𝛼𝑞0
2
𝑧(1)

)

⎤

⎥

⎥

⎥

⎥

⎥

2

3

⎣

2𝛥1(𝑞1)𝛥1(𝑞0) (1 − 𝛽(1 − 𝑞0)) ⎦



Physica A: Statistical Mechanics and its Applications 633 (2024) 129372L. Albanese et al.

d
t
S

t
e
t

f

w
w
s

w


F

w

w
(

a

S

w

N
r
t

= E1 tanh
2

(

𝛽�̄�1 + 𝛽

√

𝛼𝑞0
(1 − 𝛽(1 − 𝑞0))2

𝑧(1)
)

(2.19)

where in the second line we have used sinh(𝐴 + 𝐵) = sinh𝐴 cosh𝐵 + sinh𝐵 cosh𝐴 and cosh(𝐴 + 𝐵) = cosh𝐴 cosh𝐵 + sinh𝐵 sinh𝐴 (𝐴
enoting the first two terms on the RHS of (2.18) and 𝐵 the last one) and have performed the integral over 𝑧(2) using the oddity of
he sinh function. As (2.19) is identical to (2.9), in the limit 𝜃 → 1, 𝑞0 is indeed equal to the RS order parameter 𝑞, as anticipated.
imilarly, we can show that

lim
𝜃→1

�̄�1 = �̄� (2.20)

and one can easily verify that 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=1 = 𝑓𝑅𝑆 (�̄�, 𝑞), as expected from the fact that, for 𝜃 = 1, Eq. (2.12) reduces
o (2.7) and one retrieves the RS scheme. Our purpose is then to prove that for values of 𝜃 close but away from one, the 1RSB
xpression of the quenched free-energy is smaller than the RS expression, i.e. 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) < 𝑓𝑅𝑆 (�̄�, 𝑞), below a critical line in
he parameters space (𝛼, 𝛽).

To this purpose, we expand the 1RSB quenched free-energy around 𝜃 = 1 (i.e. around the replica symmetric expression) to the
irst order, writing

𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) = 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=1 + (𝜃 − 1)𝜕𝜃𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=1, (2.21)

here 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=1 = 𝑓𝑅𝑆 (�̄�, 𝑞). To determine when the RS solution becomes unstable, i.e. 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) < 𝑓𝑅𝑆 (�̄�, 𝑞)
e inspect the sign of 𝜕𝜃𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=1, keeping in mind that 𝜃 − 1 < 0. To evaluate the latter, we need to expand the

elf-consistency equations for �̄�1, 𝑞0 and 𝑞1 around 𝜃 = 1, to linear orders in 𝜃 − 1. We obtain

𝑞0 = E1 tanh
2

(

𝛽�̄� + 𝛽

√

𝛼𝑞0
(1 − 𝛽(1 − 𝑞0))2

𝑧(1)
)

+ (𝜃 − 1)𝐴(�̄�1, 𝑞0, 𝑞1) (2.22)

here 𝐴(�̄�1, 𝑞0, 𝑞1) is a function of �̄�1, 𝑞0 and 𝑞1 that will drop out of the calculation, whose expression is provided in (C.1). As to
((𝜃 − 1)0), 𝑞0 and �̄�1 are equal to the RS order parameters 𝑞 and �̄�, respectively, we can rewrite (2.22) as

𝑞0 = 𝑞 + (𝜃 − 1)𝐴(�̄�, 𝑞, 𝑞1). (2.23)

ollowing the same path for 𝑞1, and using (2.23), we have

𝑞1 =∶ E1

[

E2 cosh 𝑔1(�̄�, 𝑞1, 𝑞) tanh
2 𝑔1(�̄�, 𝑞1, 𝑞)

E2 cosh 𝑔1(�̄�, 𝑞1, 𝑞)

]

+ (𝜃 − 1)𝐵(�̄�1, 𝑞0, 𝑞1) (2.24)

here 𝐵(�̄�1, 𝑞0, 𝑞1) is provided in (C.2) and will drop out of the calculation. For 𝜃 = 1, we have

𝑞1 = E1

[

E2 cosh 𝑔1(�̄�, 𝑞1, 𝑞) tanh
2 𝑔1(�̄�, 𝑞1, 𝑞)

E2 cosh 𝑔1(�̄�, 𝑞1, 𝑞)

]

(2.25)

hich is a self-consistency equation for 𝑞1, that depends only on 𝑞 and �̄�. Denoting with 𝑞1(�̄�, 𝑞) its solution, we can then write
2.24) as

𝑞1 = 𝑞1(�̄�, 𝑞) + (𝜃 − 1)𝐵(�̄�, 𝑞, 𝑞1(�̄�, 𝑞)) (2.26)

nd, finally,

𝑞0 = 𝑞 + (𝜃 − 1)𝐴(�̄�, 𝑞, 𝑞1(�̄�, 𝑞)). (2.27)

imilarly to 𝑞0 and 𝑞1 we can expand also �̄�1 as

�̄�1 = �̄� + (𝜃 − 1)𝐶(�̄�, 𝑞, 𝑞1(�̄�, 𝑞)) (2.28)

here 𝐶(�̄�, 𝑞, 𝑞1(�̄�, 𝑞)) is provided in (C.3).
Using (2.28), (2.26) and (2.27) to evaluate the derivative of 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) w.r.t. 𝜃 and finally setting 𝜃 = 1, we obtain:

𝐾(�̄�, 𝑞, 𝑞1(�̄�, 𝑞)) ∶= 𝜕𝜃(−𝛽𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃))|𝜃=1

= − 𝛼
2
log

[

𝛥1(𝑞1(�̄�, 𝑞))
𝛥1(𝑞)

]

+
𝛼𝛽(𝑞1(�̄�, 𝑞) − 𝑞)

2𝛥1(𝑞)
−

𝛼𝛽2(1 − 𝑞1(�̄�, 𝑞))(𝑞1(�̄�, 𝑞) − 𝑞)
2𝛥1(𝑞1(�̄�, 𝑞))𝛥1(𝑞)

− E log cosh

(

𝛽�̄� + 𝛽𝑧

√

𝛼𝑞
2𝛥1(𝑞)

)

+ E1

[

E2 cosh 𝑔1(�̄�, 𝑞1(�̄�, 𝑞), 𝑞) log cosh 𝑔1(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)
E2 cosh 𝑔1(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)

]

. (2.29)

ext, we study the sign of (2.29), where 𝑞 and 𝑞1(�̄�, 𝑞) are the solutions of the self-consistency equations (2.9) and (2.25),
espectively. To this purpose, it is useful to study the behavior of the function 𝐾(�̄�, 𝑞, 𝑥) for 𝑥 ∈ [0, 𝑞]. For 𝑥 = 𝑞, regardless of
he value assigned to �̄�, we have 𝐾(�̄�, 𝑞, 𝑞) = 0, while the extremum of 𝐾(�̄�, 𝑞, 𝑥) is found from

𝜕𝑥𝐾(�̄�, 𝑞, 𝑥) =
𝛽2𝛼𝑥

2

[

𝑥 − E1
E2 cosh 𝑔1(�̄�, 𝑥, 𝑞) tanh

2 𝑔1(�̄�, 𝑥, 𝑞)
]

= 0
4

2𝛥1(𝑥) E2 cosh 𝑔1(�̄�, 𝑥, 𝑞)
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Fig. 1. RS overlap 𝑞 (top row) and the difference between 𝑞1(�̄�, 𝑞) and 𝑞 (bottom row) versus the scaled parameter 𝑇 ∕
√

𝛼, for different values of 𝛼 (as shown
in the legend), for the Hopfield model (left) and Hebbian networks with 𝑃 -node interactions, for 𝑃 = 4 (mid) and 𝑃 = 6 (right).

at

𝑥 = E1
E2 cosh 𝑔1(�̄�, 𝑥, 𝑞) tanh

2 𝑔1(�̄�, 𝑥, 𝑞)
E2 cosh 𝑔1(�̄�, 𝑥, 𝑞)

≡ 𝑞1(�̄�, 𝑞), (2.30)

where the last equality follows from Eq. (2.25). Given that 𝐾(�̄�, 𝑞, 𝑥) vanishes for 𝑥 = 𝑞, if the extremum 𝑥 = 𝑞1(�̄�, 𝑞) is global in the
domain considered, we must have that 𝐾(𝑞, 𝑞1(𝑞)) > 0 if 𝑥 = 𝑞1(𝑞) is a maximum and 𝐾(�̄�, 𝑞, 𝑞1(𝑞)) < 0 if 𝑥 = 𝑞1(�̄�, 𝑞) is a minimum.
Therefore, if

𝜕2𝑥𝐾(𝑞, 𝑥)|𝑥=𝑞1(�̄�, 𝑞) = −
𝛽2𝛼

2𝛥1(𝑞1(�̄�, 𝑞))2

⎧

⎪

⎨

⎪

⎩

1 −
𝛽2𝛼

𝛥1(𝑞1(�̄�, 𝑞))2
E1

[

E2 sech3𝑔1(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)
E2 cosh 𝑔1(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)

]2⎫
⎪

⎬

⎪

⎭

(2.31)

is positive, 𝐾(�̄�, 𝑞, 𝑞1(�̄�, 𝑞)) is negative and

𝑓1𝑅𝑆𝐵(�̄�, 𝑞1(�̄�, 𝑞), 𝑞|𝜃) = 𝑓𝑅𝑆 (�̄�, 𝑞) − (𝜃 − 1)
𝐾(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)

𝛽
< 𝑓𝑅𝑆 (�̄�, 𝑞), (2.32)

hence the RS theory becomes unstable when the expression in the curly brackets in (2.31) becomes negative i.e. for

(1 − 𝛽(1 − 𝑞1(�̄�, 𝑞)))2 < 𝛽2𝛼E1

[

E2 sech3𝑔1(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)
E2 cosh 𝑔1(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)

]2

(2.33)

This expression recovers the result found by Coolen in [17] using the de Almeida–Thouless approach [6], in the limit 𝑞1(�̄�, 𝑞) → 𝑞,
where (2.33) reduces to

(1 − 𝛽(1 − 𝑞))2 < 𝛼𝛽2 E cosh−4
[

𝛽�̄� + 𝛽𝑧

√

𝛼𝑞
1 − 𝛽(1 − 𝑞)

]

. (2.34)

While this limit is a priori unjustified, as 𝑞 and 𝑞1(�̄�, 𝑞) should be solved from the self-consistency equations (2.9) and (2.25),
respectively, one can check numerically that the solutions of these equations are virtually indistinguishable for any temperature
(see Fig. 1, left panel), and the resulting RS instability line is almost identical to the AT line derived in [17], see Fig. 2 (left panel).
Small deviations can be appreciated in the retrieval region (see right panel), but these are likely due to numerical precision.

As our method does not rely on the assumption 𝑞1(�̄�, 𝑞) → 𝑞, it provides a more general approach than the one originally devised
by de Almeida and Thouless, that can be carried over to systems with discontinuous phase transitions, where 𝑞1 differs from 𝑞0 even
at the onset of the RS instability, implying 𝑞1(�̄�, 𝑞) ≠ 𝑞.

Before concluding this section, we note that, although we have disregarded the limit 𝜃 → 0 as lacking physical interpretation,
such limit is still well defined mathematically and one may ask what would be the outcome of a similar analysis carried out in this
5
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Fig. 2. RS instability line (i.e. 𝑇𝑐 versus 𝛼) obtained via our method (blue crosses) and the AT line obtained in the limit 𝑞1(�̄�, 𝑞) → 𝑞 (red dashed curve), for the
Hopfield model. The several branches separate the paramagnetic (P), spin-glass (SG) and retrieval (M) region. The black curve show the critical temperature 𝑇 ⋆

at which 𝑞 becomes non-zero within the RS theory, i.e. the spin-glass (SG) transition.

limit. We will perform such analysis in Appendix B. Intriguingly, we find that the analysis for 𝜃 → 0 gives the same instability line
as the analysis for 𝜃 → 1, in all the models we considered, except in the spherical 𝑃 -spin model. Reassuringly, in the latter case, the
analysis at 𝜃 → 0 leads to a lower temperature for the RS instability, confirming that the limit 𝜃 → 1 gives the physical transition
and it is therefore the relevant one.

3. Hebbian networks with 𝑷 -node interactions

In this section we consider generalizations of the Hopfield model, where neurons interact in P-tuples of even 𝑃 ≥ 4 (rather
than pairwise, i.e. 𝑃 = 2). Such networks were shown to store many more patterns than the number of their nodes, so they work
as dense associative memories [25]. They are also known to be dual to deep neural networks [1,26] and to exhibit information
processing capabilities that are forbidden in shallow networks, such as the existence of a region in the parameter space where they
can retrieve patterns although these are overshadowed by the noise [27]. As before, we consider a network of 𝑁 interacting Ising
neurons 𝜎𝑖 ∈ {1,−1}, with 𝐾 stored patterns 𝝃𝜇 and 𝑃 -node interactions 𝐽𝑖1…𝑖𝑃 = 1

𝑃 !
∑𝐾

𝜇=1 𝜉
𝜇
𝑖1
… 𝜉𝜇𝑖𝑃 . The Hamiltonian of this model

can be written as

𝐻𝑁 (𝝈|𝝃) = −𝑁1−𝑃

𝑃 !

𝐾
∑

𝜇=1

∑

𝑖1 ,…,𝑖𝑃

𝜉𝜇𝑖1 … 𝜉𝜇𝑖𝑃 𝜎𝑖1 … 𝜎𝑖𝑃 (3.1)

The order parameters are still the Mattis magnetization 𝑚 and the two-replicas overlap 𝑞, as introduced in (2.4), with their RS
distributions given in (2.6) and (2.7) and their 1RSB generalizations given in (2.12) and (2.11). The quenched free-energy in RS
assumption is (see [28])

−𝛽
′
𝑓𝑅𝑆 (�̄�, 𝑞|𝛽

′
, 𝛼) = ln 2 −

𝛽 ′

2
(𝑃 − 1)�̄�𝑃 +

𝛽 ′ 2𝛼
4

(1 − 𝑞𝑃 ) −
𝛽 ′ 2𝛼𝑃

4
𝑞𝑃−1(1 − 𝑞)

+ E ln cosh

(

𝛽
′ 𝑃
2
�̄�𝑃−1 + 𝛽

′
𝑧
√

𝛼 𝑃
2
𝑞𝑃−1

)

(3.2)

with 𝛽 ′ ∶= 2𝛽∕𝑃 !, where 𝛽 is the inverse temperature and 𝛼 = lim𝑁→∞ 𝐾∕𝑁𝑃−1 is the network load. E is the average w.r.t. the
standard Gaussian random variable 𝑧, and 𝑞 and �̄� satisfy the self-consistency equations:

�̄� = E tanh

(

𝛽
′ 𝑃
2
�̄�𝑃−1 + 𝛽

′
√

𝛼 𝑃
2
𝑞𝑃−1𝑧

)

,

𝑞 = E tanh2
(

𝛽
′ 𝑃
2
�̄�𝑃−1 + 𝛽

′
√

𝛼 𝑃
2
𝑞𝑃−1𝑧

)

. (3.3)

On the other hand, the quenched free-energy within the 1RSB approximation (see [1]), reads as

−𝛽
′
𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝛽

′
, 𝛼, 𝜃) = ln 2 −

𝛽 ′

2
(𝑃 − 1)�̄�𝑃

1 +
𝛽 ′ 2𝛼
4

[

1 − 𝜃𝑞𝑃0 + (𝜃 − 1)𝑞𝑃1
]

−
𝛽 ′ 2𝛼𝑃

4
𝑞𝑃−11 −

𝛽 ′ 2

4
𝑃𝛼

[

(𝜃 − 1)𝑞𝑃1 − 𝜃𝑞𝑃0
]

+ 1
𝜃
E1 lnE2 cosh

𝜃 𝑔(𝛽
′
, 𝛼, �̄�1, 𝑞0, 𝑞1) (3.4)
6
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where E1, E2 are the average w.r.t. the standard normal random variables 𝑧(1) and 𝑧(2), respectively, and

𝑔(�̄�1, 𝑞1, 𝑞0|𝛽
′
, 𝛼) =

𝛽 ′𝑃
2

�̄�𝑃−1
1 + 𝛽

′
𝑧(1)

√

𝑃
2
𝛼𝑞𝑃−10 + 𝛽

′
𝑧(2)

√

𝑃
2
𝛼
(

𝑞𝑃−11 − 𝑞𝑃−10
)

. (3.5)

n this approximation the self-consistency equations for the order parameter 𝑞1, 𝑞0 and �̄� are as in (2.17), with the argument of the
yperbolic cosine and tangent replaced by (3.5). As before, for 𝜃 = 1, 𝑞0 = 𝑞 and the 1RSB expression for the quenched free-energy
educes to the RS one.

From now on, we imply the dependence of the functions on 𝛽 ′ and 𝛼. Our objective is to prove that for 𝜃 close but away from
ne, the 1RSB quenched free-energy is smaller than its replica symmetric counterpart i.e. 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) < 𝑓𝑅𝑆 (�̄�, 𝑞) above a
ritical value of the effective parameter

√

𝛼𝛽′. To this purpose, we proceed as in the Hopfield model: we expand, to the leading
rder in 𝜃 − 1, the 1RSB quenched free-energy around its RS expression, as shown in (2.21). Since the self-consistency equations
lso depend on 𝜃, we need to expand them too. Following the same steps as in the Hopfield model, we can write �̄�1 as in (2.28)
ith 𝐶(�̄�, 𝑞, 𝑞1(�̄�, 𝑞)) as in (C.9), where 𝑞1(�̄�, 𝑞) is the solution of the self-consistency equation

𝑞1 = E1

[

E2 cosh 𝑔(�̄�, 𝑞1, 𝑞) tanh
2 𝑔(�̄�, 𝑞1, 𝑞)

E2 cosh 𝑔(�̄�, 𝑞1, 𝑞)

]

, (3.6)

𝑞0 as in (2.27), with 𝐴(�̄�1, 𝑞, 𝑞1(�̄�, 𝑞)) given in (C.7), and 𝑞1 as given in (2.26) with 𝐵(�̄�, 𝑞, 𝑞1(�̄�, 𝑞)) given in (C.8). With the above
xpressions in hand, we can now calculate the derivative of 𝑓1RSB w.r.t. 𝜃 when 𝜃 = 1, as needed in (2.21)

𝐾(�̄�, 𝑞1(�̄�, 𝑞), 𝑞) ∶= 𝜕𝜃(−𝛽
′
𝑓1RSB(�̄�1, 𝑞1, 𝑞0|𝜃))|𝜃=1

= −
𝛽 ′ 2𝛼
4

(𝑃 − 1)[(𝑞1(�̄�, 𝑞))𝑃 − 𝑞𝑃 ] −
𝛽 ′ 2𝛼
4

𝑃 [(𝑞1(�̄�, 𝑞))𝑃−1 − 𝑞𝑃−1]

− E ln cosh

(

𝛽
′
√

𝑃
2
𝑞𝑃−1𝑧 + 𝛽

′
�̄�𝑃−1

)

+ E1

[

E2 cosh 𝑔(�̄�, 𝑞1(�̄�, 𝑞), 𝑞) log cosh 𝑔(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)
E2 cosh 𝑔(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)

]

(3.7)

gain, we have that 𝐾(�̄�, 𝑞, 𝑞) = 0, regardless of the value assigned to �̄�, (this follows from the fact that for 𝜃 = 1, 𝑞 is an extremum
f the free-energy). Next, we inspect the sign of 𝐾(�̄�, 𝑞1(�̄�, 𝑞), 𝑞). To this purpose, we study 𝐾(�̄�, 𝑞, 𝑥) for 𝑥 ∈ [0, 𝑞] and locate its
xtrema, which are found from

𝜕𝑥𝐾(�̄�, 𝑞, 𝑥) = −
𝛽 ′ 2𝛼
4

(𝑃 − 1)𝑃𝑥𝑃−2
[

𝑥 − E1

[

E2 sinh 𝑔(�̄�, 𝑞, 𝑥) tanh 𝑔(�̄�, 𝑞, 𝑥)
E2 cosh 𝑔(�̄�, 𝑞, 𝑥)

]]

= 0 (3.8)

as

𝑥 = E1

[

E2 cosh 𝑔(𝑥, 𝑞) tanh
2 𝑔(𝑥, 𝑞)

E2 cosh 𝑔(𝑥, 𝑞)

]

≡ 𝑞1(�̄�, 𝑞) (3.9)

here the last equality follows from (3.6). Under the assumption that the extremum 𝑥 = 𝑞1(�̄�, 𝑞) is global in the domain considered
nd reasoning as in the Hopfield case, we have that 𝐾(�̄�, 𝑞1(�̄�, 𝑞), 𝑞) > 0 if 𝑥 = 𝑞1(�̄�, 𝑞) is a maximum and 𝐾(�̄�, 𝑞1(�̄�, 𝑞), 𝑞) < 0 if it is

a minimum. In particular, if

𝜕2𝑥𝐾(�̄�, 𝑞, 𝑥)|𝑥=𝑞1(�̄�, 𝑞) = −
𝛽 ′ 2𝛼(𝑃 − 1)𝑃

4
(𝑞1(�̄�, 𝑞))𝑃−2

⋅

{

1 −
𝛽 ′ 2𝛼
2

(𝑃 − 1)𝑃 (𝑞1(�̄�, 𝑞))𝑃−2E1

[

E2sech3𝑔(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)
E2 cosh 𝑔(�̄�, 𝑞1(�̄�, 𝑞), 𝑞)

]}

(3.10)

s positive, 𝐾(�̄�, 𝑞1(�̄�, 𝑞), 𝑞) < 0 and 𝑓1𝑅𝑆𝐵 < 𝑓𝑅𝑆 . This happens when the expression in the curly brackets of the equation above is
egative, i.e. when the parameter 𝛼𝛽 ′ 2 satisfies the inequality

𝛽 ′ 2𝛼
2

(𝑃 − 1)𝑃 (𝑞1(�̄�, 𝑞))𝑃−2E1

[

E2sech3𝑔(�̄�, 𝑞, 𝑞1(�̄�, 𝑞))
E2 cosh 𝑔(�̄�, 𝑞, 𝑞1(�̄�, 𝑞))

]

> 1. (3.11)

s noted in [1,29], Hebbian networks with 𝑃 -node interactions are equivalent to Ising 𝑃 -spin models under a suitable rescaling
f the temperature 𝛽 ′√𝛼 → 𝛽′. With this rescaling, (3.11) retrieves indeed the RS instability line of the Ising P-spin model, that
e have for completeness derived in Appendix A, using our method (see Eq. (A.30)). In the limit 𝑞1(�̄�, 𝑞) → 𝑞, (A.30) retrieves the
T line of the Ising 𝑃 -spin model [18]. In Fig. 1 (mid and right panels) we plot the difference between 𝑞1(�̄�, 𝑞) and 𝑞 for Hebbian
etworks with 𝑃 -node interactions (obtained solving numerically the self-consistency equations (3.6) and (3.3)) as a function of the
caled parameter 𝑇 ∕

√

𝛼, for different values of 𝛼. As for the Hopfield model, we find that 𝑞1(�̄�, 𝑞) is indistinguishable from 𝑞, hence
he limit 𝑞1(�̄�, 𝑞) → 𝑞 can be justified a posteriori.

In Fig. 3 we show the RS instability lines resulting from our method and the classic AT line obtained in the limit 𝑞1(�̄�, 𝑞) → 𝑞,
or different values of 𝑃 . The two lines coincides for all values of 𝑃 . As explained earlier, we could have expanded the free-energy
round 𝜃 = 0 (as opposed to 𝜃 = 1). In Appendix B we show that such analysis leads to the same line.
7
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Fig. 3. RS instability line (i.e. 𝑇𝑐 versus 𝛼) obtained via our method, i.e. by expanding the free-energy around 𝜃 = 1 (blue dots) and the AT line obtained
in the limit 𝑞1(�̄�, 𝑞) → 𝑞 (red curve), for the Hebbian network with 𝑃 -node interactions, with 𝑃 = 2, 4, 6 from left to right. The black curves show the critical
temperature 𝑇 ⋆ at which 𝑞 becomes non-zero within the RS theory, i.e. the spin-glass (SG) transition.

4. Discussion

In this work we proposed a simple and systematic method to derive the critical line in the parameter space (𝛼, 𝛽), below which the
1RSB expression for the free-energy is smaller than the RS expression, in Hebbian neural networks. The same analysis for spin-glass
models is carried out in Appendix A. For the Hopfield model, our approach recovers the critical line obtained by Coolen using the AT
approach [17] as a special limit. Similarly, we recover the known AT lines of all the spin-glass models considered in the appendix, in
the same limit, showing that our method provides a generalization of the approach originally devised by de Almeida and Thouless.
Owing to its simplicity, our method allows for straightforward application to Hebbian networks with multi-node interactions, for
which the AT-line was unknown.

The key idea of our method is to regard the 1RSB theory, which assumes two delta-peaks in the overlap distribution 𝑃 (𝑞),
located at 𝑞1 and 𝑞0 < 𝑞1, with weights 1 − 𝜃 and 𝜃, respectively, as departing continuously from the RS theory, which assumes
only one peak at 𝑞. This leads us to assume that at the onset of the RS instability, the 1RSB overlap distribution is dominated by
one peak, so that either 𝜃 → 0 or 𝜃 → 1. Then, consistency with the RS theory requires either lim𝜃→0 𝑞1 = 𝑞 or lim𝜃→1 𝑞0 = 𝑞. As
the physical interpretation of RS breaking suggests that the mutual overlap between 1RSB states should be equal to the self-overlap
of the RS states, we regard the 1RSB theory as a continuous variation of the RS theory, when the parameter 𝜃 is decreased from
one. Crucially, we do not make any assumption on the location of the peaks of the 1RSB theory, which are fixed by the 1RSB
self-consistency equations. We then compare the 1RSB and the RS free-energies when 𝜃 (the only free-parameter in our analysis) is
close to one, by performing simple expansions to linear orders in 𝜃 − 1. In doing so, we solely require that 𝑓1𝑅𝑆𝐵 , 𝑞1, 𝑞0 and �̄�1 are
differentiable up to the first order in a neighborhood of 𝜃 = 1 and that the derivative of 𝑓1𝑅𝑆𝐵 exists at 𝜃 = 1.

Although our method is similar in spirit to the one introduced by Toninelli in [15], there is a crucial difference, in that the latter
relies on the assumption 𝑞1 → 𝑞, which is, in our view, unjustified a priori. In fact, while 𝑞0 = 𝑞 for 𝜃 = 1, 𝑞1 may differ from 𝑞,
even in the limit 𝜃 → 1. This consideration also leads to a departure of our approach from the method originally devised by de
Almeida and Thouless, which relies on a variation of the RS free-energy as the order parameters are varied continuously around
their RS values. In contrast, we study the variation of the RS free-energy as the statistical weight of the order parameters is varied
continuously (rather than the actual value of the order parameters). This approach allows us to determine the instability line of
the RS theory also in spin-glass models which exhibit a discontinuous phase transition. As a prototypical example of this class of
models, we consider in Appendix A the spherical 𝑃 -spin model [22].

In conclusion, in this work we have presented a new method to find the instability line of the RS approximation. A compelling
advantage of our method, when compared to the approach by de Almeida and Thouless [6], is that it does not require to compute
the full eigenspectrum of the Hessian of the quadratic fluctuations of the free-energy around its RS value and it does not rely on the
availability of an ‘‘ansatz-free’’ expression for the free-energy. This makes the computations easier and affordable also for neural
networks. The method still requires the availability of explicit expressions for the RS and 1RSB free-energies, which however can
be computed using different techniques (e.g. Guerra’s interpolation) in addition to the replica trick. Our approach can in principle
be extended to compute the stability of the 𝑘-RSB solution, expanding the corresponding 𝑘 + 1-RSB free-energy, provided one has
an explicit expression for the two. For example, it would be interesting to see whether the well-known transition from 1RSB to full-
RSB occurring at the Gardner temperature [18] in the Ising 𝑃 -spin model can be recovered within our approach, by studying the
stability of the 2RSB solution. In addition, in recent years there has been a boost of renewed interest in mixed 𝑃 -spherical models,
as introduced in [30,31], as they have been shown to display unexpected dynamical behavior [32] and new types of spin-glass
phases [33,34] as well as for their relevance to the modeling of random lasers [35–39]. These models similarly display transitions
from 1RSB to full-RSB and would be good lab systems to test extensions of our theory. Another interesting avenue for future work
would be a generalization of the 1-RSB scheme, which does not assume the Mattis magnetization to be self-averaging. Preliminary
work in [24] suggests that the RS assumption is not the right approximation for Mattis magnetization.
8
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Finally, an attractive perspective would be to apply our approach to predict the onset of ergodicity breaking in systems with sparse
nteractions. In such systems, the free-energy is typically expressed, already at the simplest RS level, in terms of order-parameter
unctions to be determined self-consistently. At 1RSB level, recursive equations for functional distributions of such functions must be
olved. Working out the fluctuations of ansatz-free free-energies around their RS value, as it would be required by the de Almeida
nd Thouless approach would be unfeasible and no similar approach has been proposed to date. An alternative approach has been
evised in [40], for the Bethe lattice with regular degrees, however it strongly relies on the assumptions of homogeneity in the
etwork nodes and large degrees. We envisage that, owing to its simplicity, our method may carry over to more general sparse
ystems, where it would require an expansion of the functional 1RSB self-consistency equation to linear orders around the RS
quation, which should be feasible.
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ppendix A. Applications to Spin-glasses models

In this appendix, we derive the critical line for the instability of the RS theory for three archetypical spin-glass models, namely
he SK model, the Ising 𝑃 -spin and the spherical 𝑃 -spin model, using the technique developed in the main text. In all cases, we will
ecover the AT lines known in the literature for the three models, in a specific limit, confirming the validity and higher generality
f our approach.

.1. Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick (SK) model [41] is a system of 𝑁 Ising spins 𝜎𝑖 ∈ {±1} interacting via symmetric pairwise
interactions 𝐽𝑖𝑗 which are i.i.d. Gaussian variables with zero average and variance 𝐽 2∕𝑁 . The Hamiltonian of the model is

𝐻𝑁 (𝝈|𝐽 ) ∶= −1
2

𝑁,𝑁
∑

𝑖,𝑗
𝐽𝑖𝑗𝜎𝑖𝜎𝑗 (A.1)

and the order parameter is the two-replica overlap 𝑞 as defined in (2.4). The quenched free-energy in RS assumption is [41]

−𝛽𝑓𝑅𝑆 (𝑞|𝛽, 𝐽 ) = ln 2 +
𝛽2𝐽 2

4
(1 − 𝑞)2 + E

[

ln cosh
(

𝛽𝐽
√

𝑞𝑧
)]

(A.2)

where E is the average w.r.t. the Gaussian variable 𝑧 and the order parameter 𝑞 fulfills the self-consistency equation

𝑞 = E tanh2
(

𝛽𝐽
√

𝑞𝑧
)

. (A.3)

The 1RSB approximation of the quenched free-energy is (see e.g. [42])

−𝛽𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0|𝛽, 𝐽 , 𝜃) = ln 2 +
𝛽2𝐽 2

2
(1 − 𝑞1) +

1
𝜃
E1

[

lnE2 cosh
𝜃 𝑔(𝛽, 𝐽 , 𝑞1, 𝑞0)

]

−
𝛽2𝐽 2

4
[

1 − 𝑞21 + 𝜃(𝑞21 − 𝑞20 )
]

, (A.4)
9
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where

𝑔(𝑞1, 𝑞0|𝛽, 𝐽 ) = 𝛽𝐽
√

𝑞1 − 𝑞0𝑧
(2) + 𝛽𝐽

√

𝑞0𝑧
(1) (A.5)

and E1, E2 are the average w.r.t. the standard Gaussian variables 𝑧(1) and 𝑧(2), respectively. From now on, we imply the dependence
f 𝑔, 𝑓𝑅𝑆 and 𝑓1𝑅𝑆𝐵 on 𝛽 and 𝐽 . The order parameters 𝑞0 and 𝑞1 fulfill the following self-consistency equations

𝑞1 = E1

[

E2 cosh
𝜃 𝑔(𝑞1, 𝑞0) tanh

2 𝑔(𝑞1, 𝑞0)
E2 cosh

𝜃 𝑔(𝑞1, 𝑞0)

]

,

𝑞0 = E1

[

E2 cosh
𝜃 𝑔(𝑞1, 𝑞0) tanh 𝑔(𝑞1, 𝑞0)
E2 cosh

𝜃 𝑔(𝑞1, 𝑞0)

]2

. (A.6)

Noting that lim𝜃→1 𝑞0 = 𝑞 and 𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0|𝜃 = 1) = 𝑓𝑅𝑆 (𝑞), our objective is to expand the 1RSB quenched free-energy for 𝜃 ≃ 1.
To this purpose, we expand the self-consistency equations for 𝑞0 and 𝑞1 to linear order in 𝜃−1. Proceeding as in the Hopfield model,

e get

𝑞0 = 𝑞 + (𝜃 − 1)𝐴(𝑞, 𝑞1(𝑞)) (A.7)

𝑞1 = 𝑞1(𝑞) + (𝜃 − 1)𝐵(𝑞, 𝑞1(𝑞)) (A.8)

here 𝑞1(𝑞) solves the self-consistency equation

𝑞1 = E1

{

E2 cosh 𝑔(𝑞1, 𝑞) tanh
2 𝑔(𝑞1, 𝑞)

E2 cosh 𝑔(𝑞1, 𝑞)

}

(A.9)

and 𝐴(𝑞0, 𝑞1) and 𝐵(𝑞0, 𝑞1) are given in (C.13) and (C.14), respectively. Next, we derive w.r.t. 𝜃 the 1RSB free-energy (A.4) where
we replace 𝑞0 and 𝑞1 with (A.7), (A.8), obtaining

𝜕𝜃(−𝛽𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0, |𝜃)) = −
𝛽2𝐽 2

4
[

(𝑞1(𝑞))2 − 𝑞2
]

− 1
𝜃2

E1 lnE2 cosh
𝜃 𝑔(𝑞1(𝑞), 𝑞)

−
𝛽2𝐽 2

2
𝐵(𝑞1(𝑞), 𝑞)𝑞 +

1
𝜃
E1

[

E2 cosh
𝜃 𝑔(𝑞1(𝑞), 𝑞) log cosh 𝑔(𝑞1(𝑞), 𝑞)
E2 cosh

𝜃 𝑔(𝑞1(𝑞), 𝑞)

]

+
𝛽2𝐽 2

2
𝐵(𝑞1(𝑞), 𝑞)𝜃E1

[

E2 cosh
𝜃 𝑔(𝑞1(𝑞), 𝑞) tanh 𝑔(𝑞1(𝑞), 𝑞)
E2 cosh

𝜃 𝑔(𝑞1(𝑞), 𝑞)

]2

, (A.10)

which for 𝜃 = 1, using (A.3) and similar manipulations to those used in (2.19), evaluates to

𝐾(𝑞1(𝑞), 𝑞) ∶= 𝜕𝜃(−𝛽𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0, |𝜃))|𝜃=1 = −
𝛽2𝐽 2

4
[

(𝑞1(𝑞))2 − 𝑞2
]

−
𝛽2𝐽 2

2
(𝑞1(𝑞) − 𝑞)

− E ln cosh
(

𝛽
√

𝑞𝑧
)

+ E1

[

E2 cosh 𝑔(𝑞1(𝑞), 𝑞) log cosh 𝑔(𝑞1(𝑞), 𝑞)
E2 cosh 𝑔(𝑞1(𝑞), 𝑞)

]

. (A.11)

We then study the sign of (A.11), where 𝑞 and 𝑞1(𝑞) are the solutions of the self-consistency equations (A.3) and (A.9), respectively.
To this purpose, it is useful to study the behavior of the function 𝐾(𝑞, 𝑥) for 𝑥 ∈ [0, 𝑞]. For 𝑥 = 𝑞, we have 𝐾(𝑞, 𝑞) = 0, while the
xtremum of 𝐾(𝑞, 𝑥) is found from

𝜕𝑥𝐾(𝑥, 𝑞) = −
𝛽2𝐽 2

2
𝑥 +

𝛽2𝐽 2

2
E1

[

E2 sinh 𝑔(𝑥, 𝑞) tanh 𝑔(𝑥, 𝑞)
E2 cosh 𝑔(𝑥, 𝑞)

]

= 0, (A.12)

as

𝑥 = E1

[

E2 sinh 𝑔(𝑥, 𝑞) tanh 𝑔(𝑥, 𝑞)
E2 cosh 𝑔(𝑥, 𝑞)

]

≡ 𝑞1(𝑞) (A.13)

via Eq. (A.9). Given that 𝐾(𝑞, 𝑥) vanishes for 𝑥 = 𝑞, if the extremum 𝑥 = 𝑞1(𝑞) is global in the domain considered, we must have
that 𝐾(𝑞1(𝑞), 𝑞) > 0 if 𝑥 = 𝑞1(𝑞) is a maximum and 𝐾(𝑞1(𝑞), 𝑞) < 0 if 𝑥 = 𝑞1(𝑞) is a minimum. Therefore, if

𝜕2𝑥𝐾(𝑥, 𝑞)|𝑥=𝑞1(𝑞) = −
𝛽2𝐽 2

2

(

1 −
𝛽2𝐽 2

2
E1

[

E2sech3𝑔(𝑞1(𝑞), 𝑞)
E2 cosh 𝑔(𝑞1(𝑞), 𝑞)

])

(A.14)

is positive, 𝐾(𝑞, 𝑞1(𝑞)) is negative, so the RS theory becomes unstable for

1 −
𝛽2𝐽 2

2
E1

[

E2sech3 𝑔(𝑞1(𝑞), 𝑞)
E2 cosh 𝑔(𝑞1(𝑞), 𝑞)

]

< 0. (A.15)

We note that for 𝑞1(𝑞) → 𝑞, such condition retrieves the well-known AT line [6]

1 − 𝛽2𝐽 2E
⎛

⎜

⎜

⎜

1

cosh4
(

𝛽𝐽
√

𝑞𝑧
)

⎞

⎟

⎟

⎟

< 0. (A.16)
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Fig. 4. RS overlap 𝑞 (top) and difference between 𝑞1(𝑞) and 𝑞 (bottom) versus the ratio 𝑇 ∕𝐽 , for the SK model (left) and the Ising 𝑃 -spin model, with 𝑃 = 4
(mid) and 𝑃 = 6 (right panel). The dotted vertical line marks the onset of the RS instability.

By numerically solving the self-consistency equations (A.3) and (A.9), we can verify that 𝑞1(𝑞) = 𝑞 for all temperatures, hence
this limit can be justified a posteriori for the SK model (see Fig. 4, left panel). We anticipate that this remains true for the Ising
𝑃 -spin model analyzed in the next section.

A.2. The Ising P-spin model

In this section, we consider a system of 𝑁 Ising spins 𝜎𝑖 = ±1, 𝑖 = 1,… , 𝑁 governed by the Hamiltonian

𝐻𝑁 (𝝈|𝐽 ) = − 1
𝑁𝑃−1𝑃 !

𝑁,…,𝑁
∑

𝑖1 ,…,𝑖𝑃 =1,…,1
𝐽𝑖1 ,…,𝑖𝑃 𝜎𝑖1 … 𝜎𝑖𝑃 (A.17)

where 𝐽𝑖1 ,…,𝑖𝑃 are Gaussian i.i.d. variables, 𝐽𝑖1 ,…,𝑖𝑃 ∼  (0, 𝐽 2). As in the previous cases, the order parameter of the model is the
two-replica overlap 𝑞 defined in (2.4). The quenched free-energy in RS assumption, at inverse temperature 𝛽 reads as [18]

−𝛽
′
𝑓𝑅𝑆 (𝑞|𝛽′, 𝐽 ) = ln 2 +

𝛽 ′ 2𝐽 2

4
[1 − 𝑃𝑞𝑃−1 + (𝑃 − 1)𝑞𝑃 ] + E ln cosh

(

𝛽
′
𝐽𝑧

√

𝑃
2
𝑞𝑃−1

)

(A.18)

where 𝛽 ′ = 2𝛽∕𝑃 !, E is the average w.r.t. the Gaussian variable 𝑧 and 𝑞 fulfills the following self-consistency equation:

𝑞 = E tanh2
(

𝛽
′
𝐽𝑧

√

𝑃
2
𝑞𝑃−1

)

. (A.19)

The 1RSB expression of the quenched free-energy in the thermodynamic limit is [18]

−𝛽
′
𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0|𝛽′, 𝐽 , 𝜃) = ln 2 +

𝛽 ′ 2𝐽 2

4
[

1 − 𝑃𝑞𝑃−11 + (𝑃 − 1)𝑞𝑃1
]

+ 1
𝜃
E1 lnE2 cosh

𝜃 𝑔(𝛽′, 𝐽 , 𝑞1, 𝑞0) −
𝛽 ′ 2𝐽 2

4
(𝑃 − 1)𝜃(𝑞𝑃1 − 𝑞𝑃0 ) (A.20)

where

𝑔(𝛽′, 𝐽 , 𝑞1, 𝑞0) = 𝛽
′
𝐽𝑧(1)

√

𝑃
2
𝑞𝑃−10 + 𝛽

′
𝐽𝑧(2)

√

𝑃
2
(𝑞𝑃−11 − 𝑞𝑃−10 ), (A.21)

E1, E2 are the average w.r.t. the standard Gaussian variables 𝑧(1) and 𝑧(2) and 𝑞0, 𝑞1 fulfill the following self-consistency equations

𝑞1 = E1

[

E2 cosh
𝜃 𝑔(𝛽′, 𝐽 , 𝑞1, 𝑞0) tanh

2 𝑔(𝛽′, 𝐽 , 𝑞1, 𝑞0)
E2 cosh

𝜃 𝑔(𝛽′, 𝐽 , 𝑞1, 𝑞0)

]

,

𝑞0 = E1

[

E2 cosh
𝜃 𝑔(𝛽′, 𝐽 , 𝑞1, 𝑞0) tanh(𝛽′, 𝐽 , 𝑞1, 𝑞0)

𝜃 ′

]2

.

(A.22)
11
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From now on, we imply the dependence of 𝑔 and of the RS and 1RSB quenched free energies 𝑓𝑅𝑆 , 𝑓1𝑅𝑆𝐵 on 𝛽′ and 𝐽 . The aim is
to prove that the 1RSB approximation of the quenched free-energy is smaller than the replica symmetric one, above a critical value
of the parameter 𝛽′𝐽 .

As before, we note that lim𝜃→1 𝑞0 = 𝑞 and 𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0|𝜃 = 1) = 𝑓𝑅𝑆 (𝑞) and we aim at expanding the 1RSB quenched free-energy
for 𝜃 ≃ 1. To this purpose, we first expand the self-consistency equations for 𝑞0 and 𝑞1 to linear order in 𝜃 − 1, to obtain

𝑞0 = 𝑞 + (𝜃 − 1)𝐴(𝑞, 𝑞1(𝑞)) (A.23)

𝑞1 = 𝑞1(𝑞) + (𝜃 − 1)𝐵(𝑞, 𝑞1(𝑞)) (A.24)

here 𝑞1(𝑞) solves the self-consistency equation

𝑞1 = E1

{

E2 cosh 𝑔(𝑞1, 𝑞) tanh
2 𝑔(𝑞1, 𝑞)

E2 cosh 𝑔(𝑞1, 𝑞)

}

(A.25)

and 𝐴(𝑞0, 𝑞1) and 𝐵(𝑞0, 𝑞1) are given (C.15) and (C.16), respectively. Then, we derive w.r.t. 𝜃 the 1RSB free-energy (A.20) where we
replace 𝑞0 and 𝑞1 with (A.23), (A.24), obtaining

𝜕𝜃(−𝛽
′
𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0, |𝜃)) = −

𝛽 ′ 2𝐽 2

4
(𝑃 − 1)((𝑞1(𝑞))𝑃 − 𝑞𝑃 ) − 1

𝜃2
E1 lnE2 cosh

𝜃 𝑔(𝑞1(𝑞), 𝑞)

+ 1
𝜃
E1

[

E2 cosh
𝜃 𝑔(𝑞1(𝑞), 𝑞) log cosh 𝑔(𝑞1(𝑞), 𝑞)
E2 cosh

𝜃 𝑔(𝑞1(𝑞), 𝑞)

]

+
𝛽 ′ 2𝐽 2

4
𝑃 (𝑃 − 1)𝐵(𝑞1(𝑞), 𝑞)𝜃𝑞𝑃−2E1

[

E2 cosh
𝜃 𝑔(𝑞1(𝑞), 𝑞) tanh 𝑔(𝑞1(𝑞), 𝑞)
E2 cosh

𝜃 𝑔(𝑞1(𝑞), 𝑞)

]2

−
𝛽 ′ 2𝐽 2

4
𝑃 (𝑃 − 1)𝐵(𝑞1(𝑞), 𝑞)𝑞𝑃−1, (A.26)

hich, for 𝜃 = 1, using (A.19) and performing similar calculations to those in (2.19), evaluates to

𝐾(𝑞1(𝑞), 𝑞) ∶= 𝜕𝜃(−𝛽
′
𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0, |𝜃))|𝜃=1 = −

𝛽 ′ 2𝐽 2

4
(𝑃 − 1)((𝑞1(𝑞))𝑃 − 𝑞𝑃 )

+ E1

[

E2 cosh 𝑔(𝑞1(𝑞), 𝑞) log cosh 𝑔(𝑞1(𝑞), 𝑞)
E2 cosh 𝑔(𝑞1(𝑞), 𝑞)

]

− E ln cosh

(

𝛽
′
√

𝑃
2
𝑞𝑃−1

)

−
𝛽 ′ 2𝐽 2

4
𝑃 ((𝑞1(𝑞))𝑃−1 − 𝑞𝑃−1). (A.27)

ext, we study the sign of (A.27), where 𝑞 and 𝑞1(𝑞) are the solutions of the self-consistency equations (A.19) and (A.25), respectively.
o this purpose, we study the behavior of the function 𝐾(𝑥, 𝑞) for 𝑥 ∈ [0, 𝑞]. For 𝑥 = 𝑞, we have 𝐾(𝑞, 𝑞) = 0, while the extremum of
(𝑞, 𝑥) is found from

𝜕𝑥𝐾(𝑥, 𝑞) = −
𝛽 ′ 2𝐽 2

4
(𝑃 − 1)𝑃𝑥𝑃−1 +

𝛽 ′ 2𝐽 2

4
(𝑃 − 1)𝑃𝑥𝑃−2E1

[

E2 sinh 𝑔(𝑥, 𝑞) tanh 𝑔(𝑥, 𝑞)
E2 cosh 𝑔(𝑥, 𝑞)

]

= 0, (A.28)

as

𝑥 = E1

[

E2 sinh 𝑔(𝑥, 𝑞) tanh 𝑔(𝑥, 𝑞)
E2 cosh 𝑔(𝑥, 𝑞)

]

≡ 𝑞1(𝑞) (A.29)

from Eq. (A.25). Given that 𝐾(𝑥, 𝑞) vanishes for 𝑥 = 𝑞, if the extremum 𝑥 = 𝑞1(𝑞) is global in the domain considered, we must have
that 𝐾(𝑞1(𝑞), 𝑞) > 0 if 𝑥 = 𝑞1(𝑞) is a maximum and 𝐾(𝑞1(𝑞), 𝑞) < 0 if 𝑥 = 𝑞1(𝑞) is a minimum. Therefore, if

𝜕𝑥2𝐾(𝑥, 𝑞)|𝑥=𝑞1 = −
𝛽 ′ 2𝐽 2

4
(𝑃 − 1)𝑃𝑞𝑃−21

(

1 −
𝛽 ′ 2𝐽 2

2
(𝑃 − 1)𝑃 (𝑞1(𝑞))𝑃−2E1

[

E2sech3𝑔(𝑞1(𝑞), 𝑞)
E2 cosh 𝑔(𝑞1(𝑞), 𝑞)

])

(A.30)

is positive, 𝐾(𝑞1(𝑞), 𝑞) is negative and the RS theory becomes unstable. This occurs for

1 −
𝛽 ′ 2𝐽 2

2
(𝑃 − 1)𝑃 (𝑞1(𝑞))𝑃−2E1

[

E2sech3 𝑔(𝑞1(𝑞), 𝑞)
E2 cosh 𝑔(𝑞1(𝑞), 𝑞)

]

< 0. (A.31)

In the limit 𝑞1(𝑞) → 𝑞 this recovers the AT line found in [18]

(𝑃 − 1)𝛽 ′ 2𝐽 2𝑃𝑞𝑃−2

2
E
⎡

⎢

⎢

⎢

⎣

1

cosh4
√

𝛽 ′ 2𝐽 2𝑃𝑞𝑃−1𝑧∕2

⎤

⎥

⎥

⎥

⎦

> 1. (A.32)

By numerically solving the self-consistency equations (A.19) and (A.25), we can check that the parameters 𝑞 and 𝑞1(𝑞), are indeed
12

qual at all temperatures see Fig. 4 (mid and right panels), hence the above limit is justified a posteriori.
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A.3. P-spin spherical model

In this section we consider the spherical 𝑃 -spin model, introduced for the first time in [19]. The Hamiltonian of the model is
he same as in (A.17), however the 𝑁 spins 𝜎𝑖 are now real variables, satisfying the so-called ‘spherical’ constraint ∑𝑁

𝑖=1 𝜎
2
𝑖 = 𝑁 .

s in previous cases, the order parameter is the two-replica overlap 𝑞 introduced in (2.4). In the thermodynamic limit, at inverse
emperature 𝛽, the quenched free-energy under the RS assumption (2.6) is given by

−2𝛽𝑓𝑅𝑆 (𝑞|𝛽) =
𝛽2

2
(1 − 𝑞𝑃 ) + log(1 − 𝑞) +

𝑞
1 − 𝑞

, (A.33)

where 𝑞 fulfills the self-consistency equation

𝛽2

2
𝑃𝑞𝑃−1 =

𝑞
(1 − 𝑞)2

(A.34)

For later convenience, it is useful to note that the temperature 𝑇 ⋆ at which 𝑞 becomes non-zero within the RS theory is found by
emanding that (A.34) allows non-zero solutions satisfying

2
𝑃
𝑇 2 = 𝑞𝑃−2(1 − 𝑞)2 (A.35)

Denoting the RHS with 𝑓 (𝑞) and noting that 𝑓 (0) = 𝑓 (1) = 0, a simple graphical argument shows that a non-zero solution exists when
the LHS is smaller than 𝑓 (𝑞) evaluated at its maximum point 𝑞 = 𝑃 − 2

𝑃
, i.e. for 𝑇 < 𝑇 ⋆ with 𝑇 ⋆ =

√

2(𝑃 − 2)𝑃−2∕𝑃 𝑃−1 [19,43].
Within the 1RSB assumption (2.12), the quenched free-energy evaluates to

− 2𝛽𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0|𝛽, 𝜃) =
𝛽2

2
[

1 + (𝜃 − 1)𝑞𝑃1 − 𝜃𝑞𝑃0
]

+ 𝜃 − 1
𝜃

log
(

1 − 𝑞1
)

+
𝑞0

1 − 𝑞1 + 𝜃(𝑞1 − 𝑞0)

+ 1
𝜃
log

(

1 − 𝑞1 + 𝜃(𝑞1 − 𝑞0)
)

, (A.36)

where 𝑞1 and 𝑞0 fulfill the self-consistency equations

𝛽2

2
𝑃𝑞𝑃−10 =

𝑞0
(1 − 𝑞1 + 𝜃(𝑞1 − 𝑞0))2

(A.37)

𝛽2

2
𝑃𝑞𝑃−11 =

𝛽2

2
𝑃𝑞𝑃−10 +

𝑞1 − 𝑞0
(1 − 𝑞1 + 𝜃(𝑞1 − 𝑞0))2

. (A.38)

From now on, we imply the dependence of 𝑓𝑅𝑆 and 𝑓1𝑅𝑆𝐵 on 𝛽. We note that for 𝜃 = 1, (A.37) becomes equal to (A.34), hence
𝑞0(𝜃 = 1) = 𝑞 and we also have 𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0|𝜃)|𝜃=1 = 𝑓𝑅𝑆 (𝑞). The aim is to expand the 1RSB quenched free-energy around 𝜃 = 1 to
inear orders in 𝜃 − 1. To this purpose,

we expand the 1RSB self-consistency equations around 𝜃 = 1 to obtain

𝛽2

2
𝑃𝑞𝑃−10 =

𝑞0
(1 − 𝑞0)2

+ (𝜃 − 1)𝐴(𝑞0, 𝑞1) (A.39)

where 𝐴(𝑞0, 𝑞1) is defined in (C.17) and

𝛽2

2
𝑃𝑞𝑃−11 =

𝑞0
(1 − 𝑞0)2

+
𝑞1 − 𝑞0

(1 − 𝑞0)(1 − 𝑞1)
+ (𝜃 − 1)𝐵(𝑞0, 𝑞1) (A.40)

here 𝐵(𝑞0, 𝑞1) is as in (C.18). As noted above, if 𝜃 = 1, 𝑞0(𝜃 = 1) = 𝑞, while 𝑞1(𝜃 = 1) fulfills the following equation

𝛽2

2
𝑃𝑞𝑃−11 =

𝑞1
(1 − 𝑞1)

(A.41)

We will see below that the RS instability occurs at a temperature 𝑇𝑐 > 𝑇 ⋆, hence the only solution of (A.37) at 𝑇𝑐 is 𝑞0 = 0. For 𝜃 = 1,
his corresponds to the paramagnetic solution 𝑞 = 0. For 𝜃 < 1, the solution 𝑞0 = 0 remains valid as in the absence of external field
ll the states must be orthogonal to each other, leading to a vanishing mutual overlap [43]. As the 1RSB theory requires 𝑞1 > 𝑞0,
e are interested in the non-zero solution of (A.41), which we can denote with 𝑞1 and can be found explicitly from

𝑞𝑃−21 (1 − 𝑞1) =
2
𝑃
𝑇 2 (A.42)

Denoting the LHS with 𝑔(𝑞1) and noting that 𝑔(0) = 𝑔(1) = 0, and reasoning as for 𝑇 ⋆, a non-zero solution exists when the RHS
is smaller than 𝑔(𝑞1) evaluated at its maximum point 𝑞⋆1 = (𝑃 − 2)∕(𝑃 − 1), giving 𝑇 <

√

𝑃 (𝑃 − 2)𝑃−2∕2(𝑃 − 1)𝑃−1 [43]. Next, we
ompute the derivative w.r.t. 𝜃 of −2𝛽𝑓1𝑅𝑆𝐵 at 𝑞0 = 𝑞 and 𝑞1 = 𝑞1:

𝐾(𝑞1, 𝑞) =𝜕𝜃
(

−2𝛽𝑓1𝑅𝑆𝐵(𝑞1, 𝑞0|𝜃)
)

|𝜃=1 = log
(

1 − 𝑞1
1 − 𝑞

)

+ (𝑞 − 𝑞1)
𝑃 (1 − 𝑞)(1 − 2𝑞)(1 − 𝑞1) − 𝑞(1 + 𝑞) − 𝑞1(1 − 3𝑞)

𝑃 (1 − 𝑞)3(1 − 𝑞1)
(A.43)
13
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Substituting 𝑞 = 0 and the value of 𝑞1 = 𝑞⋆1 this evaluates to

𝐾(𝑞∗1 , 0) = 2 − 4
𝑃

− log(𝑃 − 1) (A.44)

which is always negative for 𝑃 > 2, implying

𝑓1𝑅𝑆𝐵(𝑞∗1 , 0|𝜃) = 𝑓𝑅𝑆 (0) + (1 − 𝜃)
(𝐾(0, 𝑞∗1 )

2𝛽

)

< 𝑓𝑅𝑆 (0). (A.45)

This shows that at the temperature 𝑇𝑐 =
√

𝑃 (𝑃 − 2)𝑃−2∕2(𝑃 − 1)𝑃−1, where a non-zero overlap 𝑞1 first emerges, the RS theory
ecomes unstable, as known in the literature [19,43]. It can be easily verified that 𝑇𝑐 > 𝑇 ⋆ for all 𝑃 > 2.

ppendix B. Expanding around 𝜽 = 𝟎

Although we have so far regarded the limit 𝜃 → 1 (where 𝑞0 = 𝑞 and 𝑓1RSB = 𝑓RS) as the physical one, in the opposite limit,
→ 0, we would equally find, for all the models considered above, 𝑓1RSB = 𝑓RS (with 𝑞1 = 𝑞), suggesting that a similar analysis

ould have been carried for 𝜃 → 0.
In this section we present such analysis for the Hopfield model, the Hebbian networks with multi-node interactions and the

pherical 𝑃 -spin. The same analysis can be carried out for the other spin-glass models considered in Appendix A. Given the strong
imilarity of the SK and the Ising 𝑃 -spin models with the Hopfield and the dense associative memory models, respectively, we will
ot report such analysis here.

.1. The Hopfield model

From (2.17), one finds

lim
𝜃→0

𝑞1 = lim
𝜃→0

E1E2 tanh
2

(

𝛽�̄� + 𝛽𝑧(1)
√

𝛼𝑞0
𝛥2(𝜃, 𝑞0, 𝑞1)

+ 𝛽𝑧(2)
√

𝛼
𝑞1 − 𝑞0

𝛥1(𝑞1)𝛥2(𝜃, 𝑞0, 𝑞1)

)

= E1E2 tanh
2

(

𝛽�̄� + 𝛽𝑧(1)
√

𝛼𝑞0
𝛥1(𝑞1)

+ 𝛽𝑧(2)
√

𝛼(𝑞1 − 𝑞0)
𝛥1(𝑞1)

)

= E tanh2
(

𝛽�̄� + 𝛽

√

𝛼𝑞1
(1 − 𝛽(1 − 𝑞1))2

𝑧

)

(B.1)

where we have used that for 𝜃 = 0, 𝛥2(0, 𝑞0, 𝑞1) = 𝛥1(𝑞1) and the relation

E𝜆,𝑌 [𝐹 (𝑎1 + 𝜆𝑎2 + 𝑌 𝑎3)] = E
𝑍

[

𝐹
(

𝑎1 +𝑍
√

𝑎22 + 𝑎23

)]

, (B.2)

with 𝐹 any smooth function, 𝑎1, 𝑎2, 𝑎3 ∈ R, and 𝜆, 𝑌 and 𝑍 i.i.d. standard normal random variables. As (B.1) is identical to (2.9),
in the limit 𝜃 → 0, 𝑞1 is equal to the RS order parameter 𝑞. Similarly, one can show that

lim
𝜃→0

�̄�1 = �̄� (B.3)

and can easily verify that 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=0 = 𝑓𝑅𝑆 (�̄�, 𝑞). Our purpose is then to prove that for small but finite values of 𝜃 the
1RSB expression of the quenched free-energy is smaller than the RS expression, i.e. 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) < 𝑓𝑅𝑆 (�̄�, 𝑞), below a critical
line in the parameters space (𝛼, 𝛽).

To this purpose, we expand the 1RSB quenched free-energy around 𝜃 = 0 –namely around the replica symmetric expression– to
the first order, to write

𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) = 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=0 + 𝜃𝜕𝜃𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=0, (B.4)

where 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=0 = 𝑓𝑅𝑆 (�̄�, 𝑞). To determine when the RS solution becomes unstable, i.e. 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) < 𝑓𝑅𝑆 (�̄�, 𝑞)
we inspect the sign of 𝜕𝜃𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃)|𝜃=0. To evaluate the latter, we need to expand the self-consistency equations for 𝑞0, 𝑞1
and �̄�1 around 𝜃 = 0 to linear orders in 𝜃. Using (B.1) and denoting

𝑔0(�̄�1, 𝑞1, 𝑞0) = 𝛽�̄�1 + 𝛽𝑧(1)
√

𝛼𝑞0
𝛥1(𝑞1)

+ 𝛽𝑧(2)
√

𝛼(𝑞1 − 𝑞0)
𝛥1(𝑞1)

, (B.5)

we obtain

𝑞1 = E1E2 tanh
2 𝑔0(�̄�, 𝑞1, 𝑞0) + 𝜃𝐴(�̄�1, 𝑞0, 𝑞1) (B.6)

where 𝐴(�̄�1, 𝑞0, 𝑞1) is a function of 𝑞0 and 𝑞1 that will drop out of the calculation, whose expression is provided in (C.4) It follows
rom (B.1) that to (𝜃0), 𝑞1 is equal to the RS order parameter 𝑞 so we can rewrite (B.6) as

𝑞 = 𝑞 + 𝜃𝐴(�̄� , 𝑞 , 𝑞). (B.7)
14
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Following the same path for 𝑞0, and using (B.7), we have

𝑞0 = 𝑞0(�̄�, 𝑞) + 𝜃𝐵(�̄�1, 𝑞0, 𝑞) (B.8)

here 𝐵(�̄�1, 𝑞0, 𝑞) is provided in (C.5) and will drop out of the calculation, and we have denoted with 𝑞0(�̄�, 𝑞) the solution of

𝑞0 = E1
(

E2 tanh 𝑔0(�̄�, 𝑞0, 𝑞)
)2 . (B.9)

Finally, we can write the magnetization as

�̄�1 = �̄� + 𝜃𝐶(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) (B.10)

where 𝐶(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) is given in (C.6) and rewrite (B.7) and (B.8) as

𝑞1 = 𝑞 + 𝜃𝐴(�̄�, 𝑞0(�̄�, 𝑞), 𝑞) (B.11)
𝑞0 = 𝑞0(�̄�, 𝑞) + 𝜃𝐵(�̄�, 𝑞0(�̄�, 𝑞), 𝑞) (B.12)

Using (B.11), (B.10) and (B.12) to evaluate the derivative of 𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃) w.r.t. 𝜃 and finally setting 𝜃 = 0, we obtain:

𝐾(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) ∶= 𝜕𝜃(−𝛽𝑓1𝑅𝑆𝐵(�̄�1, 𝑞1, 𝑞0|𝜃))|𝜃=0

= −
𝛼𝛽2(𝑞2 − 𝑞0(�̄�, 𝑞)

2)
4𝛥1(𝑞)2

+ 1
2
E1E2 ln

2 cosh 𝑔0(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) −
1
2
E1

(

E2 ln cosh 𝑔0(�̄�, 𝑞, 𝑞0(�̄�, 𝑞))
)2 (B.13)

Next, we study the sign of (B.13), where 𝑞 and 𝑞0(�̄�, 𝑞) are the solutions of the self-consistency equations (2.9) and (B.9), respectively.
To this purpose, it is useful to study the behavior of the function 𝐾(�̄�, 𝑞, 𝑥) for 𝑥 ∈ [0, 𝑞]. For 𝑥 = 𝑞, we have 𝐾(�̄�, 𝑞, 𝑞) = 0, regardless
of the value assigned to �̄�, while the extremum of 𝐾(�̄�, 𝑞, 𝑥) is found from

𝜕𝑥𝐾(�̄�, 𝑞, 𝑥) =
𝛽2𝛼𝑥

2𝛥1(𝑞)2
[

𝑥 − E1
(

E2 tanh 𝑔0(�̄�, 𝑞, 𝑥)
)2
]

= 0

as

𝑥 = E1
(

E2 tanh 𝑔0(�̄�, 𝑞, 𝑥)
)2 ≡ 𝑞0(�̄�, 𝑞), (B.14)

from Eq. (B.9). Given that 𝐾(�̄�, 𝑞, 𝑥) vanishes for 𝑥 = 𝑞, if the extremum 𝑥 = 𝑞0(�̄�, 𝑞) is global in the domain considered, we must
have that 𝐾(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) > 0 if 𝑥 = 𝑞0(�̄�, 𝑞) is a maximum and 𝐾(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) < 0 if 𝑥 = 𝑞0(�̄�, 𝑞) is a minimum. Therefore, if

𝜕2𝑥𝐾(�̄�, 𝑞, 𝑥)|𝑥=𝑞0(�̄�, 𝑞) =
𝛽2𝛼

2𝛥1(𝑞)2

⎧

⎪

⎨

⎪

⎩

1 −
𝛽2𝛼

𝛥1(𝑞)2
E1

{

E2

[

1
cosh2 𝑔0(�̄�, 𝑞0(�̄�, 𝑞), 𝑞)

]}2⎫
⎪

⎬

⎪

⎭

(B.15)

is negative, 𝐾(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) is positive and 𝑓1𝑅𝑆𝐵(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)|𝜃) < 𝑓𝑅𝑆 (�̄�, 𝑞), hence the RS theory becomes unstable when the
xpression in the curly brackets in (B.15) becomes negative i.e. for

(1 − 𝛽(1 − 𝑞))2 < 𝛽2𝛼E1

{

E2

[

1
cosh2 𝑔0(�̄�, 𝑞, 𝑞0(�̄�, 𝑞))

]}2

(B.16)

nterestingly, also in this case, the result found by Coolen in [17] using the de Almeida and Thouless’ approach [6], is recovered
rom the expression above in the limit 𝑞0(�̄�, 𝑞) → 𝑞. Solving numerically 𝑞 and 𝑞0(�̄�, 𝑞) from the self-consistency equations (2.9) and
B.9), respectively, one can verify that these two quantities are indeed identical for any temperature, and the resulting RS instability
ine coincides with the classical AT line and the critical line given in (2.33), obtained by expanding around 𝜃 = 1, see Fig. 5 (left
anel). We anticipate that this will remain the case for Hebbian networks with 𝑃 -node interactions, that we will analyze in the next
ection (see mid and right panels of Fig. 5). Although we do not report such analysis here, we have checked that this is also the
ase for the SK model.

.2. Hebbian networks with multi-node interactions

Here we apply the same analysis to Hebbian networks with multi-node interactions, defined by the Hamiltonian given in Eq. (3.1).
ur objective is to prove that the 1RSB quenched free-energy is smaller than its replica symmetric counterpart i.e. 𝑓1𝑅𝑆𝐵(𝛽

′ , 𝛼, 𝜃) <
𝑅𝑆 (𝛽

′ , 𝛼) above a critical value of the effective parameter
√

𝛼𝛽′. To this purpose we expand, to linear orders in 𝜃, the 1RSB quenched
free-energy around 𝜃 = 0, as shown in (B.4). Since the self-consistency equations also depend on 𝜃, we need to expand them too.
Following the same steps as in the Hopfield model, we can write �̄�1 as in (B.10), with 𝐶(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) as in (C.12), 𝑞1 as in (B.7),
with 𝐴(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) given in (C.10), and 𝑞0 as given in (B.8), where 𝑞0(�̄�, 𝑞) is the solution of the self-consistency equation

𝑞0 = E1
(

E2 tanh 𝑔(�̄�, 𝑞, 𝑞0)
)2 (B.17)

and 𝐵(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) is given in (C.11). With the above expressions in hand, we can now calculate the derivative of 𝑓1RSB w.r.t. 𝜃
when 𝜃 = 0, as needed in (B.4)

𝐾(�̄�, 𝑞, 𝑞 (�̄�, 𝑞)) ∶= 𝜕 (−𝛽
′
𝑓 (�̄� , 𝑞 , 𝑞 |𝜃))|
15
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Fig. 5. RS instability lines for the Hopfield model (left) and Hebbian networks with 𝑃 -node interactions, with 𝑃 = 4 (mid) and 𝑃 = 6 (right), obtained via our
method for 𝜃 → 0 and 𝜃 → 1. In the all the case the lines obtained for 𝜃 → 0 and 𝜃 → 1 are indistinguishable.

=
−𝛼𝛽 ′ 2(𝑃 − 1)

4
(𝑞𝑃 − (𝑞0(�̄�, 𝑞))𝑃 ) +

1
2
E1E2 ln

2 cosh 𝑔(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) −
1
2
E1

(

E2 ln cosh 𝑔(�̄�, 𝑞, 𝑞0(�̄�, 𝑞))
)2 (B.18)

Again, we have that 𝐾(�̄�, 𝑞, 𝑞) = 0, regardless of the value assigned to �̄� (this follows from the fact that for 𝜃 = 0, 𝑞 is an extremum
of the free-energy). Next, we inspect the sign of 𝐾(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)). To this purpose, we study 𝐾(�̄�, 𝑞, 𝑥) for 𝑥 ∈ [0, 𝑞] and locate its
extrema, which are found from

𝜕𝑥𝐾(�̄�, 𝑞, 𝑥) =
𝛽 ′ 2𝛼𝑃 (𝑃 − 1)

4
𝑥𝑃−2

[

𝑥 − E1
(

E2 tanh 𝑔(�̄�, 𝑞, 𝑥)
)2
]

= 0 (B.19)

as

𝑥 = E1
(

E2 tanh 𝑔(�̄�, 𝑞, 𝑥)
)2 ≡ 𝑞0(�̄�, 𝑞) (B.20)

where the last equality follows from (B.17). Under the assumption that the extremum 𝑥 = 𝑞0(�̄�, 𝑞) is global in the domain considered
and reasoning as in the Hopfield case, we have that 𝐾(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) > 0 if 𝑥 = 𝑞0(�̄�, 𝑞) is a maximum and 𝐾(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) < 0 if it is
a minimum. In particular, if

𝜕2𝑥𝐾(�̄�, 𝑞, 𝑥)|𝑥=𝑞0(�̄�, 𝑞) = −
𝛽 ′ 2𝛼𝑃 (𝑃 − 1)

4
𝑞0(�̄�, 𝑞)

𝑃−2

⋅

⎧

⎪

⎨

⎪

⎩

1 −
𝛽 ′ 2𝛼𝑃 (𝑃 − 1)(𝑞0(�̄�, 𝑞))

𝑃−2

2
E1

[

E2
1

cosh2 𝑔(�̄�, 𝑞, 𝑞0(�̄�, 𝑞))

]2⎫
⎪

⎬

⎪

⎭

(B.21)

is negative, 𝐾(�̄�, 𝑞, 𝑞0(�̄�, 𝑞)) > 0 and 𝑓1𝑅𝑆𝐵 < 𝑓𝑅𝑆 . This happens when the expression in the curly brackets of the equation above is
negative, i.e. when the parameter 𝛼𝛽 ′ 2 satisfies the inequality

𝛼𝛽 ′ 2𝑃 (𝑃 − 1)(𝑞0(�̄�, 𝑞))𝑃−2

2
E1

{

E2

[

1
cosh2 𝑔(�̄�, 𝑞, 𝑞0(�̄�, 𝑞))

]}2

> 1. (B.22)

The resulting critical line is found to be identical to the critical line (3.11) obtained from the expansion around 𝜃 = 1 (see Fig. 5,
mid and right panels).

B.3. Spherical 𝑃 -spin

Expanding for small 𝜃 the self-consistency equations (A.37), (A.38) to linear orders, we get
𝛽2

2
𝑃𝑞𝑃−11 =

𝛽2

2
𝑃𝑞𝑃−10 +

𝑞1 − 𝑞0
(1 − 𝑞1)2

+ 𝜃𝐴(𝑞0, 𝑞1) (B.23)

𝛽2

2
𝑃𝑞𝑃−10 =

𝑞0
(1 − 𝑞1)2

+ 𝜃𝐵(𝑞0, 𝑞1) (B.24)

where the expression for 𝐴(𝑞0, 𝑞1) and 𝐵(𝑞0, 𝑞1) are provided in (C.19) and (C.20), respectively. If 𝜃 = 0, summing the two equations
gives

𝛽2

2
𝑃𝑞𝑃−11 =

𝑞1
(1 − 𝑞1)2

(B.25)

showing that, to orders (𝜃0), 𝑞1 = 𝑞, while 𝑞0 fulfills the following self-consistency equation

𝛽2
𝑃𝑞𝑃−10 =

𝑞0 (B.26)
16

2 (1 − 𝑞1)2
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s
w
t

A

t

whose solution is denoted with 𝑞0(𝑞). The latter equation is solved by 𝑞0(𝑞) = 0 (which corresponds to the paramagnetic solution and
remains valid when ergodicity is broken, as explained earlier). Similarly, 𝑞1 = 0 is always a solution of (B.25), however the 1RSB
cenario requires 𝑞1 > 0. As explained in the previous section, such non-zero solution appears at 𝑇 ≤ 𝑇 ⋆ =

√

2(𝑃 − 2)𝑃−2∕𝑃 𝑃−1,
hich is below 𝑇𝑐 for any 𝑃 > 2, hence we can immediately conclude that the instability of the RS theory occurs at the larger

emperature 𝑇𝑐 , without further comparing the free-energies 1RSB and RS for 𝜃 close to zero.

ppendix C. Contributions to sub-leading orders

In this appendix we provide expressions for all the functions that we left unspecified in the main text, as they did not contribute
o leading orders, including the functions 𝐴(𝑞0, 𝑞1) and 𝐵(𝑞0, 𝑞1) for all the models considered.

• For the Hopfield model, in the expansion around 𝜃 = 1 the subleading contributions to (2.22) and (2.24) are,

𝐴(�̄�, 𝑞0, 𝑞1) = 2E1

[

tanh

(

𝛽�̄� +
𝛽𝑧(1)

√

𝛼𝑞0
(1 − 𝛽(1 − 𝑞0))

)

⋅
E2 log cosh 𝑔1(�̄�, 𝑞0, 𝑞1) sinh 𝑔1(�̄�, 𝑞0, 𝑞1)(1 − tanh 𝑔1(�̄�, 𝑞0, 𝑞1))

E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

]

, (C.1)

𝐵(�̄�, 𝑞0, 𝑞1) =
𝛽3𝛼(𝑞1 − 𝑞0)

(1 − 𝛽(1 − 𝑞0))2

(

𝑞0
(1 − 𝛽(1 − 𝑞0))

+
(𝑞1 − 𝑞0)

(1 − 𝛽(1 − 𝑞1))

)

⋅ E1

{

1 +
E2 tanh

2 𝑔1(�̄�, 𝑞0, 𝑞1)
E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

+
E2 log cosh 𝑔1(�̄�, 𝑞0, 𝑞1)(1 − tanh2 𝑔1(�̄�, 𝑞0, 𝑞1))

E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

}

−
𝛽3𝛼(𝑞1 − 𝑞0)2

(1 − 𝛽(1 − 𝑞))3
E1

{

tanh2 𝑔1(�̄�, 𝑞0, 𝑞1)

(

1 −
E2 sinh 𝑔1(�̄�, 𝑞0, 𝑞1) tanh

2 𝑔1(�̄�, 𝑞0, 𝑞1)
E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

)

+

(

2 − 3 tanh3
(

𝛽�̄� +
𝛽𝑧(1)

√

𝛼𝑞0
(1 − 𝛽(1 − 𝑞0))

))

E2 sinh 𝑔1(�̄�, 𝑞0, 𝑞1) tanh
2 𝑔1(�̄�, 𝑞0, 𝑞1)

E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

+ tanh

(

𝛽�̄� +
𝛽𝑧(1)

√

𝛼𝑞0
(1 − 𝛽(1 − 𝑞0))

)

E2 log cosh 𝑔1(�̄�, 𝑞0, 𝑞1) tanh 𝑔1(�̄�, 𝑞0, 𝑞1)
E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

}

𝛽3𝛼(𝑞1 − 𝑞0)2

2(1 − 𝛽(1 − 𝑞0))2(1 − 𝛽(1 − 𝑞1))
E1

{

tanh

(

𝛽�̄� +
𝛽𝑧(1)

√

𝛼𝑞0
(1 − 𝛽(1 − 𝑞0))

)

⋅
E2 sinh 𝑔1(�̄�, 𝑞0, 𝑞1) tanh 𝑔1(�̄�, 𝑞0, 𝑞1)

E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

}

− E1

{

E2 sinh 𝑔1(�̄�, 𝑞0, 𝑞1) tanh 𝑔1(�̄�, 𝑞0, 𝑞1)E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1) log cosh 𝑔1(�̄�, 𝑞0, 𝑞1)
(E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1))2

}

, (C.2)

and

𝐶(�̄�, 𝑞, 𝑞1) =
⎛

⎜

⎜

⎝

−3𝛽

√

𝛼𝑞
𝛥1(𝑞)

− 𝛽

√

𝛼(𝑞1 − 𝑞)
𝛥1(𝑞)𝛥1(𝑞1)

⎞

⎟

⎟

⎠

E tanh

(

𝛽�̄� + 𝛽

√

𝛼𝑞
(1 − 𝛽(1 − 𝑞))2

𝑧

)

+ 2𝛽E tanh3
(

𝛽�̄� + 𝛽

√

𝛼𝑞
(1 − 𝛽(1 − 𝑞))2

𝑧

)
√

𝛼𝑞
𝛥1(𝑞)

− 𝛽

√

𝛼𝑞
𝛥1(𝑞)

E1

[

sinh 𝑔1(�̄�, 𝑞0, 𝑞1)
E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1) tanh 𝑔1(�̄�, 𝑞0, 𝑞1) log cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

]

+
⎛

⎜

⎜

⎝

𝛽

√

𝛼𝑞
𝛥1(𝑞)

+ 𝛽

√

𝛼(𝑞1 − 𝑞)
𝛥1(𝑞)𝛥1(𝑞1)

⎞

⎟

⎟

⎠

(

E1

[

E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1) log cosh 𝑔1(�̄�, 𝑞0, 𝑞1)
E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

]

+E1

[

2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1) tanh
2 𝑔1(�̄�, 𝑞0, 𝑞1)

E2 cosh 𝑔1(�̄�, 𝑞0, 𝑞1)

])

(C.3)

respectively, where 𝑔1(�̄�, 𝑞0, 𝑞1) is defined as in (2.18).
For the expansion around 𝜃 = 0 the subleading contributions to (B.6) and (B.8) are

𝐴(�̄�, 𝑞0, 𝑞1) =E1
[

E2 tanh
2 𝑔0(�̄�, 𝑞1, 𝑞0) ln cosh 𝑔0(�̄�, 𝑞1, 𝑞0)

]

− E1
[

E2 tanh
2 E2 ln cosh 𝑔0(�̄�, 𝑞1, 𝑞0)

]

+
𝛽3𝛼𝑞1(𝑞1 − 𝑞0) [1 − E1

(

E2 tanh
2 𝑔0(�̄�, 𝑞1, 𝑞0)

)]
17
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+
3𝛽3𝛼(𝑞21 − 𝑞20 )

𝛥1(𝑞1)3
E1

[

E2 tanh
2 𝑔0(�̄�, 𝑞1, 𝑞2)

(

1 − tanh2 𝑔0(�̄�, 𝑞1, 𝑞0)
)]

(C.4)

𝐵(�̄�, 𝑞0, 𝑞1) = 2
{

E1
[

E2 tanh 𝑔0(�̄�, 𝑞1, 𝑞0)E2 log cosh 𝑔0(�̄�, 𝑞1, 𝑞0) tanh 𝑔0(�̄�, 𝑞1, 𝑞0)
]

− E1

[

E2 log cosh 𝑔0(�̄�, 𝑞1, 𝑞0)
(

E2 tanh 𝑔0(�̄�, 𝑞1, 𝑞0)
)2
]

+
2𝛽2𝛼𝑞0(𝑞1 − 𝑞0)

𝛥1(𝑞1)3
E1

[

E2
(

1 − tanh2 𝑔0(�̄�, 𝑞1, 𝑞0)
)]

−
4𝛽3𝛼𝑞0(𝑞1 − 𝑞0)

𝛥1(𝑞1)3
E1

[

E2 tanh 𝑔0(�̄�, 𝑞1, 𝑞0)(1 − tanh2 𝑔0(�̄�, 𝑞1, 𝑞0))E2 tanh
2 𝑔0(𝑞1, 𝑞0)

]

+
2𝛽3𝛼𝑞0(𝑞1 − 𝑞0)

𝛥1(𝑞1)3
E1

[

E2 tanh
2 𝑔0(�̄�, 𝑞1, 𝑞0)E2

(

1 − tanh2 𝑔0(�̄�, 𝑞1, 𝑞0)
)]

+
𝛽2𝛼(𝑞1 − 𝑞0)2

𝛥1(𝑞1)3
E1

[

E2 tanh 𝑔0(�̄�, 𝑞1, 𝑞0)E2 tanh 𝑔0(�̄�, 𝑞1, 𝑞0)(1 − tanh2 𝑔0(�̄�, 𝑞1, 𝑞0))
]

}

(C.5)

and

𝐶(�̄�, 𝑞, 𝑞0) =
𝛼𝛽3𝑞1(𝑞1 − 𝑞0)
(1 − 𝛽(1 − 𝑞1))3

E
[(

1 − tanh2 𝑔0(�̄�, 𝑞1, 𝑞0)
)

log cosh 𝑔0(�̄�, 𝑞1, 𝑞0)

+ tanh2 𝑔0(�̄�, 𝑞1, 𝑞0) − 2 tanh 𝑔0(�̄�, 𝑞1, 𝑞0) + 2 tanh3 𝑔0(�̄�, 𝑞1, 𝑞0)
]

(C.6)

where 𝑔0(�̄�, 𝑞0, 𝑞1) is defined in (B.5).
• For Hebbian networks with 𝑃 -node interactions, the subleading contributions to the overlaps 𝑞0 and 𝑞1 in the expansion around
𝜃 = 1 are given by

𝐴(�̄�, 𝑞0, 𝑞1) =2E1

{

E2 ln cosh 𝑔(�̄�, 𝑞1, 𝑞0) sinh 𝑔(�̄�, 𝑞1, 𝑞0) tanh 𝑔(�̄�, 𝑞1, 𝑞0)
E2 cosh 𝑔(�̄�, 𝑞1, 𝑞0)

}

−

2E1

{

E2 ln cosh 𝑔(�̄�, 𝑞1, 𝑞0) cosh 𝑔(�̄�, 𝑞1, 𝑞0)E2 sinh 𝑔(�̄�, 𝑞1, 𝑞0) tanh 𝑔(�̄�, 𝑞1, 𝑞0)
(

E2 cosh 𝑔(�̄�, 𝑞1, 𝑞0)
)2

}

, (C.7)

𝐵(�̄�, 𝑞0, 𝑞1) =2E1

{

E2 sinh 𝑔(�̄�, 𝑞1, 𝑞0) tanh 𝑔(�̄�, 𝑞1, 𝑞0)E2 cosh 𝑔(�̄�, 𝑞1, 𝑞0) log cosh 𝑔(�̄�, 𝑞1, 𝑞0)
(

E2 cosh 𝑔(�̄�, 𝑞1, 𝑞0)
)2

}

− 2E1

{
(

E2 sinh 𝑔(�̄�, 𝑞1, 𝑞0) tanh 𝑔(�̄�, 𝑞1, 𝑞0)
)2 E2 sinh 𝑔(�̄�, 𝑞1, 𝑞0) log cosh 𝑔(�̄�, 𝑞1, 𝑞0)

(

E2 cosh 𝑔(�̄�, 𝑞1, 𝑞0)
)3

}

, (C.8)

𝐶(�̄�, 𝑞0, 𝑞1) =E1

[

E2 sinh 𝑔(�̄�, 𝑞1, 𝑞0) log cosh 𝑔(�̄�, 𝑞1, 𝑞0)
E2 cosh 𝑔(�̄�, 𝑞1, 𝑞0)

]

−

E1

[

E2 sinh 𝑔(�̄�, 𝑞1, 𝑞0)E2 cosh 𝑔(�̄�, 𝑞1, 𝑞0) log cosh 𝑔(�̄�, 𝑞1, 𝑞0)
(

E2 cosh 𝑔(�̄�, 𝑞1, 𝑞0)
)2

]

(C.9)

respectively, whereas, for the expansion around 𝜃 = 0 they evaluate to

𝐴(�̄�, 𝑞0, 𝑞1) =E1E2 ln cosh 𝑔(�̄�, 𝑞1, 𝑞0) tanh
2 𝑔(�̄�, 𝑞1, 𝑞0)

− E1
(

E2 ln cosh 𝑔(�̄�, 𝑞1, 𝑞0)E2 tanh
2 𝑔(�̄�, 𝑞1, 𝑞0)

)

(C.10)

𝐵(�̄�, 𝑞0, 𝑞1) =
{

2E1
[

E2 tanh 𝑔(�̄�, 𝑞1, 𝑞0)E2 ln cosh 𝑔(�̄�, 𝑞1, 𝑞0) tanh 𝑔(�̄�, 𝑞1, 𝑞0)
]

−2E1

[

(

E2 tanh 𝑔(�̄�, 𝑞1, 𝑞0)
)2 E2 ln cosh 𝑔(�̄�, 𝑞1, 𝑞0)

]}

, (C.11)

𝐶(�̄�, 𝑞0, 𝑞1) =E1
[

E2 tanh 𝑔(�̄�, 𝑞1, 𝑞0) log cosh 𝑔(�̄�, 𝑞1, 𝑞0)
]

− E1
[

E2 tanh 𝑔(�̄�, 𝑞1, 𝑞0)E2 log cosh 𝑔(�̄�, 𝑞1, 𝑞0)
]

(C.12)

where 𝑔(�̄�, 𝑞1, 𝑞0) is defined in (3.5).
• For the Sherrington-Kirkpatrick model the subleading contributions to the overlaps 𝑞0 and 𝑞1 in the expansion around 𝜃 = 1

are given by

𝐴(𝑞0, 𝑞1) = E1

{

E2 log cosh 𝑔(𝑞0, 𝑞1) sinh 𝑔(𝑞0, 𝑞1) tanh 𝑔(𝑞0, 𝑞1)E2 cosh 𝑔(𝑞0, 𝑞1)
(E2 cosh 𝑔)2

−
E2 sinh 𝑔(𝑞0, 𝑞1) tanh 𝑔(𝑞0, 𝑞1)E2 cosh 𝑔(𝑞0, 𝑞1) log cosh 𝑔(𝑞0, 𝑞1)

}

(C.13)
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𝐵(𝑞0, 𝑞1) =E1

{

E2 log cosh 𝑔(𝑞0, 𝑞1) sinh 𝑔(𝑞0, 𝑞1)E2 cosh 𝑔(𝑞0, 𝑞1)
(E2 cosh 𝑔(𝑞0, 𝑞1))2

−
E2 sinh 𝑔(𝑞0, 𝑞1)E2 cosh 𝑔(𝑞0, 𝑞1) log cosh 𝑔(𝑞0, 𝑞1)

(E2 cosh 𝑔(𝑞0, 𝑞1))2

}

. (C.14)

where 𝑔(𝑞1, 𝑞0) is defined in (A.5).
• For the Ising P-spin model, these terms, in the expansion around 𝜃 = 1, evaluate to

𝐴(𝑞0, 𝑞1) =E1

{

E2 log cosh 𝑔(𝑞1, 𝑞0) sinh 𝑔(𝑞1, 𝑞0) tanh 𝑔(𝑞1, 𝑞0)E2 cosh 𝑔(𝑞1, 𝑞0)
(E2 cosh 𝑔(𝑞1, 𝑞0))2

−
E2 sinh 𝑔(𝑞1, 𝑞0) tanh 𝑔(𝑞1, 𝑞0)E2 cosh 𝑔(𝑞1, 𝑞0) log cosh 𝑔(𝑞1, 𝑞0)

(E2 cosh 𝑔(𝑞1, 𝑞0))2

}

(C.15)

𝐵(𝑞0, 𝑞1) =E1

{

E2 log cosh 𝑔(𝑞1, 𝑞0) sinh 𝑔(𝑞1, 𝑞0)E2 cosh 𝑔(𝑞1, 𝑞0)
(E2 cosh 𝑔(𝑞1, 𝑞0))2

−
E2 sinh 𝑔(𝑞1, 𝑞0)E2 cosh 𝑔(𝑞1, 𝑞0) log cosh 𝑔(𝑞1, 𝑞0)

(E2 cosh 𝑔(𝑞1, 𝑞0))2

}

. (C.16)

where 𝑔(𝑞1, 𝑞0) is defined in (A.21).
• Finally, for the spherical 𝑃 -spin model, the contributions to linear orders in the expansion around 𝜃 = 1 (see (A.39) and (A.40))

are

𝐴(𝑞0, 𝑞1) =
2𝑞0(𝑞0 − 𝑞1)
(1 − 𝑞0)3

(C.17)

𝐵(𝑞0, 𝑞1) =
(𝑞1 − 𝑞0)2

(1 − 𝑞0)(1 − 𝑞1)
+

2𝑞0(𝑞0 − 𝑞1)
(1 − 𝑞0)3

. (C.18)

while the contributions to linear orders in the expansion around 𝜃 = 0 (see (B.23) and (B.24)) are:

𝐴(𝑞0, 𝑞1) =
(𝑞21 − 𝑞20 )

(1 − 𝑞1)3
(C.19)

𝐵(𝑞0, 𝑞1) =
2𝑞0(𝑞1 − 𝑞0)
(1 − 𝑞1)3

(C.20)
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