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1 Introduction

Electroweak evolution equations (EWEEs), which are analogous to the Dokshitzer, Gribov,
Lipatov, Altarelli, Parisi (DGLAP) equations in Quantum Chromodynamics (QCD) [1–4],
are of primary importance when the energies of the processes considered are much larger
than those of the weak scale. Indeed, at center-of-mass energies Q much higher than the
electroweak (EW) symmetry breaking scale M ∼ 100 GeV, radiative EW corrections grow
like log2(Q/M) [5, 6]. One loop corrections reach the 30% level at the TeV scale, and, for
this reason, keeping the perturbative series under control is challenging [7–13], and will
be particularly important for next generation of very high energy colliders [14]. Moreover
such EW corrections are present even for fully inclusive quantities [15] in contrast with
QCD where large cancellations between real and virtual corrections take place, and are
therefore ubiquitous whenever the initial state is charged under SU(2). With the purpose
of considering these issues, EWEEs have been developed in [17, 18]. These new equations
allow the resummation of all the terms O[α log2(Q/M)]n of infrared/collinear origin, and of
the O[α log(Q/M)]n terms of collinear origin (actually, terms of order αn logk(Q/M) with
n ≤ k ≤ 2n are resummed). The EW evolution equations are integro-differential equations
including kernels that are called splitting functions.

The main point of the present work is to advocate the use of splitting functions that
differ from those commonly used in the literature, since they include a cutoff near z = 0, z

being the momentum fraction. For instance, in the case of the kernel P R
gf that describes the

splitting of a fermion f into a gauge boson g and a final state fermion, we have that

1 + (1 − z)2

z
→ 1 + (1 − z)2

z
θ

(
z − µ

Q

)
, (1.1)

where in the left hand side there is the standard expression of the splitting function and in
the right hand side the one we propose here. The variable µ indicates the soft sliding scale
with respect to which the functions are evolved (see section 2). As we explain in section 3, the
need to modify the splitting functions arises on one hand from the probabilistic interpretation
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Figure 1. The cross section σ(AB → µ+µ− + X) can be written as a convolution of PDFs fijs and
a Hard partonic cross section (see text).

of the Parton Distribution Functions (PDFs), and on the other hand from quantum numbers
conservation (symmetries of the theory).

The introduction of the modified splitting functions produces sizeable effects on the
PDFs, as we show in section 4. Indeed, the distribution functions we obtain differ significantly
from the standard ones, not only in the region close to z = 0 but also for z of order 1. In
section 5 we discuss a point which has been overlooked in the literature so far: the equivalence
between the ultraviolet (UV) evolution equations, that are evolved with respect to a hard
scale q, and the infrared (IR) evolution equations, where the running scale is a soft one µ.
We show that the two approaches are indeed equivalent, but they produce the same PDFs
only with an appropriate choice of cutoffs.

2 The electroweak evolution equations

In this work we consider a cross section σ(AB → µ+µ− + X) involving initial states A, B

provided by the collider. While A and B can be, in principle, leptons and/or hadrons, in this
paper we limit ourselves to leptonic initial states. The final state features a tagged µ+µ−

pair and is completely inclusive over emitted radiation X. We can write:

σ(AB → µ+µ− + X) =
∑
i,j

∫
dxidxj fiA(xi; M, Q) σH

ij (Q2 = xjxis) fjB(xj ; M, Q), (2.1)

Here
√

s is the collider c.m. energy and Q2 = (pi + pj)2 ≈ xixjs, is the squared mass of the
colliding partons i and j with momenta pi and pj . We indicate with xi(xj) the momentum
fraction of parton i(j) with respect to the initial particle A(B). σH

ij is the hard cross section
for the partonic subprocess ij → µ+µ−, while i and j run over the Standard Model spectrum.
Note that X includes, besides the customary QED and QCD radiation, also EW gauge
bosons with their decay products. EWEEs describe the scale dependence of the PDFs fij ,
representing the distribution of parton i inside parton j. These functions depend on the
momentum fraction x of the daughter particle and on a running scale µ having the physical
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meaning of lower cutoff for the daughter’s transverse momentum. The PDFs fij(x; µ, Q) are
evaluated by solving the evolution equations starting from the initial condition at µ = Q

and letting them evolve until µ reaches the weak scale value M . At this point, we obtain
the final result fij(x; M, Q). Since the PDFs are adimensional functions of µ and Q, they
can only depend on the ratio µ/Q; therefore we switch to the notation:

fij(x, ε); ε = µ

Q
(2.2)

In this work, we use a subset of the Standard Model (SM) equations, setting the U(1)
coupling constant g′ equal to zero. Furthermore, for illustrative purposes, we consider as
hypothetical initial states only left leptons or transverse gauge bosons. As a consequence,
we have to deal with only 7 different partons, that are gauge eigenstates: the left fermions
electron e and neutrino ν, the corresponding antifermions ē, ν̄ and the transverse gauge
bosons W−, W3, W+. This limitation makes our results not suitable to be directly compared
with experimental data. However, the purpose of our work consists in clearly showing that
the splitting functions in the EWEEs need to be modified and that these modifications
have a relevant effect on the PDFs.

We found convenient the use of a basis of definite isospin and CP quantum numbers.
We label LCP

T the left fermion eigenstate with isospin T and definite CP ; in analogy, we
indicate the transverse gauge boson states as GCP

T . We adopt the classification of states
defined in [18], with respect to which we use a slightly different normalization:

f∗L+
0

= f∗ ν + f∗ e + f∗ ν̄ + f∗ ē

2 , f∗L−
0

= f∗ ν + f∗ e − f∗ ν̄ − f∗ ē

2 , (2.3)

f∗L+
1

= f∗ ν − f∗ e + f∗ ν̄ − f∗ ē

2 , f∗L−
1

= f∗ ν − f∗ e − f∗ ν̄ + f∗ ē

2 , (2.4)

f∗G+
0

=
f∗W+ + f∗W3 + f∗W−√

3
, f∗G−

1
=

f∗W+ − f∗W−√
2

,

f∗G+
2

=
f∗W+ − 2f∗W3 + f∗W−√

6
, (2.5)

where the asterisk stands for a generic index and similar expressions hold when
we keep fixed the right index. We use capital letters for T, CP eigenstates:
A = (L+

0 , L−
0 , L+

1 , L−
1 , G+

0 , G−
1 , G+

2 ) and small letters for gauge eigenstates i =
(ν, e, ν̄, ē, W+, W3, W−). The transition from one basis to the other is then given by a
mixed indices unitary matrix UAi such that fAB = UAiUBjfij and

U =



1
2

1
2

1
2

1
2 0 0 0

1
2

1
2 −1

2 −1
2 0 0 0

1
2 −1

2
1
2 −1

2 0 0 0
1
2 −1

2 −1
2

1
2 0 0 0

0 0 0 0 1√
3

1√
3

1√
3

0 0 0 0 1√
2 0 − 1√

2
0 0 0 0 1√

6 − 2√
6

1√
6


. (2.6)

The matrix f is a 7 × 7 square matrix, having, therefore 49 different matrix elements.
However, working in the total isospin t-channel, due to isospin and CP conservation, the
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majority of these elements vanish. In fact, isospin T and CP conservation implies

f
A

CP1
T1

B
CP2
T2

(x, ε) = δT1 T2 δCP1 CP2 f
A

CP1
T1

B
CP1
T1

(x, ε), ∀ A, B = L, G (2.7)

for a total of 11 independent PDFs that can be grouped in the following combinations:

(T = 0, CP = +) :
fL+

0 L+
0

fL+
0 G+

0

fG+
0 L+

0
fG+

0 G+
0

, (T = 1, CP = −) :
fL−

1 L−
1

fL−
1 G−

1

fG−
1 L−

1
fG−

1 G−
1

, (2.8)

(T = 0, CP = −) : fL−
0 L−

0
, (T = 1, CP = +) : fL+

1 L+
1

, (T = 2, CP = +) : fG+
2 G+

2
.

By considering the various reaction channels, for the IR evolution equations we have the
following leading-order kernels depending on the variable ε defined in (2.2):

P V
ff =−δ(1−z)

(
log 1

ε2 −
3
2

)
; P R

ff = 1+z2

1−z
θ(1−ε−z), (2.9)

P V
gg =−δ(1−z)

(
log 1

ε2 −
5
3

)
; P R

gg =2
(

z (1−z)+ z

1−z
+ 1−z

z

) [
θ(z−ε)

]
θ(1−ε−z), (2.10)

P R
gf = 1+(1−z)2

z

[
θ(z−ε)

]
; P R

fg =z2+(1−z)2 , (2.11)

where with the upper index R (for real) or V (for virtual) we denote the origin of the
corresponding contributions. The terms between square brackets in eqs. (2.10), (2.11) are not
present in the usual expressions of the kernels, and produce the threshold effect proportional
to θ(z − ε). In the next section we will discuss the origin of these terms. Throughout this
paper we work with fixed value of the weak SU(2) coupling constant α.

Schematically, the equations in the two different basis can be written as:

−π

α

∂

∂ log ϵ
fij(x, ε) = [fik ⊗P G

kj ](x, ε) , −π

α

∂

∂ log ϵ
fAB(x, ε) = [fAC ⊗P I

CB](x, ε) , (2.12)

where we have defined the convolution:

[f ⊗ P ](x, ε) =
∫ 1

x

dz

z
f(z, ε)P

(
x

z
, ε

)
. (2.13)

In the above equations, P G is a 7 × 7 matrix with all elements different from zero. Also
P I is a 7 × 7 matrix, but it is block-diagonal: as can be seen from eq. (2.8) it is a 2 × 2
submatrix in the T = 0, CP = +1 subspace and in the T = 1, CP = −1 subspace, while it is
a 1 × 1 submatrix in the T = 1, CP = +1; T = 0, CP = −1; T = 2, CP = +1 subspaces. The
evolution equations have therefore a much simpler form in the isospin basis; we now write
such equations. We use the values of P I taken from [18] and obtain:

−π

α

∂

∂ log ϵ
fL−

0 L−
0

(x, ε) = 3
4[fL−

0 L−
0
⊗ (P R

ff + P V
ff )](x, ε) , (2.14)

−π

α

∂

∂ log ϵ
fL+

1 L+
1

(x, ε) = [fL+
1 L+

1
⊗ P V

ff ](x, ε) − 1
4fL+

1 L+
1
⊗ (P R

ff + P V
ff ) , (2.15)

−π

α

∂

∂ log ϵ
fG+

2 G+
2

(x, ε) = 3[fG+
2 G+

2
⊗ P V

gg](x, ε) − [fG+
2 G+

2
⊗ (P R

gg + P V
gg)](x, ε) . (2.16)
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In the 0+ channel we have 2 sets of 2 × 2 systems, corresponding to the possible values
A = L+

0 and A = G+
0 :

−π

α

∂

∂ log ϵ
fA L+

0
(x, ε) = 3

4[fA L+
0
⊗ (P R

ff + P V
ff )](x, ε) +

√
3

2 [fA G+
0
⊗ P R

gf ](x, ε) ,

−π

α

∂

∂ log ϵ
fA G+

0
(x, ε) =

√
3

2 [fA L+
0
⊗ P R

fg](x, ε) + 2[fA G+
0
⊗ (P R

gg + P V
gg)](x, ε) .

(2.17)

The same happens in the 1− channel, with A = L−
1 and A = G−

1 :
−π

α

∂

∂logϵ
fAL−

1
(x,ε)=[fAL−

1
⊗P V

ff ](x,ε)−1
4[fAL−

1
⊗(P R

ff +P V
ff )](x,ε)+ 1√

2
[fAG−

1
⊗P R

gf ](x,ε),

−π

α

∂

∂logϵ
fAG−

1
(x,ε)= 1√

2
[fAL−

1
⊗P R

fg](x,ε)+[fAG−
1
⊗P V

gg](x,ε)+[fAG−
1
⊗(P R

gg+P V
gg)](x,ε).

(2.18)
Overall we have 2× 2 + 2× 2 + 1 + 1 + 1 = 11 equations. In the EW framework, at difference
with QCD, it is possible to express analytically the initial conditions, since we are in a
perturbative regime. At the µ = Q scale, these initial conditions can be expressed as:

fAB(x, ε = 1) = δABδ(1 − x) . (2.19)

3 Sum rules and cutoffs for the splitting functions

In this section we show that sum rules on the splitting functions enforce the presence of
precisely determined cutoffs near z = 0. Sum rules are requirements on the integrals over
z of Pij(z) and zPij(z), obtained from the conservation of the total momentum and of the
quantum numbers.

In the literature, in all the works where IR corrections are resummed, [17, 19–21], the
cutoffs near z = 1 have been considered. In the present work, we introduce for the first
time, to the best of our knowledge, additional cutoffs near z = 0. We present in this section
the sources of these new cutoffs, while their quantitative relevance on the values of the
distribution functions fij(z, ε) will be discussed in section 4.

Conserved quantities involve integrals of the distribution functions. For instance, if the
initial particle is a neutrino, then the probability to become an electron is

∫
dzfeν(z, ε). If

we are interested in fermion number conservation, the initial fermion number, 1, must be
conserved when we sum over all possible final states:

1 =
∫ 1

0
dz(feν(z, ε) + fνν(z, ε) − fν̄ν(z, ε) − fēν(z, ε))

= 2
∫ 1

0
dzfL−

0 ν(z, ε) =
∫ 1

0
dzfL−

0 L−
0

(z, ε) , (3.1)

where we used eqs. (2.3)–(2.5) for both left and right indices, and considered the conservation
of the weak isospin. This condition must be satisfied for every value of ε. This means that the
evolution equations must have kernels which allows the conservation of the condition (3.1).

In order to explore the consequences of eq. (3.1), it is convenient to write the evolution
in terms of the Mellin transform, i.e. by defining the N -th order moments:

f̃(N, ε) =
∫ 1

0
dzf(z, ε)zN−1 , (3.2)

– 5 –
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such that eq. (2.12) become factorized, with the ordinary product:

−π

α

∂

∂ log ϵ
f̃ij(N, ε) = f̃ik(N, ε) P̃ G

kj(N, ε) ; −π

α

∂

∂ log ϵ
f̃AB(N, ε) = f̃AC(N, ε) P̃ I

CB(N, ε) .

(3.3)
Using these equations in the N = 1 case, and deriving eq. (3.1) with respect to ε we obtain:

0 = −π

α

∂

∂ log ϵ
f̃L−

0 L−
0

(1, ε) = 3
4 f̃L−

0 L−
0

(1, ε) (P̃ R
ff (1, ε) + P̃ V

ff (1, ε)) . (3.4)

Since the value of f̃L−
0 L−

0
(1, ε) depends on ε, therefore it is arbitrary, the above equation

is satisfied for every value of ε if

P̃ R
ff (1, ε) + P̃ V

ff (1, ε) = 0 .

We can now use eq. (2.9) to obtain:

P̃ R
ff (1, ε) + P̃ V

ff (1, ε) =
∫ 1

0
dz(P R

ff (z, ε) + P V
ff (z, ε)) = 2ε + O(ε2) → 0 . (3.5)

The sum rule is not exact, but leading terms in log ε and subleading constant terms cancel
with each other, while there is a remnant of (irrelevant) mass-suppressed terms.

We consider now the momentum conservation. Since z is the momentum fraction of the
daughter (final) particle, considering a parent (initial) neutrino and operating as we have
done in the case of the fermion number we have:

1 =
∑

j

∫ 1

0
dz zfjν(z, ε) = 2f̃L+

0 ν(2, ε) +
√

3f̃G+
0 ν(2, ε) = f̃L+

0 L+
0

(2, ε) +
√

3
2 f̃G+

0 L+
0

(2, ε) . (3.6)

Analogously, for a neutral gauge boson initial state we obtain:

1 =
∑

j

∫
dzzfjW3(z, ε) = 2f̃L+

0 W3
(2, ε) +

√
3f̃G+

0 W3
(2, ε) = 2√

3
f̃L+

0 G+
0

(2, ε) + f̃G+
0 G+

0
(2, ε) .

(3.7)
We now use eq. (2.17) in the 0+ channel:

0=−π

α

∂

∂logϵ

(
f̃L+

0 L+
0

(2,ε)+
√

3
2 f̃G+

0 L+
0

(2,ε)
)

= 3
4

[(
f̃L+

0 L+
0

(2,ε)+
√

3
2 f̃G+

0 L+
0

(2,ε)
)

(P̃ R
ff +P̃ V

ff )(2,ε)+
( 2√

3
f̃L+

0 G+
0

(2,ε)+f̃G+
0 G+

0
(2,ε)

)
P̃ R

gf (2,ε)
]
,

and considering again eqs. (3.6), (3.7) we obtain the sum rule that can be seen to be obeyed
by the splitting functions (2.9)–(2.11):

P̃ R
ff (2, ε) + P̃ V

ff (2, ε) + P̃ R
gf (2, ε) = O(ε) → 0 . (3.8)

Up to this point we have considered sum rules that the EWEEs have in common with
those of the QCD. Indeed, in the case of strong interactions, due to confinement, initial
states are color singlets, that correspond to the T = 0 evolution equations. In the case of
EW interactions instead, initial states have isospin quantum numbers and, therefore, further

– 6 –
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equations in the channels T = 1 and T = 2 are present. A consequence of this feature of
the EW equations is that the double logs terms of IR origin do not cancel. This effect has
been called “Bloch-Nordsieck (BN) violation” [15].

We now proceed to show that the EWEEs, together with quantum numbers conservation,
lead to sum rules that are absent in QCD, and are responsible ultimately for the necessity
of precise cutoffs in the splitting functions near z = 0.

The conservation of the third component of the weak isospin, T3, is related to the
T = 1, CP = − structure function. Taking a neutrino and a neutral gauge boson as initial
particles, we have:

t3
ν = 1

2 =
∑

i

t3
i f̃iν(1, ε) = 1

2(f̃L−
1 L−

1
(1, ε) +

√
2f̃G−

1 L−
1

(1, ε)) , (3.9)

t3
W+ = 1 =

∑
i

t3
i f̃iW+(1, ε) = 1√

2
(f̃L−

1 G−
1

(1, ε) +
√

2f̃G−
1 G−

1
(1, ε)) . (3.10)

We use the evolution equation (2.18) and the relations (3.9), (3.10) and we operate as
in the case of momentum conservation. We finally obtain:

3P̃ V
ff (1, ε) − P̃ R

ff (1, ε) + 4P̃ R
gf (1, ε) = 0 ⇒ P̃ R

ff (1, ε) = P̃ R
gf (1, ε) , (3.11)

1
2 P̃ R

fg(1, ε) + P̃ R
gg(1, ε) + 2P̃ V

gg(1, ε) = 0 . (3.12)

where the last step in eq. (3.11) has been obtained by using eq. (3.5).
Let us consider first the sum rule (3.11). If we use the standard expression for P R

gf , i.e.
that without the cut close to z = 0, i.e.

P R
gf (z) → 1 + (1 − z)2

z
, (3.13)

eq. (3.11) cannot be satisfied since P̃ R
ff (1, ε) is finite, while P̃ R

gf (1, ε) diverges due to the
singularity for z → 0 proportional to 1/z. If instead we impose a cutoff and use the expression
for P̃ R

gf (1, ε) of eq. (2.11), then the sum rule is satisfied.
The following points are worth to be emphasized.

• P̃ R
ff (1, ε) is divergent for z → 1 while P̃ R

gf (1, ε) is divergent for z → 0, therefore the sum
rule connects the (known) cutoffs of IR origin close to 1 with the (new) cutoffs close to
0.

• The value of the cutoff z > ε is precisely determined by the requirement of eq. (3.11).
With a different value like z > 2ε the sum rule would be violated.

• The presence of the cutoff is justified from a probabilistic point of view. We expect that
the probability for a fermion to become a fermion of momentum fraction z has to be
the same of the probability of becoming a gauge boson of momentum fraction 1 − z:
both are related to the same tree level diagram (see diagram (a) in figure 3).

Similar considerations hold for P R
gg, whose integral in z must satisfy eq. (3.12). This

is obtained by introducing the cutoff near z = 0 which has been highlighted by the square
brackets in eq. (2.10).

– 7 –
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Finally, we point out that the new splitting functions are Pgf and Pgg and they involve
the splitting into a gauge boson. Indeed, the need for a cutoff close to 0 arises because of
the 1/z singularity related to the IR dynamics of a soft gauge boson.

4 Quantitative results

In this section, we compare the PDFs obtained with the uncut splitting functions, i.e. the
standard ones without cutoff, with those obtained with our splitting functions which include
the cutoff.

In order to illustrate the different features characterizing the two types of PDFs, we
consider first the analytical expressions of the first order terms of a perturbative expansion
in powers of α:

fAB(x, ε) =
∞∑

i=0
αif

(i)
AB(x, ε) , (4.1)

where the zeroth order term is dictated by the initial conditions

f
(0)
AB(x, ε) = δABδ(1 − x) , (4.2)

which indicate that, in the no-emission case, the probability of finding a particle inside
itself is equal to the unity.

Using the perturbative expansion in eqs. (2.14)–(2.18), we obtain analytical results for
all first order terms of the PDFs. For instance, in the case of the (L+

0 , G+
0 ) channel we have

f
(1)
L+

0 ,G+
0

(x, ε) = 1
π

√
3

2

∫ 1

ε

dε′

ε′
P R

fg(x, ε′) , (4.3)

and we obtain two different results for our, cut (c), and standard, uncut (u), cases:

f
(1)c
G+

0 L+
0

(x, ε) = 1
π

√
3

2
1 + (1 − x)2

x
θ(x − ε) log x

ε
; f

(1)u
G+

0 L+
0

(x, ε) = 1
π

√
3

2
1 + (1 − x)2

x
log 1

ε
.

(4.4)
Already from these first order expressions we see that the differences between the PDFs

obtained with our splitting functions and the standard ones are relevant. Indeed, in the
standard case the behaviour close to 0 is ∝ 1/x and therefore divergent, while in our case
the PDF is ∝ (1/x) log(x/ε) therefore it is continuous and, because of the step function,
is 0 for 0 ≤ x ≤ ε. Physically, the latter situation is more plausible, as has already been
noticed in [16], since the fraction of energy Q of a massive gauge boson with mass M cannot
be smaller than M/Q.

In addition to the first order, we obtained the complete solutions by numerically solving
eqs. (2.14)–(2.18). We consider their evolution in the variable t ≡ log ε = log(µ/Q), which
ranges in the interval [tmin, 0] with tmin ≡ log(M/Q) < 0. We used a discrete two-dimensional
grid [tmin, 0] × [0, 1] in the (t, x)-plane to transform the differential equation (2.12) into
a finite-difference one. The z-integration occurring in eq. (2.13) has been carried out by
using an adaptive method which evaluates the exact values of the splitting functions and an
interpolation of the evolving PDFs. This procedure has the advantage of a better treatment
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ϵ = 0.01

Figure 2. PDFs of the T = 0 isospin channels. The full black lines show the results of our full
calculations where the new constraints on the P R

gg and P R
gf splitting functions have been considered.

The thin red lines show the results obtained by considering only the first order term in the α power
expansion of eq. (4.1). The results of the complete, numerical, calculation carried out without
considering the constrains in the splitting functions are shown by the blue dashed lines.

of the t-dependent cuts on the z-integration, since the boundaries of the z-integration are
almost never found on the discretized xi points. We implemented the t-evolution via a
4-point Runge-Kutta algorithm and increase the number of points in the grid until we reach
the required precision.

We studied the impact of the new constraints on the splitting functions by solving
eqs. (2.14)–(2.18) with and without the θ(x − ε) terms in the expressions (2.10) and (2.11)
of P R

gg and P R
gf . We carried out calculations for three different values of ε, specifically 0.01,

0.001, 0.0001. We present here only some selected results for ε = 0.01, since the physics
contents of the other cases is analogous.

We show in figure 2 the PDFs as a function of the momentum fraction x for the four
T = 0 isospin channels. The PDFs obtained with our splitting functions, f c, are indicated
by the black lines, while those obtained with the standard splitting functions, fu, by the
dashed blue lines. The thin red lines show the first order solution f (1)c in an expansion
in powers of α (see eq. (4.1)).

As expected, the differences between f c and fu are more significant at small values of
x. We emphasize these difference in the insets of the panels (a) and (b) where we show
the PDFs for x ≪ 1.
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(a) (b)

Figure 3. First order contribution to fGL (a) and second order contribution to fLL (b).

These results show that the difference between f c and fu is significant in the isospin
channels describing gauge bosons distributions like fG+

0 G+
0

and fG+
0 L+

0
, while in the channels

describing lepton distributions like fL+
0 G+

0
and fL+

0 L+
0

these differences are less pronounced.
The reason for this is that the new constraint are present in Pgf and Pgg and they involve the
splitting into a gauge boson. These splitting functions contribute at first order for a gauge
boson distribution but only at second order for a lepton distribution (see figure 3). For this
reason the effect of the new constraints is more pronounced for gauge bosons distributions.

For small x values, and precisely when | log x| ≫ 1, the DGLAP picture breaks down,
and one should resort to the BFKL picture instead [47–49]. Moreover, in the case of EW
interactions, the situation at small x is further complicated by the possible presence of
additional terms [50]. Nevertheless, we point out that the effect of the new constraints is
not limited to very small values of x: for example, for the complete solution, in the case
of fG+

0 L+
0

, at x = 0.4, fu is larger than f c by 25%; in this case | log x| is of order one and
no small x issues are present. This could surprise because our splitting functions differs
significantly from the standard ones only in the region x ≃ ε, and we choose very small
values of ε. However, one has to consider that in the EWEEs, the splitting functions are
integrated on all the possible values of ε′, i.e. from ε′ = ε to ε′ = 1, and this means that
the new cutoffs generate effects for every value of x.

We evaluated the PDFs in the physical channels by inverting the U matrix of eq. (2.6).
We show in figure 4 the results for four selected channels representative of the 49 ones. The
meaning of the lines is the same as in figure 2.

In the isospin representation we have pointed out that the gauge boson channels are
most sensitive to the new cutoffs, and this is reflected also in the physical channels.

The results of the panel (a) of figure 4 show that the new constraints modify the PDFs only
at very small values of x, as it is shown in the inset. This is a purely leptonic channel with an
electron producing a neutrino. In this case, the three curves almost overlap, except when x ≃ 0.

The situation is very different when, at least, one gauge boson channel appears, as it
is shown in the other panels of the figure. The relative difference between f c and fu at
x = 0.4 is about 22% in the W−e and W3ν channels, panels (b) and (c), and about 10%
in the W+W+ channels, panel (d).

In these channels the solution for the first order expansion term fails in describing
the correct behaviour of the complete solution. The difference in the W+, W+ channel is
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Figure 4. PDFs for four selected physical channels. The meaning of the lines is the same as in
figure 2.

remarkable even from the qualitative point of view. The first order solution is symmetric
around x = 0.5, while the full solution is clearly asymmetric with values at small x remarkably
larger than those around x = 1.

5 IR and UV evolution equations

The EWEEs were originally derived as IR equations [17, 18], i.e. equations where the varying
scale is an infrared parameter µ having the meaning of lower bound on transverse momentum
of the emitted particles. This approach was historically used to calculate double-logarithmic
(DL) contributions of IR origin, first calculated by Sudakov in QED [22–26], generalized
as a factorization theorem of photon bremsstrahlung for small k⊥ in high energy cross
sections [28–35] and then extended in QCD in [36] and EW [19–21, 37]. From an alternative
point of view, different works [39–46, 51] used UV evolution equations, where the varying
scale is a parameter q having the meaning of upper bound on the transverse momentum of
the emitted particles. It is not clear under which conditions the two approaches produce the
same results, i.e. the same PDFs. In the first part of this section we show that the solutions
of the UV and IR evolution equations coincide when the same splitting functions, including
the cutoffs, are consistently used in both approaches.
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A

Figure 5. IR (left) and UV (right) evolution equations. The dashed lines represent particles belonging
to the final state.

In the EW case we have to consider splitting functions depending not only on the
momentum fraction z but also on the transverse momentum k⊥: PAB(z, k⊥). In the IR
equation the contribution of the emitted particle with lower momentum is factorized (figure 5,
left side); calling µ the lower cutoff on this momentum we have:

µ
∂

∂µ
f IR

AB(x; µ, Q) = −α

π
f IR

AC ⊗ PCB(µ) ; f IR(x, µ = Q) = f0(x) . (5.1)

In the case of UV equations instead, the contribution of the hardest emitted particle is
factorized (figure 5, right side). We call q the upper bound on the transverse momentum
and obtain:

q
∂

∂q
fUV

AB (x; M, q) = α

π
PAC(q) ⊗ fUV

CB ; fUV (x, q = M) = f0(x) . (5.2)

Note that, apart from a trivial sign difference due to the fact that the f ’s are ultimately
functions of µ/q, eqs. (5.1) and (5.2) are truly different because of the different running
of the indices. In other words, by considering f and P as matrices, in the IR case the
matrix product f · P appears in the right-hand side of the equations, while in the UV case
P · f appears; therefore there is no guarantee that the equations will produce the same
solutions. In this section we prove that, provided that certain conditions are fulfilled, the
solutions of (5.1) and (5.2) coincide.

The formal solution, in the IR case, is given by:

f IR(µ, Q) = f0 ⊗ K
{

exp
[

α

π
P

]}
(µ, Q) , (5.3)

having defined:

K
{

exp
[

α

π
P

]}
ij

(µ, q) = δ(1 − z)δij + α

π

∫ q

µ
Pij(k)dk

k
(5.4)

+
∑
n≥2

(
α

π

)n ∫
µ<kn<···<k1<q

(
Πi

dki

ki

)
Pii1(k1) ⊗ · · · ⊗ Pinj(kn)

Eq. (5.3) is indeed solution of eq. (5.1), since the only variable depending on µ in the ordered
product of eq. (5.4) is kn. When we derive with respect to µ we obtain (minus) the value of
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the integrand calculated for kn = µ and this gives the solution of (5.1). It is then sufficient
to implement the initial condition f0.

A similar reasoning applies to the UV case. In this case, only k1 depends on q and we have:

fUV (M, q) = K
{

exp
[

α

π
P

]}
(M, q) ⊗ f0 . (5.5)

Since we eventually set µ = M in (5.3) and q = Q in (5.5), the IR case and UV case differ only
because of a different placement of the f0 function. However, since we have f0 = δ(1 − z)δAB

and since δ(1 − z) is the identity for convolutions and δAB is the identity in the P matrices
space, the two solutions are equal:

f IR(M, Q) = fUV (M, Q) = K
{

exp
[

α

π
P

]}
(M, Q) . (5.6)

This establishes the equivalence between the IR and the UV approaches.
We remark that eqs. (5.1) and (5.2) are equivalent, i.e. they produce the same solutions

for the PDFs, only when the same splitting functions are used, albeit with different arguments:
µ in the IR case and q in the UV one. If the kernels PAB do not depend on µ(q) at all,
the equivalence between IR and UV approach is straightforward on the basis of the proof
given above. This is the case in many applications of QCD (DGLAP) equations, where
only the “+” distribution, defined as

P +(x) = lim
ε→0

(P V (x, ε) + P R(x, ε)) (5.7)

appears.1
However, in the EW case treated here, there is a cutoff for x < 1 − µ/Q in PAB(z, µ) for

the IR equations. This cutoff is well justified in terms of kinematics and because it reproduces
the correct IR properties of the theory, i.e. the eikonal approximation [17]. Then, in the
ultraviolet equations, a cutoff at x < 1 − q/Q must appear in PAB(z, q). This might sound
trivial, but the point is that in the literature different cutoffs appear. For instance in ref [39]
the cutoff is rather z < 1 − M/q, leading, in general, to PDFs that may differ from those
we obtain. This possible difference, due to the upper cutoff on z, comes on top of the more
important difference due to the lower cutoff on z that we have analysed in previous sections.
Even though a detailed comparison with ref. [39] of the impact of the upper cutoff is beyond
the scope of this work, we now show that, at least in the case when radiation is forbidden
and only virtual corrections are present, our results (PDFs) coincide.

From eqs. (2.14)–(2.18) we see that in the limit P R
ij → 0 the four diagonal leptonic PDFs

fL+
0 L+

0
, fL−

0 L−
0

, fL+
1 L+

1
, fL−

1 L−
1

share the same equation and the same initial condition, producing
the same solution that we call ∆(IR)

ff (x, µ
Q). This function is called the (virtual) Sudakov form

factor and is related to the infrared properties of the Standard Model. Analogous situation
holds for the gauge bosons case, where fG+

0 G+
0

, fG−
1 G−

1
, fG+

2 G+
2

all become equal to the Sudakov
form factor ∆(IR)

gg (x, µ
Q) in the purely virtual case. First of all let us show explicitly that the

1In chapter 1.3.2 of [27] it was shown that, in the case where the kernels do not depend on the evolution
variable, the UV and the IR approaches in QCD produce the same PDFs.
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same purely virtual Sudakov Form Factors are generated in our IR evolution equations and
in the UV evolution equations with the cutoff defined in [39]. We obtain:

−π

α
µ

∂

∂µ
∆(IR)

ff

(
x,

µ

Q

)
= Cf P V

ff (µ) ∆(IR)
ff

(
x,

µ

Q

)
, Cf = 3

4 , P V
ff (µ) = 3

2 + 2 log Q

µ
(5.8)

−π

α
µ

∂

∂µ
∆(IR)

gg

(
x,

µ

Q

)
= Cg P V

gg(µ) ∆(IR)
gg

(
x,

µ

Q

)
, Cg = 2, P V

gg(µ) = 5
3 + 2 log Q

µ
(5.9)

From [39] the Sudakov form factors ∆(UV ) can be read off directly; they satisfy:

π

α
q

∂

∂q
∆(UV )

ff

(
x,

M

q

)
= Cf P V

ff (q) ∆(UV )
ff

(
x,

M

q

)
, Cf = 3

4 , P V
ff (q) = 3

2 −2 log q

M
(5.10)

π

α
q

∂

∂q
∆(UV )

gg

(
x,

M

q

)
= Cg P V

gg(q) ∆(UV )
gg

(
x,

M

q

)
, Cg = 2, P V

gg(q) = 5
3 −2 log q

M
(5.11)

Once we integrate in the range M ≤ µ, q ≤ Q the final solutions are

∆(IR)
ff

(
x,

M

Q

)
= ∆(UV )

ff

(
x,

M

Q

)
= exp

[
α Cf

π

(
log2 Q

M
− 3

2 log Q

M

)]
, (5.12)

∆(IR)
gg

(
x,

M

Q

)
= ∆(UV )

gg

(
x,

M

Q

)
= exp

[
−α Cg

π

(
log2 Q

M
− 5

3 log Q

M

)]
(5.13)

We have shown that at the leading Sudakov form factor level our results and those of ref. [39]
coincide; these results also coincide with the analogous ones in ref. [40]. Understanding more
in detail the (possible) differences between the two approaches is an important point; however
it goes beyond the scope of the present work. For the moment let us stress an important point.
Regardless of the type of approach (IR or UV) and of the upper cut on z, the arguments
that lead to the presence of a lower cutoff, which has an important impact on the PDFs as
we have seen, hold just the same. This is because the sum rules (3.11), (3.12) only depend
on isospin conservation and not on the type of approach.

6 Summary, conclusions and perspectives

At c.m. energies much greater than the weak scale, energy growing Electroweak Radiative
corrections can be taken into account by defining Parton Distribution Functions (PDFs)
that obey Electroweak Evolution Equations (EWEEs), in analogy with DGLAP in QCD.
In this work we propose to modify EWEEs with respect to what has been done until now
in the literature and we analyse the impact on PDFs of these modifications. In particular,
electroweak interactions are characterized by isospin 1 evolution equations that are absent
in the corresponding isospin 0 QCD (DGLAP) and QED equations. Isospin conservation,
related to these isospin 1 equations, requires to modify the splitting functions (that are the
kernels of EWEEs) by adding suitable cutoffs. The solutions (PDFs) obtained with these
new kernels differ significantly from those obtained with the standard kernels used in the
literature until now (see figure 4). We think that all future works on the subject will have
to introduce the new kernels we propose.

In this work we have also addressed the issue of comparing the results obtained by using
a IR approach (ours) with previous results obtained using a UV approach, as is customary
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in the literature. We have shown that UV equations indeed produce the same PDFs as IR
equations, but only if a careful choice of the cutoffs in the splitting functions is made. Finally,
let us note that work has still to be done in order to provide theoretical results that can be
compared with the experimental measurements. First, QCD and QED interactions have to
be added and then the full particle spectrum of the Standard Model has to be considered,
while we chose to consider only a subset. Then, the case of hadronic colliders have to be
included, while we consider only leptonic initial states. Finally, for small momentum fraction
x, additional terms proportional to log x should be added to the equations [50].

The modifications described here will be particularly relevant if a 100 TeV hadronic
collider [52] and/or a TeV scale muon collider [53] will see the light.
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