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Abstract

In this paper we investigate the spectra and the ergodic properties of the multiplication
operators and the convolution operators acting on the Schwartz space S(R) of rapidly
decreasing functions, i.e., operators of the form My, : S(R) — S(R), f — hf, and
Cr: S(R) - S(R), f — T« f.Precisely, we determine their spectra and characterize
when those operators are power bounded and mean ergodic.

Keywords Rapidly decreasing functions - Multiplication operator - Convolution
operator - Spectra - Power bounded operator - Mean ergodic operator

Mathematics Subject Classification Primary 47B38 - 46E10 - 46F05; Secondary
47A10 - 47A35

1 Introduction

Convolution operators, as well as multiplication operators, have been intensively stud-
ied in spaces of functions or distributions, from different point of views. For instance,
the problem to characterize when the multiplication operator acting on smooth func-
tions has closed range has attracted the attention of several authors (see [8] and the
references therein) and is still open. The problem is equivalent to the well-known divi-
sion problem for distributions posed by L. Schwartz [23, Chap. 5, Section 5]. However,
it seems that power boundedness and (uniform) mean ergodicity of multiplication and
convolution operators on the Schwartz space S(R") of rapidly decreasing functions
had not been investigated.
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The Schwartz space S(R") of rapidly decreasing functions is the most important
space of classical analysis besides the space of smooth functions and the space of real
analytic functions. The multipliers of S (RN are the functions &7 € C*(RM) such
that the multiplication operator Mj,: S(RY) — S(RY), f > hf, is well defined
and continuous. The space of all multipliers is denoted by Oy (R"). The convolu-
tors of S(RY) are the distributions 7 € S’(R") such that the convolution operator
Cr: S(RY) - SRY), f > Txf,is well defined and continuous. The space of all
convolutors is denoted by O’C (RN). In [8] the authors characterized the multipliers
h € Oy (R) such that My, : S(R) — S(R) has closed range. We also mention that in
the last years the study of the properties, like closed range and dynamical behaviour,
of the composition operators acting on the Schwartz space S(R) has been considered
by several authors (see [10—-13] for examples and the references therein).

In this paper we study the spectra and the ergodic properties of the multiplication
and the convolution operators defined in the Schwartz space S(R) of one variable
rapidly decreasing functions. We determine their spectra and characterize when those
operators are power bounded and (uniformly) mean ergodic. In particular, we show
that the spectra of the multiplication operator M, (the convolution operator Cr, resp.)
acting either on S(R) or on O (R) (on O¢ (R), the strong dual of O (R), resp.) coin-
cide, Theorems 3.4 and 3.6. We prove that the multiplication operator M), is power
bounded (uniformly mean ergodic, resp.) when it acts on S(R) if and only if it is power
bounded (uniformly mean ergodic, resp.) when it acts on Oy (R), Theorems 4.3 and
4.4. These conditions are expressed in terms of the multiplier /. Similar characteriza-
tions are also given in the case of convolution operators. The properties of the Fourier
transform allow to reduce the proofs to the multiplication operator case. Precisely, we
show that the convolution operator Cr is power bounded (uniformly mean ergodic,
resp.) when it acts on S(R) if and only if it is power bounded (uniformly mean ergodic,
resp.) when it acts on O¢ (R), Propositions 4.7 and 4.8. These conditions are expressed
in terms of the convolutor 7.

We also present characterizations of the power boundedness and the (uniform) mean
ergodicity of the multiplication operators and the convolution operators when those
act on the space C*°(R), Propositions 4.1 and 4.10.

The paper ends with an “Appendix”, where we collect some general results on the
spectrum of operators acting on Fréchet spaces.

We remark that the description of the spectra and the characterizations of the power
boundedness and the mean ergodicity are valid for the several variables case with
the same proofs. We have considered only the one dimensional case for the sake of
simplicity in computations of derivatives to describe the spectra.

2 Preliminaries

In this section, we first recall some general notation and results on operators in locally
convex spaces.

Let E be a locally convex Hausdorff space (briefly, IcHs) and let £L(E) denote
the space of all continuous linear operators from E into itself. Given T € L(E), the
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resolvent set of T is defined by
p(T):={1LeC: Al —T: E — E isbijectiveand (A — T)~' € L(E)}

and the spectrum of T is defined by o (T) := C\ p(T). For . € p(T) we define
R(A, T) := (A\I — T)~! which is called the resolvent operator of T at . The point
spectrum is defined by

0,(T) :={r € C: A1 — T is not injective}.

Whenever A, u € p(T) we have the resolvent identity R(A, T) — R(n, T) = (u —
MR\, T)R(w, T). Unlike for Banach spaces, it may happens that p(7') = ¢ or that
p(T)isnotopenin C (see, f.i., [7]). This is the reason for which many authors consider
the subset p*(T') of p(T') consisting of all . € C for which there exists § > 0 such
that B(A,8) :={u € C: |u — A| < 8} € p(T) and the set {R(x, T): u € B(A, )}
is equicontinuous in L(E). If E is a Fréchet space, then it suffices that this set is
bounded in L;(E), where L;(E) denotes L(E) endowed with the strong operator
topology, i.e., the topology of uniform convergence on the finite subsets of E. The
advantange of p*(T'), whenever it is not empty, is that it is open and the resolvent map
R: X — R(A,T) is holomorphic from p*(T) into L;(E) (see, f.i., [5, Propositione
3.4]), where L, (E) denotes L(E) endowed with the topology of uniform convergence
on the bounded subsets of E. Define o*(T) := C \ p*(T), which is a closed set
containing o (7). In [5, Remark 3.5(vi)] an example of an operator T € L(E), with
E a Fréchet space, is presented such that o (T) C o*(T).

For further basic properties of the resolvent set and the resolvent map we refer to
[24,25] for operators on locally convex spaces.

An operator T € L(E), with E a IcHs, is called power bounded if {T"},cN is an
equicontinuous subset of L(E).

The Cesaro means of an operators T € L(E), with E a IcHs, are defined by

1 n
T[n] = ; Z Tm, neN.
m=1

The operator T is called mean ergodic (resp. uniformly mean ergodic) if {T{,)}nen 18
a convergent sequence in Ls(E) (resp. in L,(E)). The Cesaro means of T satisfy the
following identities

™ n—1
- =T~

Tin-11, n=>2.

So, it is clear that TT" — 0in Ly(E) as n — oo, whenever T is mean ergodic.
Furthemore, if E is a barrelled IcHs space and T € L(FE) is mean ergodic, the operator
P :=1im,_, o T}, in L;(E) is a projection on E satisfying Im P = ker(/ — T') and
ker P =Im (I — T') with

X=Im({UI-T)®ker(I —T).
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If E is a Montel IcHs, i.e., a barrelled IcHs such that every bounded set is relatively
compact, then the operator T is uniformly mean ergodic whenever it is mean ergodic.
Furthemore, in reflexive Fréchet spaces (in Montel Fréchet spaces, resp.) every power
bounded operator is necessarily mean ergodic (uniformly mean ergodic, resp.) [1,
Corollary 2.7, Proposition 2.9]. The converse is not true in general, see, f.i., [15, §6].

For further results on mean ergodic operators we refer to [19,26]. For recent results
on mean ergodic operators in IcHs’ we refer to [1,2,4-6,22], for example, and the
references therein.

We now recall the necessary definitions and some basic properties of the space
S(R) and the spaces Oy (R) and O¢ (R).

The space S(R) of rapidly decreasing functions on R is defined by

< 400 for every n € Ny}.

The space S(R) is a nuclear Fréchet space and hence, it is Montel and reflexive.
Accordingly, its strong dual §'(R) is a nuclear IcHs. In particular, S’ (R) is a barrelled
and bornological IcHs.

The space Oy (R) of slowly increasing functions on R is given by

Op(R) =N U2, {f € CPMR): | flmn i=sup sup (1+xH)7"fD(x)] < oo},

n=1
xeR0<i<m

where O"(R) := {f € C®R): | flmn := SUPyer SUPg<j < (1 + xH) " fD ()] <
oo}, endowed with the norm | - |, », is a Banach space for any m, n € N. The space
On (R), endowed with its natural Ic-topology, i.e., Op (R) = proj m ind n O R,
is a projective limit of complete (LB)-spaces. In particular, Oy (R) is a bornological
nuclear IcHs (hence, Montel and reflexive), see [14]. Its strong dual O}, (R) is also
a bornological nuclear IcHs. Furthemore, a fundamental system of continuous norms
on Oy (R) is given by

Pmw(f) =sup sup ()| fP@)], feOu®),

xeR0<i<m

where v € S(R) and m € N (see, f.i., [9]). Since (Oy;(R), -) is an algebra, we have
then for every m € N and v € S(R) that there exist vy, vo € S(R) and m’ € N with
m’ > m such that

pm,v(fg) = pm’,vl(f)pm’,vz(g)v fv 8 € OM(R) (21)
The space O¢ (R) of very slowly increasing functions on R is given by

Oc(R) = U2, N2, {f € CPM): | flmn i=sup sup (1+xH)7"fDx)| < oo).

xeR0<i<m

The space Oc(R), endowed with its natural lc-topology, i.e., Oc(R) = ind x
proj m O (R),is acomplete (LF)-space. In particular, Oc (IR) is abornological nuclear
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IcHs (hence, Montel and reflexive), see [14]. Its strong dual (’)’C (R) is the space of all
convolutors of S(R). In particular, O’C (R) is also a bornological nuclear IcHs.

The space Oy (R) is the space of multipliers of S(R) and its strong dual S’ (R). So,
for any fixed i € Oy (R), the multiplication operator My : S(R) - S(R), f +— hf,
is continuous and hence, its transpose M), := M, : S'(R) — S'(R), S = hS, is also
continuous. Furthemore, for any & € Oy (R), the multiplication operator Mj, (M,
resp.) acts continuosly from Oy (R) into itself (from O}, (R) into itself, resp.).

The space O (R) is the space of convolutors of S(R) and its strong dual S’(R).
Precisely, if T € (’)/C (R) and f € S(R), then the convolution T f defined by

(Txf)(x) := (Ty, to f), x €R,

is a function of S(R), where (7, f)(y) := f(x +y) forx, y € Rand f(y) = f(—y)
for y € R. While, if T € O, (R) and S € S'(R), then the convolution 7'*S defined
by

(T*S)(f) = (S, Txf), feS®),

belongs to S’ (R), where T denotes the distribution defined by ¢ — (YV", ) = (T, Q).
We point out that in case S belongs to (’)’C (R), the convolution T*S € O’C (R) too.

For any fixed T € O (R), the convolution operator Cr: S(R) — S(R) (the
convolution operator C7: O¢c(R) — O¢(R),resp.), f +— T f,isacontinuous linear
operator from S(R) into itself (from O¢ (R) into itself, resp.) and hence, its transpose
Cr = C;: S'R) - S'R) (Cr := C;: OL(R) — Op(R), resp.), S > TxS, is
also a continuous linear operator from S’ (R) into itself (from (’)/C (R) into itself, resp.).

Through the paper, we consider the following notation for the Fourier transform of
a function f € L'(R):

£ = F(NE) = /R e fx)dx, £ CR

The Fourier transform F: S(R) — S(R) is a topological isomorphism from S(R)
onto itself, that can be extended in the usual way to S’ (R) ,i.e. F(T)(f) := (T, f) for
every f € S(R) and T € S§’'(R). Furthemore, the Fourier transfom F is a topological
isomorphism from the space Oé; (R) onto the space Oy (R).

For further properties on the spaces Oy (R) and O¢ (R) and the Fourier transform
we refer, for instance, to [9,14,16,23] (see also [20,21] and the references therein).

3 Spectra of multiplication and convolution operators on S(R)

The aim of this section is to study the spectra of multiplication operators My, for
h € Op(R), and convolution operators Cr, for T € (’)’C (R), when acting on the
space S(R).

To this target, we begin by stating and proving some auxiliary results.
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744 A. A. Albanese, C. Mele

Lemma3.1 Let h € Oy (R) such that O ¢ Tmh. Then 5 € Oy (R).

Proof According to the Faa Bruno formula, we have for every x € R and n € Ny that

Ly e N A N L N I

where the sum is extended over all (ki, k2, ..., k;) € Njj such that ky + 2k + ... +
nk, =nandky+ky+...+k, =k (hence, ki1 +kxy+...+k, <n).Since0 ¢ Im A, it
clearly follows that % € C*®(R). So, it remains to show that % € Oy (R). To this end,
let choose d > 0 such that d < min{1, d(0, Im %)} and fix [ € N. Since h € Oy (R)
there exist C > 1 and j € N such that

WD) <C+x?/, xeR, i=01,...,1

So, we have forevery x € Randn =0, 1, ...,/ that
1™ n! k! CK(1 + x?)ik
7] )= Z k1 (11K (ONk 3
h ki'ko! .. ky! (X)) (AHkr@2hka . (n!)kn
c" ~ nlk! 1
jn
= dntl I+ Z kilka!. . ky! ANk @Dk L (n)kn
Cc'D <
< W(l +xHil,
where D := max{)_ T !k';!!]f.!.kn! ok (2!)22”.("%, :n=0,...,[} <+o0.Sincel € Nis
arbitrary, this implies that } € Oy (R). O

Proposition 3.2 Let h € Oy (R). Then the following properties are equivalent.

(1) My: S(R) - S(R) is surjective.

2) My: Oy (R) — Opn(R) is surjective.

(3) 0 ¢ Imhand § € Oy (R).

(4) There exist j € N and ¢ > 0 such that |h(x)| > mfor every x € R.
Proof (3)=(1) and (3)=(2) are obviuos.

(1)=(3). Since My, is surjective, its range Im M, = S(R) is clearly a closed
subspace of S(R). Thus, M}, is also injective. So, M}, is a topological isomorphism
from S(R) onto itself.

Suppose that 0 € Im £, i.e., that there exists xo € R such that 2 (xg) = 0. Then the
functions g € S(R) that do not vanish at xp are not in the range of the operator M,.
This is a contradiction.

The fact that 0 ¢ Im A clearly implies % € C*°(R). Since My, is bijective (actually,
it suffices the surjectivity), we have also that % g € S(R) for every g € S(R). This

means that % € Oy (R).
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(2)=(3). Since Mj, is surjective and the function 1(x) := 1 for x € R belongs to
Oy (R), there exists f € Oy (R) such that My, f = 1, i.e., f(x)h(x) = 1 for every
x € R. This necessarily implies that 0 ¢ Im 4 and f = L. Accordingly, % € Oy (R).

(3)=(4). By assumption the function % € Opy (R). Therefore, for [ = 0 there exist
C > 0O and j € N such that for every x € R

R 2y
’h(x)‘SC(l—i-x ).

Accordingly, we get for every x € R that

1 1
I 2 &

(4)=(@3). Since |h(x)| > (1+ for every x € R and some ¢ > O and j € N,

necessarily O ¢ Im h. So, it remains to show that % € Oy (R). To this end, we set

2)/

fx) = ﬁ for x € R. Hence, according to the Faa Bruno formula, we have for
every n € Nand x € R that

kn
M (yy — n! (—D*k! (iﬂ(x))"l <h”(x)>k2 A (x)
S (x)_Zkllkgl...kn!(/’l(X))k"'l 1 o !

where the sum is extended over all (k1, k2, ..., k,) € Ng such that k1 +2k> + ...+
nk, =nandky+k>)+...+k, =k (hence, ki +ko+...+k, <n).But,h € Oy (R).
So, for a fixed [ € N there exist C > 0 and s € N such that

WD) <C1+x%*, xeR,i=0,1,...,1L

Therefore, it follows for every x € Randn =0, 1, ...,/ that
lk! ; CH(1 + x2)*
(n) < n KD (] 4 2)i kD)
Pl = Z ki'ko! ..kn. I+ ) (IHkL2hk2 . (n))kn
c\"! o nlk! 1
<= 1 2\n(s+j)+j
- <c> (147 Zk]!kg!...kn!(1!)k1(2!)"2...(n!)kn

1+1
< (—) D(1 + xS+
C

where D := max{)_ kl']?Z"k'kn' (1')k1(2|)k2 o = 0,1,...,1} < +4oo (here, with-

out loss of generality, we have assumed that C > 1 and 0 < ¢ < 1). Since/ € N is
arbitrary, this means that % = f e Oy). m]

Remark 3.3 We observe that the condition 0 ¢ Im /& does not imply that M), is surjec-
tive. Indeed, consider the function h(x) = e_)‘2 for x € R. Then 0 ¢ Imh =]0, 1].
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746 A. A. Albanese, C. Mele

But, Mj,: S(R) — S(R) is not surjective. Otherwise, by Lemma 3.2 the function

ﬁ = ¢*, for x € R, should belong to Oy (R). This is false.

We are ready to study the spectra of the multiplication operators acting on S(R).

Theorem 3.4 Let h € Op(R). Then the spectra of the multiplication operator M},
acting either on S(R) or on Oy (R) are given by:

Imh Co(My) CImh, 6*(My) =Imh, 3.D
op(Mp) ={reC: h~' (%) has a non empty interior} C Im . 3.2)

Proof We first consider the case My : S(R) — S(R). To achieve the result, it
suffices to show that Imh)¢ < p(M;) S (Imh)C. So, let A ¢ Imh and let
0 <2 < min{l,d(k,m)}. Then d(B(A,d),Imh) > d, thereby implying for
every 4 € B(A,d) that 0 ¢ Im (u — h). So, by Lemma 3.1 for every u € B(A,d)
the function # € Oy (R) and hence, M L € L(S(R)). Since (ul — Mh)M L=

I = M . (ul — Mp) for u € B(A,d), it follows that B(A,d) C p(Mp). It remalns

to show that the set {M iy € B(A, w)} is equicontinuous in L(S(R)). To do this,

we recall that & € OM(R) and hence, for a fixed / € N there exist C > l and j € N
such that

W) <Ccl+x%/, xeR,i=0,1,...,1.

Now, by proceeding as in the proof of Lemma 3.1, we obtain for every x € R,
n=20,1,...,land u € B()\, d) that

!

(rw) =
u — h(x)

< +xHI, (3.3)

where D > 0 is a constant independent of w and . Applying (3.3), we obtain for
every u € B(A,d),g e SR)andn =0, ...,[, x € R that

2.1 W~ (n 1 =D 20,6
(14x2) (M%_hg(x)) sZ(i) (u—h(x)) (142215 ()]
i=0
; : 20)'D
< Z( )d,ﬂ(l xH) U )) < (d,il lgll¢j+ 1y
and hence,

C)'D
[ 18|, = =gl (3.4)
Since [ € N is arbitrary, from (3.4) it follows that the set {M 1 : u € B(X, pn)}

/l—

is equicontinuous in £(S(R)). So, we have established that (Im Tmh)¢ C p*(My) C
p(Mp).
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Let A € p(Mp,). Then the operator M, _y, is a topological isomorphism from S(R)
onto itself and hence, it is surjective. By Proposition 3.2 it follows that 0 ¢ Im (A — h)
and hence A ¢ Im h. So, we have established that p(M}) € (Im h)“.

Now, from (Imh)¢ € p*(My) € p(My) < (Imh)° if follows that Imh C
o (M) € o*(My) € Imh. Since o*(Mj,) is closed, this yields that o*(M},) = Im h
and hence, p*(M}) = (Im h)°.

Finally, suppose that (A — Mp,)g = 0 for some A € C and g € S(R) with g # 0.
Since g # 0, there exists an open subset U of R such that g(x) # 0 whenever x € U.
So, h(x) = A forevery x € U, thereby implying that #~! (1) has a non empty interior.
Conversely, if 27! (1) has a non empty interior, then any function g € D(U), g # 0,
with U the interior set of A~! (1), clearly satisfies (\] — M;,)g = 0,i.e., A € op(Mp).
This completes the proof.

The proof for the case My, : Oy (R) — Oy (R) follows by arguing as above with
some obvious changes. We only prove that (Im h)¢ C p*(Mp), i.e., that o*(M}) C
Imh. So, let A ¢ Imh and let 0 < 2d < min{l,d(x, ImA)}. Then for a fixed
[ € N, the same arguments above show that inequality (3.3) is valid for every x € R,
n=20,...,0and u € B(\,d). Applying (3.3), we obtain for every u € B(A,d),
geO0yR,veSM andn =0,...,[,x € Rthat

) " /n 1 (n—i)
=2 (,) (u —h(x))

i=0
l
< Z( ) 1+ g = S by o),

lv(x)g® (x)]

(411, ¢00)

where w(x) := (1 + x2)/'v(x) for x € R and hence, w € S(R). Therefore, we get
for every u € B(X, d) and g € Oy (R) that

C)'D
pl,v<M ! g)s i PLw(@).

n—h

Since ! € Nand v € S(R) are arbitrary, this means that the set {M .y € B(A,d)}
is equicontinuous in £(Oy (R)). O

Remark 3.5 The description of o (My,) given in (3.1) cannot be improved. Indeed,
for the function h(x) := e for x € R we have 0 ¢ Imh as Imh =]0, 1]. But,
0 ¢ p(Mp), see Remark 3.3. So, by Theorem 3. 4 o*(My) = o(My) = [0, 1].

On the other hand, for the function k(x) = 1 + —— forx € RwehavethatQ ¢ Imk =
10, 1] and k( y = =14x% e Oy®). By Proposition 3.2 the operator My : S(R) —
S(R) is surjective and hence, My: S(R) — S(R) is also injective. Thus, My is a
topological isomorphism from S(R) onto itself and so 0 € p(My). So, by Theorem
3.4 we get that o (My) =]0, 1] ; o*(My) = [0, 1].

As a consequence of Theorem 3.4 we can determine the spectra of the convolu-
tion operators C7 acting on S(R) (and on O¢(R)) via the properties of the Fourier
transform.
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748 A. A. Albanese, C. Mele

Theorem 3.6 Let T € O (R). Then the spectra of the convolution operator C acting
either on S(R) or on O¢ (R) are given by:

Im F(T) Co(Cy) CImF(T), o*(Cr) = Im F(T). 3.5)

Moreover, the point spectrum of the convolution operator Ct acting on S(R) is given
by:

o,(Cr) ={reC: (]—"(T))*l()u) has a non empty interior} € Im F(7). (3.6)

4 Ergodic properties of multiplication and convolution operators on
S(R)

The aim of this section is to investigate the ergodic properties of the multiplication
operators Mp,, for h € Oy (R), and the convolution operators C7, for T € (’)2j (R),
when acting on the space S(R).

So, we first observe that if f € S(R) (or f € Oy (R)) andn € N,

M f(x)=h"(x)f(x), xelR.

Therefore, if f € S(R) (or f € Op(R)) and n € N, the n-th Cesaro mean of My, is
given by

1 n 1 n n
(M) f() = =3 M f() =~ 3 h" () f(x) = % Do W), xeR.
m=1 m=1 m=1

If we set A, = %ZZ:] h™ for n € N, then (Mp)[n1f = hya f forany f € S(R)
(or f € Ou(R)).

We point out that if 2 € C®(R), then M, € L(C®(R)) and M} f = h"f
(Mp)i1f = himy f) for f € C*°(R) and n € N. In this case the following result
holds.

Proposition 4.1 Let h € C*°(R). Then the following properties are satisfied.

1) Mp: C®(R) — C*®(R) is power bounded if and only if {h"},eN is a bounded
sequence in C°(R).

(2) My: C®(R) - C*(R) is mean ergodic if and only if {h[,)}nen is a convergent
sequence in C°(R).

Proof (1) If M}, is power bounded, then the sequence {M; 1},en = {A"},eN is neces-
sarily bounded in C*°(R).

Conversely, fixed a compact subset K of R and an integer m € N, there exists
Ck.m > 0 such that

sup sup sup [(A"(x)P| < Ck .

neNxekK 0<i<m
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Spectra and ergodic properties of multiplication... 749

This implies for every n € N that

sup sup |[(M} )@ (x)] < sup sup Z(;)I(h”(x»ijllf(j)(X)l

xeK 0<i<m xeK 0<i<m =0

<2"Cgmsup sup |fO)l.

xeK 0<i<m

Since K and m are arbitrary, this means that the operator M), is power bounded.
(2) follows in a similar way. O

Proposition 4.1 suggests that similar characterizations of the power boundedness
and of the mean ergodicity might hold for multiplication operators acting on S(R).
To see this, we begin by stating and proving the following fact.

Lemma4.2 Let {h,}pen S O (R). If {Mp, }nen S L(S(R)) is an equicontinuous
sequence, then the sequence {hy},cN is bounded in Oy (R).

Proof Since S(R) is continuously included in C*°(R), the assumption implies that
{Mp, flnen is a bounded subset of C*°(R) whenever f € S(R). This necessarily
yields that {A, },cN is a bounded sequence in C*°(R). Indeed, fixed a compact subset
K of R and choosen f € D(R) such that f(x) = 1 for every x € K, we obtain for
every n € Nand m € N that

sup sup |(h, ()P = sup sup |(h,(x)fx)P| < C,

xeK 0<i<m xeK 0<i<m

where C := sup, oy SUP,cx SUPo<;<m [(hy(x) f(x)D| < 400 as f € S(R). Since
K is an arbitrary compact subset of R, this means that {/,},cn is a bounded sequence
of C*°(R).

The sequence {h,},en is also bounded in Oy (R). Otherwise, there exists m € N
such that the sequence {/,},cn is not bounded in U2 {f € C®MR): |flnr =
SUP, R SUPo<; <, (1 + xz)_k|f(i)(x)| < 00}. So, for every k € N we have

sup |Anlm,kx = oo.
neN

Consequently, taking into account that {4, },cn is a bounded sequence of C*°(RR), we
can find a sequence {x;}reny € R with |xg| > |xx—1| + 2, for k > 2, an increasing

sequence {ny}xen of positive integers and a sequence {ix}xen < {0, 1, ..., m} such
that _

(14 x) K (hy) P (x)| > k, k eN. 4.1
Since the set {0, 1, ..., m} is finite, we can assume without loss of generality (indeed,

it suffices to pass to a subsequence) that (4.1) is valid for every k € N with the same
indexiin {0, 1, ..., m}. Now, let p € D(R) such that supp o C]—2,2[and p(x) = 1
for x € [—1, 1]. Then the function
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o]

p(x)zzw x € R,

N
= (I +xp)k

belongs to S(R), see, f.i., [16, Proposition 4, Chap. 4 §11]. Since {M},}seN 1S
an equicontinuous sequence in £(S(R)), the sequence {Mp, plren = {hnplnen is
bounded in S(R). This implies that

sup sup |(h,1(x),0(x))(")| =:C < 0. “4.2)
neNxeR
But, by (4.1) we get
; (hn ) (x) (hn)® (i)
sup sup [(hy (0)p ()Pl =sup sup |t > sup | —m | =
keN [x—x|<1 keN [x—x¢|<1 | (1 +x;) keN| (1 4+xp)
This is a contradiction with (4.2). m]

The main results of this section are the following.

Theorem 4.3 Let h € Oy (R). Then the following properties are equivalent.

(1) My, is power bounded on S (R).
(1) My, is power bounded on S'(R).
(2) My, is power bounded on Oy (R).
2y My, is power bounded on O, (R).
(3) The sequence {h"},cn is bounded in Oy (R).

Proof (1)<(1)’ follows from [18, (6), p.138], after having observed that M, = M}/,
and S(R) is a reflexive IcHs.

(2)<(2)’ follows by the same arguments above.

(1)=(2). Since Mj, is power bounded on S(R), i.e., {M,’Z},,eN = {Mpn}peny C
L(S(R)) is an equicontinuous sequence, we can apply Lemma 4.2 to conclude that
{h"},en is a bounded sequence in Oy (R).

Since {h"},en is a bounded sequence in Oy (R), for each v € S(R) and m € N
there exists Cy, , > O such that

sup pm,v(hn) =< Cm,v- (4.3)
neN

This together with (2.1) clearly implies that {M}'},cn is an equicontinuous set in
L(Opy(R)), i.e., My, is power bounded when it acting on Oy (R). Indeed, fixed v €
S(R) and m € N and choosen v, v, € S(R) and m’ € N as in (2.1), we have for
every n € Nand f € Oy (R) that

pm,v(M;:f) = pm,v(hnf) = pm’,vl(hn)pm’,vz(f) = Cm’,vlpm’,vz(f)-
(2)=(3). The operator M), is power bounded on Oy (R). Accordingly, for the

constant function 1 which belongs to Oy (IR), the sequence {M}/1},cn = {A"},en is
bounded in Oy (R).
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(3)=(1). Let m € N be fixed. Since {h"}, <N is a bounded sequence in Oy (R) and
Oum (R) is the projective limit of the regular (LB)-spaces {U72  {f € CC(R): | flix =
SUP, R SUPg<; < (1 + xz)_k|f(i)(x)| < oo}}ieN , it is also a bounded sequence in
UR {f € COM): | flmk = SUPyer SUPg<i < (1 +x1)7¥| f@(x)| < oo} and hence,
there exists k € N such that

sup |A" | =: C < oo.
neN

Therefore, we obtain for every n € N and f € S(R) that

M} fllm = sup sup (1 +x3)™ (A" (x) f )P

xeR0<i<m
i

<sup sup (I+x%)" ) <;)|(h”(X))(”f("‘j)(X)l

xeR0<i<m =0

<sup sup (14x%)"H3" (;.)(1 + )R )P D )]

xeR0<i<m =0
< 2"Cl fllm+k-
This means that M}, is power bounded on S(R). O

Theorem 4.4 Let h € Oy (R). Then the following properties are equivalent.

(1) My, is (uniformly) mean ergodic on S(R).
(1) My, is (uniformly) mean ergodic on S'(R).
(2) My, is (uniformly) mean ergodic on Oy (R).
(2 My, is (uniformly) mean ergodic on O’ (R).
(3) The sequence {hiy)}nen converges to some g in Oy (R).

Proof (1)<(1)’ follows from [3, Lemma 2.1], after having observed that M; = M ;l
and S(R) is a reflexive IcHs (and hence, S’ (R) is a barrelled reflexive 1cHs).
(2)<(2)’ follows as above.
We now establish the equivalence between properties (2) and (3).
(2)=(3). The operator M}, is mean ergodic on Oy (R). Accordingly, there exists
P € L(Opy(R)) suchthat (M), — Pin L(Op(R)) asn — oo. Since the constant
function 1 belongs to O (R), it follows that (My,) ;1 = hp, — P1=: gin Oy (R).
(3)=(2). Fixedm € Nand v € S(R) and choosen vy, v € S(R) and m’ € N as in
(2.1), we obtain for every f € Oy (R) and n € N that

pm,v((Mh)[n]f - fe) = pm,v(h[n]f - fe) = pm,v((h[n] -2
= Pm’ v, (h[n] - g)pm’,vz (f) (44)

Since hp,) — gin Oy (R) andm € N, v € S(R) and f € Op(R) are arbitrary, from
(4.4) it follows that (Mp)[,)f — fgin Oy (R) as n — oo. This means that M), is

@ Springer



752 A. A. Albanese, C. Mele

mean ergodic on Oy (R) and hence, uniformly mean ergodic, being Oy, (R) a Montel
IcHs.

Actually, from (4.4) it directly follows that M) is uniformly mean ergodic on
Opm(R). Indeed, for a fixed bounded subset B of Oy (R), we obtain by (4.4) for
every n € N that

sup pm,v((Mh)[n]f - fe&) = Pm’ vy (h[n] — g) sup pm’,vz(f)v
feB feB

where sup rcp Py v, (f) < 00 and ppy v, (hin) — ) — O asn — oo.
3)=(1). Let f € S(R) and m € N be fixed. Then there exists v € S(R) such that

sup (1 +xH)™ D (x)] < v(x) (4.5)

O<j=m

for every x € R (see [9, Lemma 3.6, p. 127]). Thus, we obtain for every n € N that

My f — &f llm = sup sup (1 + x5 |[(hpny(x) — g(x)) f ()17

xeR0<i<m
i

<sup sup (I+x")" )" (;>|<h[n]<x> — gDV I

xeRO<i<m =0

<2"sup sup v(x)|(hpy(x) — 8NP = puy(pn) — 8)-

xeR0<i<m

Since h,; — g in Oy (R) and m € N is arbitrary, this implies that (M) f — gf
in S(R) as n — oo. As f € S(R) is also arbitary, we can conclude that M}, is mean
ergodic when it acts on S(R) and hence, uniformly mean ergodic, being S(R) a Montel
Fréchet space.

To complete the proof, it remains to show that (1)=(2).

(1)=(2). Since S(R) is continuously included in C*°(R), the assumption implies
that (Mp) 1 f — PfinC*®(R)too,asn — oo, whenever f € S(R). This necessarily
implies that {A,]},en converges to some g in C*°(R). Indeed, fixed a compact subset
K of R and choosen f € D(R) such that f(x) = 1 for every x € K, we have for
every [, m,n € N that

sup sup | () (x) = Apn ()P = sup sup [[(Apuy(x) — Ay ()) £ ()P

xeK 0<i<l| xeK 0<i<l|

< sup sup |(hpm(x) f(x) — PP+ sup sup [(hpg(x) f(x) — Pf(x) D]
xeK 0<i<l xeK 0<i<l

=:a, +ay,. 4.6)

Since (Mp)in1f = hpyf — Pf in C*®(R) as n — oo, we get that a,, + a, — 0 as
m,n — oo.Hence, it follows via (4.6) that sup, . g supg—; <; |(hn) (X)—=hpm) ()| —
Oasm,n — 00.So, as K is an arbitrary compact subset of R, this shows that {hn)tnen
is a Cauchy sequence in C*°(R). Accordingly, i[,; — g in C*°(R) as n — oo.
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The facts that (Mp) f = hpf = Pf and (Mp)n1 f = hpgf — gf in C°(R)
asn — oo for every f € S(R), imply that gf = Pf € S(R) for every f € S(R).
Therefore, g € Oy (R).

By Lemma 4.2 the assumption also implies that {/[;]},eN is a bounded sequence
in Oy (R). Indeed, {(Mp)nitnen = {Mp,, }nen is an equicontinuous sequence in
L(S(R)), being a convergent sequence in L;(S(R)). Accordingly, for each v € S(R)
and m € N there exists C,, , > 0 such that

Sup pv(hin) < Cip. 4.7
neN

This together with (2.1) clearly implies that {(M})[n]}neN 1S an equicontinuous set
in £(Opr(R)). Indeed, fixed v € S(R) and m € N and choosen vy, v € S(R) and
m’ € Nasin (2.1), we have for every n € Nand f € Oy (R) that

Pm,v((Mh)[n]f) = Pm,u(h[n]f) = P’ (h[n])pm/,vz(f) =< Cm/,vlpm’,vz(f)-

Since {(Mp)a]}nen is an equicontinuous set in £(Oy(R)) and (Mp)1f — Pf(=
gf) in S(R) as n — oo (and hence in Oy (R)), and S(R) is a dense subspace of
Ou(R), we deduce that (M), f — Pf(= gf) in Oy (R) as n — oo, for every
f € Oy R). So, My, is mean ergodic on Oy (R) and hence, uniformly mean ergodic,
being Oy (R) a Montel IcHs. O

We now point out the following fact which could be useful for applications.

Proposition4.5 Let h € Oy (R) with h # 1. If the multiplication operator
My : SR) — SRR) is mean ergodic, then ||h|lo = sup,cr |A(x)] < 1 and h=(1)
is an empty subset of R. Moreover, the operator P = lim,— oo (Mp)[n) = 0 and
SMR) =Im M;_p.

Proof The assumption implies that MTZ — 01in £;(S(R)) and hence, by Proposition
5.1, we have o (M) C D. On the other hand, by Theorem 3.4, Imh C o (Mp,). So, it
follows that ||A]]g < 1.

Suppose that =1 (1) # @. Since ||A||op < 1 and

n 1-h(x)>

| R
h[n]m:;Zh (x) = " G 1

m=1

{ h() 1=h"(x) ¢ h(x) # 1

for every n € N, it follows that

lim /’l[n] (x) =

n—oo

0, if h(x) # 1,
1, if h(x) =1

This is a contradiction with the fact that by Theorem 4.4 the sequence {f[,}}nen

converges to some function g in Oy (R), where g is obviuosly a continuous function
on R.
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Since 21 (1) is an empty subset of R, the sequence {h[n]}nen necessarily converges
to 0 in Oy (R) and hence, P = 0. Accordingly, S(R) =Im (I — M) =Im M|_;. O

In view of Proposition 4.5 we can now collect some examples.

Example 4.6 For afixed n € N, we observe that the function f,(x) = ﬁ, x #—1
belongs to C*°(R \ {—1}) and

(=Din(n+1)...(n+ )
(1 4 x)nti

) = , JeN, x#-1, (4.8)

as it is easy to verify.

(a) Consider the function h(x) : for x € R, with |a| > 2. If we set

+ Trgeix ®
g(x) := ae'* for x € R, then h" = fn o g for every n € N. Therefore, by the Faa
Bruno formula and (4.8), we have for every x € R and j, n € N that

ne WG il =D+ 1. (n+k) alileiix
(" ()Y _Zkl!...kj! (1 + aeix)n+k (1!)k1(2!)k2.”(j!)kj’

where k = ki +kx + ...+ kj and ki + 2k + ... + jk; = j. Accordingly, we have
forevery x € Rand j,n € N that

T j! nn+1)...(n+j) jal/
|(h (X)) J | = Z kll. ] .kj! (|a| _ 1)n+k (l!)kl (21)/(2 . (j!)kf
.n(n—i—l)...(n-i-j)
! (la] = D"

)

being C; := la]/ i
N that

4 k/, Qo (2')k2 g . It follows for every v € S(R) and /, n €

nn+1)...(n+1)
pru(h") < Cllvllo Gal =1y < CDllvllo,

where C :=sup;_ ;Cj < ooand D := sup,cy % < 00. This means

that {h"}, < is a bounded sequence of Oy, (R)
(b) Consider the function h(x) := T + —— for x € R, with |a|] < 1. If we set

g(x) := x2 for x € R, then k" = a" f, o g for every n € N. Therefore, by the Faa

Bruno formula and (4.8) taking into account that gV (x) =0forj > 2, we get for
every x € Rand j,n € N that

(h" ()Y = a" Qx)kr.

Z ' =D+ 1) ... (n+k)
kilka (14 x2)ntk

Accordingly, we have for every x € R and j, n € N that

0 )] < Jap 2D ) p T axfh,

(1 +x2)n 11ko!

@ Springer



Spectra and ergodic properties of multiplication... 755

If weset g (x) =) %|2x|kl for x € R, it follows for every /, n € N that

pry(h") < Cla|"n(n+1)...(n +1) <CD,
q’—(x)|v(x)| < oo and D := su n
,,,,, l (1+X2)" T PreN |a| n(n +
1)...(n 4+ 1) < oco. This means that the sequence {h"},cn is bounded in Oy (R).
(c) In a similar way one shows that the sequence of the n-th powers of the following
functions is bounded in Oy (R): h(x) := ae‘xz, k(x) := ae™® and s(x) :=
x € R, with |a| < 1.

where C := sup,cg sup;—g

X
1+x2° for

We now pass to investigate the ergodic properties of the convolution operators
acting on S(R).

But first, we need to observe the following facts.
We first recall for every n € N, f € S(R) and § € O (R) that

FCH)) =FI)'f. FCHS) = F(T)'F(S). (4.9)
This means that
FolCh = M;’L-(T) oF (FoCj = M}(T) oF, resp.), neN.
Therefore, we have for every n € N that
F o (Cr)m = Mga)m o F (F o (Cr)m = (Mzm))n o F, resp.).
If we set
*T)? := T*T, T)" := T*(T)""! (forn > 2)

(the definition is well-posed because T, T e O’C(R) and hence (xT)" =
Tx(T)"" 1 e O¢(R)), then we have for every n € N that

F(T)") = F(T)",
and hence, by (4.9) that
F(Cp ) = F(TY'F©6) = F(T)") = Cp(8) = <T)",

being § the delta of Dirac. Since (x7)" € O’C (R) for every n € N, we also get for
every n € N that the distribution («T)p;) := 1 3" | (*T)" € O (R) and that

Cr)m ) = D).

So, as a consequence of Theorems 4.3 and 4.4 we can characterize the ergodic proper-
ties of the convolution operators C7 acting on S(R) and on O¢ (R) via the properties of
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the Fourier transform and applying [18, (6), p.138] in the case of power boundedness
([3, Lemma 2.1] in the case of the mean ergodicity).

Proposition 4.7 Let T € O (R). Then the following properties are equivalent.

(1) Cr is power bounded on S(R).
(1) Cr is power bounded on S’ (R).
(2) Cr is power bounded on O¢ (R).
(2)" Cr is power bounded on O (R).
(3) The sequence {(xT)"},en is bounded in O (R).

Proposition 4.8 Let T € O (R). Then the following properties are equivalent.

(1) Cr is (uniformly) mean ergodic on S(R).
(1) Cr is (uniformly) mean ergodic on S’ (R).
(2) Cr is (uniformly) mean ergodic on O¢ (R).
(2)" Cr is (uniformly) mean ergodic on O (R).
(3) The sequence {(*T)n]}neN is convergent in (’)’C (R).

Remark4.9 Let T € (’)’C(R). If C7: SR) — S(R) is either power bounded or
mean ergodic, then ||F(T)||lp < | and (.7-'(T))*1(1) = . Moreover, (xT)[,; — 0
in O, (R) as n — oo. This easily follows from Proposition 4.5 thanks to the identity
FoCr = Mg )oF,being F atopological isomorphism from O’C (R) onto Oy (R).

Finally, we point out that a similar characterization of the power boundedness and
mean ergodicity is valid also for convolution operators acting on the strong dual £’ (R)
of C*°(R). In this case, the result does not follow as a consequence of Propositon
4.10 because the Fourier transform is not well posed on C*°(R). But, a direct proof
is needed. To state and prove the result, we observe that the same arguments as above
show thatif T € &£'(R), then (xT)" is well-posed and belongs to £'(R) for any n € N.
Hence, (xT)p, is also well posed and belongs to £'(R) for any n € N.

Proposition 4.10 Let T € E'(R). Then the following properties are satisfied.

1) Cr: &'R) — &'(R) is power bounded if and only if {(xT)"},eN is a bounded
sequence of &' (R).

(2) Cr: E'R) = E'(R) is mean ergodic if and only if {(*T)n]}nen is a convergent
sequence of £'(R).

Proof (1) If Cr is power bounded, then the sequence {Cf.(8)}eny = {(*T)"}pen is
necessarily bounded in £'(R).
Conversely, there exist a compact subset K of R, m € N and Ck ;;, > 0 such that

sup sup  [((+(T)", f)| < Ck.m,
nENfGUK’m

where Ug m = {f € CPMR): || fllk,m = SUp,cx SUPo<j<p | /P ()| < 1}. So, it
follows for every i, n € N and f € C*°(R) that

(T )P @) = {*T)", (tx )HD) < Cromll (@ )Pk, x €R.
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Therefore, for a fixed compact subset H of R and / € N, this yields for every n € N
and f € C*°(R) that

sup sup |(((T)"xf)P(x)] < Cxm sup  sup |fO(2).
xeH 0<i<l zeH—K 0<i<Il+m

Since H and [ € N are arbitrary, this implies that the set B* := {(xT)"xf: f € B}
is bounded in C*°(R) whenever B is a bounded subset of C*°(R). Accordingly, for a
fixed bounded subset B of C°°(RR) there exists a bounded subset B* of C*°(R) such
that every n € Nand S € £'(R) we have

sup [(C2(S), )] = sup(S, D) f)| < sup |(S. g)l,
feB feB geB*

i.e., Cr is power bounded.

(2) If Cr is mean ergodic, then the sequence {(C7)[4](8)}nen = {(*T)[n]}neN is
convergent in &' (R).

Conversely, there exist Ty € &'(R) (say, Tp = 0), a compact subset K of R and
m € N such that

D)l = sup (D), )] — 0.

fGUK,m

So, arguing as in part (1), it follows for every i, n € Nand f € C*°(R) that

(D HP @) < 1Dl Wl @ HOlkm, x €R.

Therefore, for a fixed compact subset H of R and / € N, this yields for every n € N
and f € C*°(R) that

sup sup [((*D)pup* )P < Dl sup sup [P (4.10)

xeH 0<i<l zeH—K 0<i<Il+m

Since H and !/ € N are arbitrary, this impies that (*T"),,j* f — 0in C*°(R) asn — oo
whenever f € C®°(R).

Now, let S € £'(R). Then there exist a compact subset H of R,/ € Nand C > 0
such that

I(S, £) < C sup sup | (x)] (4.11)
xeH 0<i<l|

for every f € C°°(R). So, combining (4.10) with (4.11) we obtain for every n € N
and f € C®°(R) that

HCDW(S), £l = (S, D )] < CHDmllk e sup sup  [fP(2)].
zeH—K 0<i<l+m

So, for a fixed bounded subset B of C*°(R), it follows for every n € N that

sup [{(Cr)m1($), ) < CNGD) il sup sup — sup [P (2)].
feB feBzeH—K 0<i<l+m
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Since Sup ¢ p SUP. ey~ k SUPQ<; </ m | D (z)| < oo and NTully ,, — Oasn —
o0, this implies that Sup rep {(CT)(S), f)I = 0asn — oo. But B is arbitrary.
Then we can conclude that (Cr)[,; — 0in &'(R) asn — oo, i.e., Cr is mean ergodic.
O

Remark 4.11 Since Oy (R) is continuously included in C*°(R) and £’(RR) is continu-
ously included in O (R), the results of this section clearly imply that:

(1) Leth € Oy (R). If My : S(R) - S(R) is power bounded (mean ergodic, resp.),
then My, : C*°(R) — C*(R) is power bounded (mean ergodic, resp.).

(2) LetT € &'(R). If Cr: &'(R) — &'(R) is power bounded (mean ergodic, resp.),
then C7: 8’ (R) — S’(R) is power bounded (mean ergodic, resp.).

We point out that the proof of part (1) is also given in the course of the proof of
Theorems 4.3 and 4.4.
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Appendix

We establish here some general results on the spectrum of continuous linear operators
acting on Fréchet spaces.

n

Proposition 5.1 Let E be a Fréchet space and T € L(E). If there exists lim,,_, oo TT =
0 in Ly(E), then o(T) < D.

Proof The assumption 7g-lim,_ » TTn = Oimplies that the set {TT” : n € N}isequicon-
tinuousin E.If { p;} ;en is an increasing sequence of continuous seminorms generating
the lc-topology of E, then for each j € N there exist j/ € Nwith j/ > jandc; > 0
such that

Tn
Pi < nx> < ¢jpj () 5.1)

forevery x € E andn € N.
For every j € Nand x € E we define

T"x
qj(x) := max {pj(x),suppj < )} 5.2)
neN n
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Thus, each g; is a seminorm on £ and g; < g4 for every j € N, as it is easy to
show. On the other hand, from (5.1) it follows that

pj(x) =qj(x) <cjpj(x) (5.3)
forevery j € Nand x € E.Therefore, {¢;} e is an increasing sequence of continuous

seminorms generating the lc-topology of E. Moreover, we have for every j,n € N
and x € E that

T"x T”x Tn+mx
qj = max { p; , SuUp p; <2q;(x), (5.4)
n n meN nm

as 2nm > n + m for all n, m € N. This yields for every j,n € Nand x € E that

q;(T"x) < 2nq;j(x)
and hence,

sup ¢;(T"x) < 2n.
qj(x)<1

Letting n — 00, it follows for every j € N that

limsup ,/ sup ¢;(T"x) < lim V2n = 1. (5.5)
00 4;(0)<1 n— 00

Now, we fix A € C with |A] > 1 and choose 0 < ¢ < 1 so that c|A| > 1.
Consequently, for a fixed j € N, we have by (5.5) that

limsup ,/ sup ¢q;(T"x) <1 <c|A|.
n—00 \/g;(x)=1

So, there exists ng € N such that for every x € X and n > ng we have
qj(T"x) < c"|A"gj(x).
This implies for every x € N and n > ng that

q; (Z imx) < (Z c’”) q;(x),

m=n

where Y>> ™ — O forn — coas 0 < ¢ < 1. Accordingly, as j € N is arbitrary,
the series ZZ‘;O i—,'; is convergent in L (E) and so, the operator R), := % Zf,ozo i—: €
L(E). In particular, Ry(Al —T) = (M —T)R, = 1.Thus, > € p(T)and R(\, T) =

R;. O
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Corollary 5.2 Let E be a Fréchet space and T € L(E). If T is power bounded, then
o(T) CD.

Proof The assumptionon 7T clearly implies that there exists lim,_ 00 T — = 0in Ly(E).
So, the result follows from Proposition 5.1. O

Remark 5.3 We point out that Proposition 5.1 is a consequence of [ 10, Proposition 4.4].
Since the proof given here does not depend on the open mapping theorem, the result
can be generalized to other contexts. Indeed, arguing as in the proof of Proposition
5.1 we can show that:

Let E be a sequentially complete barrelled IcHs and T € L(E). If there exists
lim, o0 L= = in £,(E), then o/(T) € D.

The next aim is to extend in the setting of separable Fréchet spaces a result of
Jamison [17] about the size of o},(T') N T with T" a power bounded operator. In order
to do this, we observe that if 7 is a power bounded operator acting on a Fréchet
space E, then there exists an increasing sequence {g,} jen of continuous seminorms
generating the Ic-topology of E such that for every j,n € Nand x € E we have

q;j(T"x) < q;(x). (5.6)

Indeed, if {p;} jen is an increasing sequence of continuous seminorms generating the
lc-topology of E, then for each j € N there exist j € Nwith j* > j and ¢; > 0 such
that

pi(T"x) <cjpj(x)
for every x € E and n € N. If we set

qj(x) = sup p;(T"x)

neNp

for every j € Nand x € E, then {g;}en is an increasing sequence of continuous
seminorms generating the Ic-topology of E for which (5.6) is satisfied.

Lemma5.4 Let E be a Fréchet space and T € L(E) be a power bounded operator
satisfying (5.6). Let A1, A2 € op(T) N'T be independent. Then, if x1 and x; are
eigenvectors for Ay and Ay respectively, with qj(x1) = qj(x2) = 1 for some j € N,
we have q;(x1 — x2) > 1.

Proof We consider the quotient space X /kerq; and endow it with the canonical
quotient norm §; defined by

4j(Qjx) :=inf{g;(y): x —y € Kerg;}, ¢;(Q;x) = q;(x),

where Q;: E — K denotes the canonical quotient map. Then (Ke g0 4 ]) is a

erq

normed space. The operator T induces a continuous linear operator T acting on g—=— erq
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via (5.6) such that

QjoT =TjoQ; and éj(Tj)?) Séj()?) for all X € .
€rq;

Therefore, T; can be continuously extended on the completion E; of <%q,-’ q j>,

denoted again by T, for which Q; o T = T; o O continues to hold.
We now observe that

Ti(Qjxi) = Qj(Tx;) = Qj(hixi) = 24 Qj(xi), i=1,2,
and that, setting X; = Q(x;) fori = 1,2, we have
GiGn=1, i=12
By [17, Lemma 2] we may conclude ¢;(x1 — x2) = ¢j (X1 — X2) > 1. O

Proposition 5.5 Let E be a separable Fréchet space and T € L(E) be a power
bounded operator. Then o, (T) N'T is at most countable.

Proof Let {g;};en be a fundamental system of seminorms satisfying (5.6).

We set I' := ,(T) N T and suppose that I' is uncountable. By [17, Lemma 1] I’
contains an uncountable set A such that any two distinct elements of A are independent.
For each A € A we select an eigenvector x;, corresponding to the eigenvalue A and we
set D := {x,: A € A}. Of course, D is uncountable. If for each j € N we define

Dj:={xeD:qjkx)#0},

then D = UjcnD;. Moreover, we may suppose without loss of generality for every
J € N that each element of D; satisfies g;(x) = 1.

Since D is uncountable, there exists jo € N such that D j; is uncountable. We now
setUj, :={x € E: gjy(x) < 1}and Uy ,(r) :==x+rUj,forx € Eandr > 0. Then
any two distint elements of {Uy_j, (%) : x € Dj,} are disjoint sets by Lemma 5.4. This
clearly contradicts the separability of E. Thus I" is at most countable. O
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