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Abstract
With advances in modern worlds technology, huge datasets that show dependencies in space as well as in time occur

frequently in practice. As an example, several monitoring stations at different geographical locations track hourly con-

centration measurements of a number of air pollutants for several years. Such a dataset contains thousands of multivariate

observations, thus, proper statistical analysis needs to account for dependencies in space and time between and among the

different monitored variables. To simplify the consequent multivariate spatio-temporal statistical analysis it might be of

interest to detect linear transformations of the original observations that result in straightforward interpretative, spatio-

temporally uncorrelated processes that are also highly likely to have a real physical meaning. Blind source separation

(BSS) represents a statistical methodology which has the aim to recover so-called latent processes, that exactly meet the

former requirements. BSS was already successfully used in sole temporal and sole spatial applications with great success,

but, it was not yet introduced for the spatio-temporal case. In this contribution, a reasonable and innovative generalization

of BSS for multivariate space-time random fields (stBSS), under second-order stationarity, is proposed, together with two

space-time extensions of the well-known algorithms for multiple unknown signals extraction (stAMUSE) and the second-

order blind identification (stSOBI) which solve the formulated problem. Furthermore, symmetry and separability properties

of the model are elaborated and connections to the space-time linear model of coregionalization and to the classical

principal component analysis are drawn. Finally, the usefulness of the new methods is shown in a thorough simulation

study and on a real environmental application.
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1 Introduction

In environmental sciences, datasets are usually generated

by tracking certain variables of interest at different spatial

locations over time. Scientists measure soil features or

pollutants at different monitoring points over a territory

and throughout a certain span of time, as in De Iaco et al.

(2019); Ding et al. (2021); Wang et al. (2021) to name

some examples. The analysis of such spatio-temporal data

needs to account for possible dependence in space and time

for each measured variable but also in-between variables.

This is usually achieved by assuming that the dataset is

generated by a multivariate stochastic random field indexed

in space and time, i.e.: fxðs; tÞ ¼ ðx1ðs; tÞ; . . .; xpðs; tÞÞ> :

ðs; tÞ 2 S � T � Rdþ1g where p is the dimension of xðs; tÞ,
ðs; tÞ is a spatio-temporal location, S � Rd is the spatial

domain and T � R is the temporal domain. Given the

spatio-temporal random field x, the corresponding first and
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second-order moments, assumed to be finite, are for all

ðs; tÞ; ðs0; t0Þ 2 S � T

Eðxðs; tÞÞ ¼ ðEðx1ðs; tÞÞ; . . .; Eðxpðs; tÞÞÞ>: ð1Þ

Covðxðs; tÞ; xðs0; t0ÞÞ ¼ ½Cðxiðs; tÞ; xjðs0; t0ÞÞ�i;j¼1;...;p; ð2Þ

where Cðxiðs; tÞ; xjðs0; t0ÞÞ ¼ Eðxiðs; tÞxjðs0; t0ÞÞ � Eðxiðs; tÞÞ
Eðxjðs0; t0ÞÞ:

Statistical modelling of these quantities is a challenging

task as the mean is a p-dimensional vector-valued func-

tional and the covariance is a ðp� pÞ matrix-valued func-

tional, both allowing a wide variety of spatio-temporal

behaviors throughout the considered domain. To simplify

this task one usually assumes that the stochastic random

field is stationary in a weak sense, yielding that it has a

constant mean over the whole spatio-temporal domain and

that the covariance exhibits invariance under translation of

the coordinates. These assumptions allow to focus on

modelling the covariance which is only dependent on the

separation vector between the spatio-temporal sample

locations ðs; tÞ and ðs0; t0Þ, i.e.,
Covðxðs; tÞ; xðs0; t0ÞÞ ¼ Cðs� s0; t � t0Þ ¼ Cðh; sÞ; ð3Þ

where h is the spatial lag vector and s is the temporal lag. If

additionally the covariance is only dependent on the norm

of the spatial lag h ¼ khk then it is said to be (spatially)

isotropic.

Similar to the sole spatial case, the extension from

univariate to multivariate covariance modelling increases

complexity and introduces further challenges as for

example reviewed in Genton and Kleiber (2015). In its

essence, the task of modeling a real valued covariance

functional is made more difficult as now a full ðp� pÞ
matrix-valued functional needs to be modeled. One of the

available approaches is based on building multivariate

models from univariate space-time models. This approach

was originally introduced in geostatistics and is known as

linear model of coregionalization (LMC) (Journel and

Huijbregts 1978; Goulard and Voltz 1992). Extensions of

the LMC to spatio-temporal data (ST-LMC) have been

already considered in the literature (De Iaco et al. 2003;

Choi et al. 2009; De Iaco et al. 2013a). The ST-LMC is

defined by

Cðh; sÞ ¼
Xr

k¼1

TkCkðh; sÞ; ð4Þ

where Tk are positive-definite coregionalization matrices

and Ckðh; sÞ are univariate (usually parametric) spatio-

temporal covariance functions. Various classes of ST-

LMCs can be obtained by choosing a specific model for the

univariate covariance function Ckðh; sÞ among the families

available in the literature. For example, in De Iaco et al.

(2003); Choi et al. (2009) the basic structures were

modeled through the use of the product-sum form (De Iaco

et al. 2001b), whose expression is given by

Cðh; s; k1; k2; k3Þ ¼ k1C
tðsÞCspðhÞ þ k2C

spðhÞ þ k3C
tðsÞ;

ð5Þ

where CtðsÞ and CspðhÞ are valid parametric covariance

functions representing the temporal and spatial parts.

k1 [ 0; k2 � 0; and k3 � 0 are the weights, respectively, for

the product, sole spatial and sole temporal part, ensuring

the admissibility of the covariance model. This parametric

spatio-temporal covariance model is constructed by con-

sidering the fact that products and sums of covariance

models, defined on different factor spaces, are still

admissible covariance models on a higher dimensional

space (De Iaco et al. 2011). Moreover, it can describe the

spatio-temporal behavior of a space-time random field

which is formed by a product of two independent spatial

and temporal non-zero mean random fields (Cappello et al.

2019). Note that the temporal part might be chosen as any

covariance model originating from time series analysis,

e.g.: an exponential form yielded by an autoregressive

process of order one (AR(1)). In similar fashion, the spatial

part might equal well-studied spatial covariance models

such as the Matérn class (Guttorp and Gneiting 2006). It is

worth to underline that given k2 ¼ k3 ¼ 0, the above form

reduces to so-called separable covariance class. Another

family of popular stationary univariate covariance models,

introduced by Gneiting (2002), has the following form

Cðh; sÞ ¼ r2wðjsj2Þ�d=2/
khk2

wðjsj2Þ

 !
; ð6Þ

where wðzÞ; z� 0, is a positive function with completely

monotone derivative, /ðzÞ; z� 0, is a completely monotone

function and r2 is the variance parameter. As detailed in

Gneiting (2002), this class is characterized by a space-time

interaction parameter, however the functions w and / can

be identified through the inspection of the temporal and the

spatial marginal dependence structure of the random field.

The above two classes of models are only two popular

examples, however there is an abundance of other possi-

bilities in the literature, a recent overview of models and

general challenges regarding spatio-temporal modeling and

testing is given by De Iaco et al. (2013b); Montero et al.

(2015); Cappello et al. (2018); Porcu et al. (2021).

Closely related to the class of models in Eq. (4) is the

fact that the covariance structure results from certain forms

of random processes. In particular, the ST-LMC can be

thought of as a linear-combination of k ¼ 1; . . .; r p-variate

random processes where each entry of the k-th process has

Ckðh; sÞ as spatio-temporal covariance function. These

processes are often called latent or factors and the analyst is

interested in estimating these as they often represent
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physical processes that act at different spatio-temporal

scales. Generally, analysts often aim to find transforma-

tions of the data that reflect the underlying nature, for

simplicity such transformations are often linear. A promi-

nent example is the principal component analysis (PCA)

(Jolliffe 1986) which is often applied to spatio-temporal

data. Bauer-Marschallinger et al. (2013) analyze soil

moisture data of Australia collected over space and time

with PCA and find components that can be associated with

certain climate modes as well as De Iaco et al. (2001a) who

extract two total air pollution indicators from a multivariate

space-time dataset. A general overview of the use of PCA

for data with spatial and temporal dependencies is provided

by Demsar et al. (2013). However, PCA is disadvantageous

as its simplicity (orthogonal directions that maximize

variance) leads to the issue that it does not account for

spatio-temporal dependencies. Although there are efforts in

the literature to introduce spatial or spatio-temporal infor-

mation into the PCA methodology (Jombart et al. 2008;

Harris et al. 2015) the drawbacks of orthogonal loadings

and the fact that PCA does not rely on a specific statistical

model still remain. A more sophisticated way of recovering

meaningful latent processes is given by the framework of

blind source separation (BSS) which is most known for the

identically and independently distributed (iid) data where it

is referred to as independent component analysis (ICA)

(Comon and Jutten 2010). The simplest BSS model is

based on the location-scatter model (Nordhausen and Oja

2018)

x ¼ Azþm: ð7Þ

In this model x and z are the p-variate observable and latent

random vectors and the deterministic part is formed by A,

the ðp� pÞ mixing matrix, and m, the p-dimensional

location vector. BSS aims to find a matrix that inverses the

transformation given by A (and m) and recover the latent

process z which is meant to show the underlying physical

processes of the data. BSS is used with great success on

time series data as outlined by Pan et al. (2021) and it is

also introduced for spatial data by Nordhausen et al.

(2015). In both cases BSS is advantageous over the clas-

sical PCA for three reasons: (i) the interpretation of the

BSS result follows the same simple but effective loadings-

scores principle, (ii) the BSS loadings are not restricted to

be orthogonal, and (iii) in contrast to PCA the BSS meth-

ods do not rely only on marginal second-order moments

but on temporal/spatial dependencies specific to the struc-

ture of the data.

The combination of the framework of BSS with the

space-time geostatistical approach provides tools for data

exploration that extract meaningful and interpretative fea-

tures of the space-time data at hand. This is very useful in a

variety of applications, such as the ones in the environ-

mental and Earth sciences, meteorology, hydrology, since

multivariate modeling problems in space-time can be

treated as several univariate spatio-temporal issues with a

remarkable simplification from a computational point of

view. In particular, the novelty of this paper can be rec-

ognized especially in the generalization of BSS for multi-

variate space-time random fields (stBSS) and in the two

space-time extensions of the algorithms for multiple

unknown signals extraction (stAMUSE) and second-order

blind identification (stSOBI), where specific theoretical and

practical aspects related to a joint space-time context are

discussed. In addition, the concepts of symmetry and sep-

arability of the model are introduced and the connections to

the space-time linear model of coregionalization and to the

classical principal component analysis are drawn. It is also

worth pointing out that the proposed generalization diver-

ges from the existing BSS methods for space-time data

(Douglas et al. 2007; Ashino et al. 2009; de Jesús Nuño

Ayón et al. 2018). All these methods work in a very dif-

ferent setting with respect to the one considered hereafter.

Indeed, in the signal processing community, where BSS

originates, the components of z, in Model (7), correspond

to sensors placed at different spatial locations which are

observed over time, and therefore they refer then to the

dependence between the components of z as spatial

dependence. Coordinate information is usually not avail-

able or not used and actually often the goal is to locate a

sensor. Thus, spatio-temporal BSS methods developed in

such a context, are not applicable to the framework con-

sidered in this paper, where it is assumed to have p mea-

surements observed over time at a given location. In other

terms, in the subsequent formulation known sample loca-

tions are assumed, the source random fields exhibit space-

time dependence and the mixture is instantaneous. These

assumptions are well suited in space-time geostatistical

applications, as also highlighted in a simulation study and

in a real environmental analysis.

The structure of this paper is outlined as follows. Sec-

tion 2 details the spatio-temporal BSS model and puts it

into the perspective of the statistical analysis of spatio-

temporal data by considering properties such as separa-

bility, symmetry and the connection to other spatio-tem-

poral models. Section 3 introduces estimators for the

unmixing matrix and the latent process, shows identifia-

bility and affine equivalence properties and connects the

BSS methods to the classical PCA. The usefulness of these

introduced estimators is shown in Sect. 4 by a thorough

simulation study and in Sect. 5 on a real dataset. Section 6

concludes and outlines possible further research.
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2 Spatio-temporal blind source separation
model

Based on spatial BSS (SBSS) originally introduced and

studied by Nordhausen et al. (2015); Bachoc et al. (2020),

an extension to the space-time setting can be achieved by

considering a random field x defined on a higher dimen-

sional domain Rdþ1, where d is the dimension of the spatial

domain and the additional dimension is for time. However,

this generalization from space to space-time is not

straightforward, since some specific theoretical and prac-

tical issues have to be faced, such as the ones related to

metric, sampling and peculiar characteristics of the data.

First of all, the definition of a metric that combines the

spatial and temporal dimensions is challenging as the

physical units of space and time are not comparable, thus,

constants that either cast space to time units (or vice-versa)

need to be introduced. To overcome this issue the spatial

and temporal coordinates can be kept separate. In addition,

regarding the space-time data sampling, it is typical to have

sparse sample locations in space, but dense in time. This

can be often found in environmental monitoring systems,

where only a relatively low number of survey stations are

available due to the relatively high cost of necessary

measurement equipment and the limited accessibility over

the area. In contrast, measuring stations commonly take

measurements continuously over long periods of time

resulting in regular high resolution time series. Hence, the

most common data sets in a space-time context are sparse

in space and dense in time. As a consequence, the spatial

and temporal correlations are estimated with different

degrees of reliability and accuracy. As a third point, space

and time have their fundamental peculiarities since there is

a natural order in time (i.e.: past, present and future), while

for space, there is generally no ordering, but it is of interest

focusing on potential directional dependence, known as

anisotropy. Thus, these aspects can influence the con-

struction of the local autocovariance matrices and the

spatio-temporal kernel, where the concepts of full sym-

metry and separability, well-known in space-time geo-

statistics, should be also considered.

In the light of the former aspects, the definition of a

stationary spatio-temporal BSS (stBSS) model is intro-

duced as follows.

Definition 2.1 Given a multivariate random field

fxðs; tÞ; ðs; tÞ 2 S � T g, with p components defined on the

spatio-temporal domain S � T � Rdþ1 of dimension

d þ 1, a stationary spatio-temporal blind source separation

(stBSS) model is such that

xðs; tÞ ¼ Azðs; tÞ þm; ð8Þ

where the p-variate random field zðs; tÞ consists of second-
order stationary and uncorrelated components ziðs; tÞ, i ¼
1; . . .; p with zero expected value and unit variance, A is

the deterministic mixing matrix of full-rank of dimension

ðp� pÞ,m is a p-dimensional deterministic location vector.

Equation (8) represents the location scatter model for

spatio-temporal random fields (more details of the location

scatter model are provided by Nordhausen and Oja (2018)).

Note that the random field xðs; tÞ is said observable, since a

finite realization of xðs; tÞ is assumed available, the p-

variate random field zðs; tÞ is said latent. The assumptions

on the latent field in the former definition translate to the

following ones in more mathematical terms. For any pair of

spatio-temporal locations ðs; tÞ; ðs0; t0Þ 2 S � T , separated

by the spatio-temporal lag ðh; sÞ ¼ ðs� s0; t � t0Þ, the

latent field zðs; tÞ fulfills the following two conditions:

(stBSS 1) Eðzðs; tÞÞ ¼ 0, Covðzðs; tÞÞ ¼ Ip, where Ip is

the identity matrix of order p,

(stBSS 2) Covðzðs; tÞ; zðs0; t0ÞÞ ¼ Eðzðs; tÞzðs0; t0ÞÞ ¼ D

ðh; sÞ, where Dðh; sÞ is a diagonal matrix,

whose i-th diagonal element is the covariance

of the i-th entry of the latent process zðs; tÞ.
That is Diðh; sÞ ¼ Ciðh; sÞ.

Condition (stBSS 1) reflects the zero mean and unit

covariance condition which is usually stated in BSS as it

ensures an identifiable location vector and a more identi-

fiable mixing matrix as will be discussed in detail in

Sect. 3. The latter condition is specific to the stBSS model

as it states the second-order stationary property of the latent

field. Still, both conditions do not specify the model

completely as for a given pair of ðA; zðs; tÞÞ, the pair

ðAPJ; JP>zðs; tÞÞ leads to the same observable xðs; tÞ
where the two latent fields zðs; tÞ and JP>zðs; tÞ do not

violate conditions (stBSS 1) and (stBSS 2). This holds true

for any P 2 Pp and J 2 J p where Pp is the set of all

ðp� pÞ permutation matrices and J p is the set of all sign-

change matrices, i.e., diagonal matrices with diagonal

elements �1. Hence, the latent field (or equivalently the

mixing matrix) is only identifiable up to permutation and

sign (of its rows) which is generally the case in BSS and

not considered as a problem. In order to ensure parameter

identifiability, conditions (stBSS 2) needs to be replaced

by a slightly stricter assumption depending on the used

estimator as discussed in detail in Sect. 3.

Conditions (stBSS 1) and (stBSS 2) determine the sec-

ond-order dependence of the observable field. For any

couple of spatio-temporal locations ðs; tÞ; ðs0; t0Þ 2 S � T ,

separated by the lag ðh; sÞ ¼ ðs� s0; t � t0Þ, to be

Covðxðs; tÞÞ ¼ AA> and Covðxðs; tÞ; xðs0; t0ÞÞ ¼ ADðh; sÞA>:

ð9Þ
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This relation hints the advantage of modeling the observ-

able with a stBSS model as the second-order dependence is

completely defined by a p� p matrix and p univariate

stationary spatio-temporal covariance functions in contrast

to p covariance and pðp� 1Þ=2 cross-covariance functions

when no assumptions on xðs; tÞ are stated. In this view,

stBSS simplifies the second-order spatio-temporal depen-

dence drastically. In the following, more properties of the

stBSS model related to spatio-temporal second-order

statistics are outlined.

Connection to the LMC The stBSS model represents a

special case of the ST-LMC as the ST-LMC from Eq. (9)

can be rewritten under the stBSS model as

Covðxðs; tÞ; xðsþ h; t þ sÞÞ ¼
Xp

i¼1

aia
>
i Ciðh; sÞ; ð10Þ

where ai are the column vectors of the mixing matrix A;

thus this is a special form of a ST-LMC (Eq. (4)) defined

by p basic covariance structures Ci associated to the entries

of the latent process zðs; tÞ and the rank-one positive semi-

definite coregionalization matrices aia
>
i . It is worth

emphasizing that the stBSS methodology has significant

advantages over the multivariate geostatistical analysis

based on the ST-LMC. Firstly, stBSS is not meant to only

focus on modelling of the covariance function of the data.

It is a framework that decomposes multivariate dependent

observations into a set of of p univariate uncorrelated or

independent components which allows to model each

component individually discarding complex multivariate

modelling as discussed above. Secondly, estimation of the

latent process does only rely on the mild assumptions on

the latent process stated above and estimating the covari-

ance functions of the entries of the latent process is com-

pletely avoided. Lastly, as aslo outlined in Sect. 3, the

unmixing matrix functionals show properties of high

practical relevance, e.g.: affine equivariance which makes

the estimation independent of the actual way of mixing.

Symmetry Full symmetry of the spatio-temporal

covariance function is attained if it holds that

Covxðh; sÞ ¼ Covxð�h;�sÞ and

Covxðh; sÞ ¼ Covxð�h; sÞ ¼ Covxðh;�sÞ:
ð11Þ

Further inspection of Eq. 10 indicates that for the observ-

able random field the left part of Eq. 11 is fulfilled because

univariate covariance functions are symmetric, i.e.:

Ciðh; sÞ ¼ Cið�h;�sÞ for all i ¼ 1; . . .; p. Indeed, the

hypothesis of symmetry represents in general an assump-

tion of the ST-LMC. In addition, a sufficient condition that

the right part of Eq. 11 holds is that all univariate covari-

ance functions are fully symmetric, yielding for all i ¼
1; . . .; p that Ciðh; sÞ ¼ Cið�h; sÞ.

Separability Under separability, the covariance function

related to each element of zðs; tÞ is formed by a product of

a sole spatial and a sole temporal part, i.e.:

Ciðh; sÞ ¼ Csp
i ðhÞCt

iðsÞ. This emerges when the latent field

is formed by an elementwise product zðs; tÞ ¼ zðsÞ 	 zðtÞ
where the two factors zðsÞ ¼ ðz1ðsÞ; . . .; zpðsÞÞ> and zðtÞ ¼
ðz1ðtÞ; . . .; zpðtÞÞ> are independent and are associated to the

pure spatial and the pure temporal part, respectively, here 	
denotes the Hadamard product. In matrix notation this

yields Dðh; sÞ ¼ DspðhÞ 	 DtðsÞ where DspðhÞ and DtðsÞ
are diagonal matrices holding the corresponding spatial and

temporal univariate covariance functions Csp
i ðhÞ and Ct

iðsÞ
as their diagonal elements. This is in a similar context

denoted as space-time p-separable by Alegria et al. (2019).

Note, that if the latent field is space-time p-separable then it

is also fully symmetric as Dðh; sÞ ¼ DspðhÞ 	 DtðsÞ ¼
Dspð�hÞ 	DtðsÞ ¼ Dð�h; sÞ, the converse is not true. If the
unit covariance condition Csp

i ð0Þ ¼ Ct
ið0Þ ¼ 1 is utilized, it

turns out that the marginal spatio-temporal covariance

functions of x, For any couple of spatio-temporal locations

ðs; tÞ; ðs0; t0Þ 2 S � T , separated by the lag

ðh; sÞ ¼ ðs� s0; t � t0Þ, are defined as follows

Covðxðs; tÞ; xðs; t þ sÞÞ ¼ ADtðsÞA> and

Covðxðs; tÞ; xðsþ h; tÞÞ ¼ ADspðhÞA>:
ð12Þ

The two models above are a sole spatial (left equation) and

a sole temporal (right equation) BSS models with equal

mixing matrices. Equivalently they can be interpreted as

two ST-LMCs with equal rank-one coregionalization

matrices but different (univariate) second-order depen-

dencies. As outlined for the ST-LMC by De Iaco et al.

(2003), this leads to the fact that analyzing the marginal

temporal or spatial dependence (Dð0; sÞ or Dðh; 0Þ) is

equivalent of analyzing the basic structures DtðsÞ or

DspðhÞ. It can also be seen from the right part of Eq. (9)

that a space-time p-separable latent field translates to a

space-time p-separable observable if A equals the trivial

mixing, i.e.: A ¼ PJD for any P 2 Pp, J 2 J p and a

diagonal matrix with non-negative diagonal entries D.

3 Unmixing matrix functionals

On the basis of the model introduced before (Defini-

tion 2.1), stBSS is concerned with recovering the latent

process zðs; tÞ by Wðxðs; tÞÞðxðs; tÞ � Tðxðs; tÞÞÞ. Here, W
is the so-called unmixing matrix and Tðxðs; tÞÞ is a location
vector functional. The following discussion is solely

focused on W. For T any location functional can be con-

sidered, usually, the standard sample mean is used.
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3.1 General properties of unmixing matrix
functionals

Generally, in the BSS literature proper unmixing matrix

functionals are assumed to be identifiable in the sense that

W equals A�1 up to the model indeterminacies (order and

sign) and they need to be affine equivariant. Both proper-

ties are usually formalized in the context of the considered

model, e.g.: for iid data see Miettinen et al. (2015), for time

series data see Matilainen et al. (2015) or for non-station-

ary spatial data see Muehlmann et al. (2022a). The fol-

lowing definition formalizes these desired properties for

the stBSS case.

Definition 3.1 Let xðs; tÞ be a p-variate random field

originating from the stBSS model (Definition 2.1). An

unmixing matrix functional W ¼ Wðxðs; tÞÞ, of dimension

ðp� pÞ, is said to be valid if it possesses the following

properties.

(Identifiability) Wðzðs; tÞÞ ¼ PJ for any P 2 Pp and

J 2 J p.

(Affine

equivariance)
WðMxðs; tÞ þ aÞ ¼ PJWðxðs; tÞÞM�1

for any invertible matrix M of dimension

ðp� pÞ, any vector a of dimension p, any

P 2 Pp and J 2 J p.

The affine equivariance property reflects the motivation

of BSS. Namely, physical processes (the latent processes)

are measured by sensor and the sensor placement defines

the way of mixing (mixing matrices). As physical pro-

cesses act independently of the way of measuring they also

should be recovered independently of the way of mixing.

Hence, the signal recovery is desired to possess the affine

equivariance property. This property is also useful when

linear transformations are carried out prior the actual BSS

analysis, which occurs in the analysis of data where the

relevant information is found in relative values denoted as

compositional data (Nordhausen et al. 2015).

Finding an unmixing matrix that reverses the location

scatter model is a demanding task as the unmixing matrix

(or equivalently the mixing matrix) are only restricted to be

of full rank. Efforts have been made in the context of BSS

to simplify this task. Usually, this is done by whitening and

then finding an orthogonal matrix which is suggested by

the following result.

Lemma 3.1 Given be a p-variate random field xðs; tÞ
originating from the stBSS model (Definition 2.1), let

E½xðs; tÞ� ¼ m be the mean vector and Covðxðs; tÞÞ ¼ AA>

the covariance matrix. Whitening the observable process

yields xwhðs; tÞ ¼ Cov�1=2ðxðs; tÞÞ xðs; tÞ �mð Þ . Then, it

holds that

xwhðs; tÞ ¼ U>zðs; tÞ; ð13Þ

denoting with U an orthogonal matrix of order p.

For the proof of Lemma 3.1 readers are referred to

(Miettinen et al. (2015), Theorem 1). Based on this result

an unmixing matrix functional can be defined by a three

step outline: (i) the observable is whitened with respect to

the covariance Covðxðs; tÞÞ, (ii) an orthogonal matrix U is

found that maximizes suitable information criteria as out-

lined below, and (iii) the former two steps are combined

which yields W ¼ UCov�1=2ðxðs; tÞÞ. In the literature,

BSS can be roughly grouped by the way of finding the

orthogonal matrix in Step (ii). One way is based on pro-

jection pursuit ideas and originally introduced in the con-

text of ICA, denoted as FastICA (Nordhausen and Oja

2018). Another approach is followed by so-called algebraic

BSS methods which state assumptions on moments in the

considered model and find U by simultaneous or joint

diagonalization of matrix functionals based on moments.

For example, the algorithm for multiple unknown signals

extraction (AMUSE) (Tong et al. 1990) or the second-

order blind identification (SOBI) (Belouchrani et al. 1997)

are designed for stationary time series and find U by

diagonalizing one or more autocovariance matrices. In

similar fashion SBSS extends this concept by using local

covariance matrices which measure spatial second-order

dependence and diagonalizes these quantities. In the sub-

sequent section, these former approaches have been com-

bined in order to provide a methodology to find an

unmixing matrix for stationary spatio-temporal data.

3.2 Two stBSS unmixing matrix functionals

As already clarified, the spatio-temporal covariance func-

tion of the latent random field z is the diagonal matrix

Dðh; sÞ. Consequently, it is convenient to adopt the strategy
of algebraic BSS methods and diagonalize scatter matrices

that measure spatio-temporal second order dependence

evaluated on the whitened version of the observable ran-

dom process. Thus, the definition of population local

covariance (or scatter) matrices (Bachoc et al. 2020;

Muehlmann et al. 2020) is generalized to the space-time

domain as follows. From now on it is assumed that the

observable process is observed on a set of n spatio-tem-

poral sample locations fðsi; tiÞ : i ¼ 1; . . .; n; ðsi; tiÞ
2 S � T g. Local autocovariance matrices (LACF) are

defined by
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LACFf ðxðs; tÞÞ ¼
1

nFn;f

Xn

i;j¼1

f ðsi � sj; ti � tjÞ

E ðxðsi; tiÞ � Eðxðsi; tiÞÞÞðxðsj; tjÞ � Eðxðsj; tjÞÞÞ>
� �

ð14Þ

with

F2
n;f ¼

1

n

Xn

i;j¼1

f 2ðsi � sj; ti � tjÞ; ð15Þ

where f : Rdþ1 ! R represents the spatio-temporal kernel

function, which generates the weights. The normalization

constant Fn;f might be viewed as the average number of

neighbouring spatio-temporal locations considered by the

kernel function f.

The corresponding sample version of local autocovari-

ance matrices is given by

dLACFf ðxðs; tÞÞ ¼
1

nFn;f

Xn

i;j¼1

f ðsi � sj; ti � tjÞðxðsi; tiÞ � �xÞ

ðxðsj; tjÞ � �xÞ>;
ð16Þ

where �x is the sample mean vector. It is evident that local

autocovariance matrices compute a weighted average of

covariance matrices between all n2 possible pairs of spatio-

temporal sample locations. However, the weights, deter-

mined by the spatio-temporal kernel functions f, might be

of different forms and might depend on the decision to

introduce a metric into the higher dimensional space or to

keep the spatial and temporal coordinates separate. In the

former case, it would be necessary to define a specific

distance function hst, where space and time are combined

through the use of positive real coefficient a1 and a2 which

enable the comparison between disparate units of measure

(such as meters and hours), that is:

hst ¼ ða1khk2 þ a2jsj2Þ0:5; ð17Þ

where khk represents the Euclidean distance in space and

jsj the temporal lag. Thus, the kernels can be fixed as

functions of the above distance; on the other hand, the

kernel functions can be defined in such a way that a metric

in space-time is not required, taking into account that space

and time cannot be directly comparable, as specified

below:

• Ball kernel: fbðh; s; rs; rtÞ ¼ Iðkhk
 rsÞIðjsj 
 rtÞ, with
rs � 0; rt � 0 and I the indicator function,

• Ring kernel: frðh; s; rs0 ; rs1 ; rt0 ; rt1Þ ¼ Iðrs1\khk
 rs0Þ
Iðrt1\jsj 
 rt0Þ, with rs0 [ rs1 � 0; rt0 [ rt1 � 0 and

I the indicator function,

• Gauss kernel: fgðh; s; rs; rtÞ ¼ expð�0:5U�1ð0:95Þ2

½ðkhk=rsÞ2 þ ‘ðjsj=rtÞ2�Þ, where U�1ð0:95Þ is the 95%

quantile of the standard Normal distribution and

rs � 0; rt � 0.

Note that in the above case the concept of isotropy, which

has in general no meaning for spatio-temporal random

fields, is not recalled, and the assumption of anisotropy is

used instead. It is worth pointing out that the Gauss kernel

is the only function which can be separable and isotropic

(De Iaco et al. 2020), thus defining a spatio-temporal

metric or keeping separate the two distances is essentially

equivalent. In the following, for a given second order sta-

tionary space-time random process, it is assumed that it is

spatially isotropic in the weak sense (alternatively called

second order isotropic), that is the covariance is a function

of the spatial and temporal distances khk and jsj, respec-
tively. If the temporal part of the data is given in

equidistant times the ring and ball kernel might be adapted

in the sense that the temporal indicator function is replaced

by an indicator function which captures certain lags, i.e.:

Iðjsj ¼ rtÞ.
For the whitening step, the covariance matrix can be

expressed as a local autocovariance matrix by using a ball

kernel function with a parameter rs ¼ rt ¼ 0, or

f ¼ f0 ¼ fbð�; 0; 0Þ, that is

LACFf0ðxðs; tÞÞ ¼ n�1
Xn

i¼1

E ðxðsi; tiÞ � Eðxðsi; tiÞÞÞðxðsi; tiÞ � Eðxðsi; tiÞÞÞ>
� �

;

ð18Þ

and similarly the estimator of LACFf0 can be obtained

from Eq. (16).

As in the spatial case, LACFf0ðxðs; tÞÞ can be considered
a proper choice for whitening and LACFf ðxðs; tÞÞ matrices

are diagonal for the latent random process of a given stBSS

model. Hence, the stBSS unmixing matrix functionals can

be defined based on simultaneous/joint diagonalization as

typically used in algebraic BSS methods as follows.

Definition 3.2 Given a p-variate random process xðs; tÞ,
for which the stBSS model holds, as in Definition 2.1, let f

be a spatio-temporal kernel function. The stAMUSE

unmixing matrix functional W ¼ Wðxðs; tÞÞ is based on

simultaneous diagonalization and satisfies

WLACFf0ðxðs; tÞÞW> ¼ Ip and WLACFf ðxðs; tÞÞW> ¼ Df ;

ð19Þ

where Df is a diagonal matrix where its diagonal entries are

ordered decreasingly.

The above spatio-temporal unmixing matrix functional

can be seen as a direct extension of the AMUSE matrix

(Tong et al. 1990) as the covariance and one local auto-

covariance matrix are simultaneously diagonalized, hence
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it is referred to as spatio-temporal AMUSE (stAMUSE).

Similarly, it can be interpreted as a generalization of the

SBSS (Nordhausen et al. 2015; Bachoc et al. 2020)

methods, when only one local covariance matrix is used,

instead of more than one as in Bachoc et al. (2020). Exact

simultaneous diagonalization of the two involved quanti-

ties for a given sample is always possible by solving the

generalized eigenvalue problem, see for example (Harville

(1997), Chapter 21). If the diagonal elements of

LACFf ðzðs; tÞÞ are pairwise distinct, then the solution is

unique up to sign (the order of the diagonal elements of Df

fixes the order and the scale is fixed by the stBSS model).

Moreover, this method is affine equivariant. Both state-

ments are formalized in the subsequent proposition.

Proposition 3.1 The following two properties hold for the

stAMUSE functional (Definition 3.2):

1. Identifiable iff all diagonal elements of matrix

LACFf ðzðs; tÞÞ (which is itself a diagonal matrix) are

pairwise distinct and

2. Affine equivariant.

Note that this method can be viewed as a particular case

of the one introduced below, then Proposition 3.1 can be

derived from Proposition 3.2, hence, the proof follows in

the same manner as outlined below. This identifiability

condition is a joint property of the actual covariance

functions for each entry of zðs; tÞ as well as of the used

spatio-temporal kernel function which leads to the fact that

the type of the kernel function is critical for the perfor-

mance of this method. However, in order to over come this

strong dependency, it might be useful to jointly diagonalize

several local autocovariance matrices with different spatio-

temporal kernel functions. This was found useful for time

series BSS as diagonalizing many autocovariance matrices

(SOBI) in comparison to diagonalize only one (AMUSE)

reduces the influence of the chosen lag for the latter

approach (Miettinen et al. 2012, 2016). A similar result

was found for the spatial case by Bachoc et al. (2020). For

the general use of joint diagonalization in multivariate

statistics see also Nordhausen and Ruiz-Gazen (2022).

Hence, joint diagonalization seems also reasonable to be

considered in the context of stBSS; hence, it is referred to

as spatio-temporal SOBI (stSOBI).

Definition 3.3 (stSOBI) Given a p-variate random process

xðs; tÞ, which follows the stBSS model (Definition 2.1), let

ff1; . . .; fLg be a set of spatio-temporal kernel functions.

Define the whitened version of xðs; tÞ by xwhðs; tÞ ¼
LACF

�1=2
f0

ðxðs; tÞÞðxðs; tÞ �mÞ. Let U = Uðxðs; tÞÞ be the

orthogonal joint diagonalization matrix of

LACFflðxwhðs; tÞÞ, of dimension ðp� pÞ, for l ¼ 1; . . .; L,

maximizing

XL

l¼1

kdiagðU> LACFflðxwhðs; tÞÞUÞk
2
F ; ð20Þ

where diagð�Þ is a diagonal matrix, whose diagonal ele-

ments are the diagonal entries of the matrix-valued argu-

ment, while k � kF represents the Frobenius norm. The

stSOBI unmixing matrix functional W ¼ Wðxðs; tÞÞ, based
on joint diagonalization, equals

W ¼ U>LACF
�1=2
f0

ðxðs; tÞÞ.

Exact joint diagonalization of more than two (positive

semi-definite) matrices is only possible if all of them

commute. At the population level, all involved local

autocovariance matrices do commute but for a given

sample this does not hold true due to the estimation error.

Hence, algorithms that approximately jointly diagonalize

all involved local autocovariance matrices need to be uti-

lized. In the following, an algorithm based on Givens

rotations, as outlined in Clarkson (1988); Cardoso (1989),

is used. There exist also other options in the literature, see

for example Illner et al. (2015).

It might be desirable to fix the order of the latent process

in a way that it resembles spatio-temporal dependence

(measured by the local autocovariance matrices) of the

latent process in a decreasing manner. For stAMUSE this is

achieved by ordering the diagonal elements of the diago-

nalized local autocovariance matrix. For stSOBI we define

so-called pseudo-eigenvalues as

k2i;l ¼ ðu>i LACFflðxwhðs; tÞÞuiÞ
2

for i ¼ 1; . . .; p and l ¼ 1; . . .; L:

ð21Þ

Here, ui is the i-th column vector of the orthogonal joint

diagonalizing matrix U. Hence, the value ki;l gives the

spatio-temporal second order dependence for the i-th latent

field component measured by the l-th spatio-temporal

kernel. The order of the latent components might by

determined by the order of
PL

l¼1 k
2
i;l, this criterion might be

also used in a scree-plot setting to determine the most

meaningful components and discard the ones with less

spatio-temporal dependence.

The following Proposition states the identifiability

condition and the affine equivariance property for stSOBI.

Proposition 3.2 For the stSOBI functional (Definition 3.3)

the following two properties hold:

1. Identifiable iff there exists l 2 f1; . . .; Lg such that

ðLACFflðzðs; tÞÞÞii 6¼ ðLACFflðzðs; tÞÞÞjj , for all i; j ¼
1; . . .; p and i 6¼ j, and

2. Affine equivariant.

The proof for Proposition 3.2 follows the same outline

as (Matilainen et al. (2015), Lemma 1) or (Bachoc et al.
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(2020), Proposition 5). The identifiability condition of

Proposition 3.2 is far less restrictive as the one seen in

Proposition 3.1. Moreover, if stSOBI uses only one kernel,

the method and identifiability condition reduce to stA-

MUSE. Thus, stSOBI might be seen as a generalization of

stAMUSE.

3.3 Relation to PCA

One of the most used multivariate statistical tool is PCA

(Jolliffe 1986) which finds linear components of the mul-

tivariate dataset that maximize variance. This problem can

be formulated in the present context as finding a matrix

WPCA that satisfies

WPCAW
>
PCA ¼ Ip and WPCA LACFf0ðxðs; tÞÞW>

PCA ¼ D:

ð22Þ

Here, the left equation reflects the orthogonality condition

and the right equations states that the covariance matrix is

diagonalized and D holds the variances of the found prin-

cipal components on its diagonal. Interpretations of the

results are usually achieved by the convenient loadings-

scores scheme, where WPCA is the matrix of loadings and

WPCAxðs; tÞ gives the scores. Note that PCA uses only the

second moments of the marginal distributions which leads

to the fact that it completely neglects the most important

source of information for spatio-temporal data, namely

spatio-temporal dependence. StBSS extends the former

optimization equations by relaxing the orthogonal condi-

tion and using spatio-temporal dependence in terms of the

LACF matrices by

WLACFf0ðxðs; tÞÞW> ¼ Ip and WLACFflðxðs; tÞÞW> ¼ Dl

for l ¼ 1; . . .; L:

ð23Þ

The former equations also hint the advantages of stBSS.

Firstly, the results can be interpreted in the same fashion as

in PCA (loadings-scores principle) but the method specif-

ically accounts for spatio-temporal second-order depen-

dence. Secondly, the resulting latent process are not only

uncorrelated marginally but also in their spatio-temporal

dependence which leads to the fact that further analysis can

be carried out on each entry of the latent process individ-

ually. This avoids the use of multivariate spatio-temporal

statistics tools in favor of univariate ones.

In similar terms stBSS can also be seen as an extension

of PCA when the whitening step is based on an eigenvalue

decomposition of the covariance matrix by

LACF
�1=2
f0

ðxðs; tÞÞ ¼ VDV>. Then, WPCA ¼ V and the

principal components, whitened observable and latent

process are given by

V>ðxðs; tÞ � Eðxðs; tÞÞÞ; VD�1=2V>ðxðs; tÞ � Eðxðs; tÞÞÞ and ð24Þ

U>VD�1=2V>ðxðs; tÞ � Eðxðs; tÞÞÞ: ð25Þ

Thus, the latent process is a rescaled and rotated version of

the principal components.

In practical considerations PCA and stBSS might be

used in conjunction by firstly applying PCA as dimension

reduction and then using stBSS on the retained principal

components that show substantial variation. More infor-

mation on the relation between PCA and BSS can be found

in Nordhausen and Oja (2018).

4 Simulations

In this part of the study the formerly introduced unmixing

matrix functionals are validated on simulated datasets

using the R program language version 3.6.1 (R Core Team

2021) with the help of the packages JADE (Miettinen et al.

2017), RandomFields (Schlather et al. 2015) SpatialBSS

(Muehlmann et al. 2021a) and SpaceTimeBSS (Muehl-

mann et al. 2022b).

4.1 Simulation settings

In order to simulate a multivariate spatio-temporal random

field, the set of spatio-temporal locations has to be defined.

The spatial domains are of the form Snsp ¼ ð0; nsp� �
ð0; nsp� and the temporal domains are of the form T nt ¼
½1; nt� resulting in spatio-temporal domains Snsp � T nt

which are abbreviated in the following by ½0; nsp�2 � nt. For

a given domain ½0; nsp�2 � nt the set of spatial sample

locations is formed by overlaying the spatial domain with a

grid Snsp \ ðZ2=4Þ, then, n2sp sample locations are randomly

drawn for each simulation iteration from this resulting grid

in order to simulate irregular sample locations. The tem-

poral locations are simply T \ Z where nt equals twice n
2
sp

to resemble imbalanced spatio-temporal datasets which

often occur in practice.

In the following simulation study, the latent fields fol-

low the stBSS model (Definition 2.1) with p ¼ 3, m ¼ 0

and A ¼ I3, which is without loss of generality due to the

affine equivariance of the methods. The latent process is a

centered Gaussian process where the spatio-temporal

covariance follows one of the six following models.

Model 1 is a sole spatial model. For each time point a

realization of a random field is independently sampled on

the spatial locations. The entries of the random field are

independent in time, while follow the well-known sta-

tionary Matérn covariance function (Guttorp and Gneiting

2006) in space, which is defined by
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Cmatðh; r2; m;qÞ ¼ r2

2m�1CðmÞ
h

q

� �m

Km
h

q

� �
: ð26Þ

Here, r2 [ 0 is the variance, m[ 0 is the shape and q[ 0

is the scale parameter, h is the spatial lag, C is the gamma

function and Km is the modified Bessel function of second

kind. The parameters ðr2; m; qÞ equal (1.0, 0.7, 1.0),

(1.0, 1.0, 1.5) and (1.0, 1.3, 2.0) for the latent processes z1,

z2 and z3, respectively. The left panel of Fig. 1 depicts the

covariance functions for these parameter choices.

Model 2 is the opposite of Model 1 as for each spatial

location a time series is independently sampled. The entries

are independent in space and follow the exponential

covariance structure resulting from an AR(1) process in

time defined by

Cexpðs; r2;/Þ ¼ r2/jsj: ð27Þ

In the above form s is the temporal lag, r2 is the variance

parameter and / 2 ð�1; 1Þ. The parameters ðr2;/Þ for the
latent processes z1, z2 and z3 equal (1.0, 0.4), (1.0, 0.6) and

(1.0, 0.75), respectively, which are depicted in the right

panel of Fig. 1.

Model 3 & Model 4 are product models, obtained from

Equation (5) with k1 ¼ 1 and k2 ¼ k3 ¼ 0. Both models

use Matérn covariance functions for the spatial and expo-

nential covariance functions for the temporal part (i.e.:

CspðhÞ ¼ Cmatðh; 1; m; qÞ and CtðsÞ ¼ Cexpðs; 1;/Þ) where

the parameters ðm; qÞ equal the ones of Model 1 and / the

ones of Model 2 for Model 3. Model 4 uses ðm; qÞ to be

(0.7, 1.0), (0.7, 1.0) and (1.0, 1.5) for the spatial part of

z1; z2; z3, respectively and / equals 0.4, 0.6, 0.6 for tem-

poral part of the three latent random processes z1; z2; z3,

respectively. The resulting covariance surfaces are illus-

trated in Fig. 2.

Model 5 is a product sum model (Equation (5)) with

spatial Matérn and temporal exponential covariance

functions. The parameters ðk1; k2; k3; m; q;/Þ are equal to

(5/8, 2/8, 1/8, 0.7, 1.0, 0.4), (1/8, 5/8, 2/8, 1.0, 1.5, 0.6)

and (2/8, 1/8, 5/8, 1.3, 2.0, 0.75) for z1; z2; z3, respectively.

The covariance surfaces are seen in the left panel of Fig. 3.

Model 6 follows a Gneiting covariance function

(Equation (6)) with wðuÞ ¼ ua=r1 þ 1 and

/ðhÞ ¼ exp ð�hc=r2Þ. These two functions combined with

the general Gneiting form (Eq. (6)), with d ¼ 2 and

r2 ¼ 1, leads to

Cðh; sÞ ¼ r2

ðu2a=r1 þ 1Þ exp � h2c

r2ðu2a=r1 þ 1Þc
� �

; ð28Þ

with the free parameters 0\a; c
 1, r1 [ 0 and r2 [ 0

collected in ða; c; r1; r2Þ. These parameters are chosen to

equal (0.35, 0.5, 0.85, 0.8), (0.6, 0.5, 2.3, 2.0) and

(0.9, 0.5, 9.5, 3.5) for the entries z1, z2 and z3 of the latent

process. The right panel of Fig. 3 depicts the corresponding

covariance surfaces.

For each simulated dataset an estimate of the unmixing

matrix Ŵ is computed by some BSS method as detailed in

the subsequent sections. Ŵ can be expected to fulfill

ŴA � I3 up to the model indeterminacy of order and sign.

Note that this will be always the case for affine equivariant

unmixing matrix functionals independently of the mixing

matrix, therefore, the choice A ¼ I3 comes without loss of

generality. Based on these considerations a performance

index can be build around ŴA� I3. One option is the so-

called Minimum Distance Index (MDI) (Ilmonen et al.

2010; Lietzen et al. 2020) which is defined as follows

MDIðŴ;AÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p inf
C2Cp

kCŴA� IpkF : ð29Þ

Here, k � kF is the Frobenius matrix norm and Cp is the set

of ðp� pÞ matrices with exactly one non-zero element in

each row an column. The MDI takes values between zero

and one where zero is achieved when Ŵ equals A (up to
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Fig. 1 Covariance structure for the latent processes of Model 1 (left

panel) and Model 2 (right panel). Model 1 consists of three stationary

Matérn covariance functions with parameters ðr2; m;qÞ equal to

(1.0, 0.7, 1.0), (1.0, 1.0, 1.5) and (1.0, 1.3, 2.0) for z1; z2 and z3.

Model 2 consists of three stationary AR(1) covariance functions with

parameters ðr2;/Þ equal to (1.0, 0.4), (1.0, 0.6) and (1.0, 0.75) for

z1; z2 and z3
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sign and order). Note that there are many alternative per-

formance measures as reviewed in Nordhausen et al.

(2011) but the popular MDI index has been preferred as it

fulfills all necessary conditions and has in addition many

other nice properties like for example a direct connection

to the limiting covariance matrix of the unmixing matrix

estimate.

4.2 Performance of different kernel settings

For each simulated dataset the unmixing matrix is esti-

mated by stAMUSE and stSOBI where the kernel setting

either considers sole spatial, sole temporal or spatio-tem-

poral dependence. For only temporal dependence, a ball

kernel with h ¼ 0 is used in conjunction with either rt ¼ 1

denoted as stAMUSE.t or rt ¼ 1; 2; 3 denoted as stSOBI.t.

The sole spatial setting uses always s ¼ 0 with one ring

kernel with parameters (0, 1) denoted as stAMUSE.s or

three ring kernels with parameters (0, 1), (1, 2), (2, 3)
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Fig. 2 Covariance structure for

the latent processes of Model 3

(left panel) and Model 4 (right

panel). Model 3 and Model 4

are product models as seen in

Equation (5) with k1 ¼ 1 and

k2 ¼ k3 ¼ 0. The spatial part

follows a Matérn covariance

function and the temporal one

an exponential functions. The

parameters m; q;/Þ equal
(0.7, 1.0, 0.4), (1.0, 1.5, 0.6)

and (1.3, 2.0, 0.75) for Model 3

and (0.7, 1.0, 0.4),

(0.7, 1.0, 0.6) and

(1.0, 1.5, 0.6) for Model 4
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Fig. 3 Covariance surfaces for

the three entries of the latent

processes for Model 5 (left

panel) and Model 6 (right

panel)
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denoted as stSOBI.s. For the spatio-temporal kernels three

settings are considered: rt ¼ 1 with a ring kernel with

parameters (0, 1) denoted as stAMUSE.st, all nine kernel

combinations originating from rt ¼ 1; 2; 3 and ring kernels

with parameters (0, 1), (1, 2), (2, 3) denoted as stSOBI.st

and lastly all twelve kernels from the former stSOBI.t,

stSOBI.s and stSOBI.st settings denoted as stSOBI.st2. In

total stAMUSE.t, stSOBI.t, stAMUSE.s, stSOBI.s use only

marginal spatial or temporal dependence, stAMUSE.st and

stSOBI.st use spatio-temporal dependence, and stSOBI.st2

uses marginal spatial, marginal temporal and spatio-tem-

poral dependence all with either simultaneous or joint

diagonalization.

The average MDI computed for 2000 simulation repe-

titions is depicted in Fig. 4 for the former estimators for

Model 1 - 6 and different sample sizes. The obtained

results are summarized below:

• Model 1 only exhibits spatial dependence which leads

to the result that only kernel settings which utilize

spatial dependence (stAMUSE.s, stSOBI.s and stSOB-

I.st2) deliver meaningful results. The circumstance that

stSOBI.st2 performs slightly worse than the other two

methods might be explained by the fact that stSOBI.st2

uses a total of twelve kernels where only three of them

are sole spatial, hence, the other nine are non-informa-

tive ones only adding noise to the joint diagonalization

algorithm.

• Equal quantitative results are seen for Model 2 where

the role of space and time is exchanged.

• Model 3 is a product model that exhibits full spatio-

temporal dependence, hence, all methods seem to work.

However, in this model stAMUSE and stSOBI with sole

temporal kernel settings show the best performance. An

intuitive explanation might be given by the fact that for

each dataset the number of times is double the number

of spatial sample locations leading to less estimation

error for a sole temporal kernel. Similarly, the expo-

nential decaying temporal covariance functions yields

that most of the information for signal separation is in

the first lag, thus, stAMUSE.t shows the best perfor-

mance for this model.

• Model 4 is special in the sense that the marginal spatial

dependence is the same for the first and second entry of

the latent field and the marginal temporal dependence is

equal for the second and third entry of the latent

process. For such a model only kernel settings that use

full spatio-temporal dependence meet the required

identifiability condition. Indeed, only the methods

utilizing full spatio-temporal dependence are able to

separate the signals for Model 4.

• Similarly as for Model 3, Model 5 and 6 show different

marginal spatial and temporal as well as different full

spatio-temporal dependence for all entries of the latent

field. Thus, all methods are able to separate the signal

and show very similar performance. For Model 6 the

methods only utilizing temporal dependence again work

best.

4.3 Comparison to contender methods

This part of the simulations is devoted to comparing the

stBSS methods with contender BSS methods and a random

guess. The random guess is carried out by firstly whitening

the data and then drawing an orthogonal matrix randomly.

This procedure is motivated by the fact that all considered

BSS methods share the whitening step but differ in the way

of finding an orthogonal transformation, hence, whitening

and a random orthogonal transformation acts as the worst

possible method in the BSS context. For the contender BSS

methods, the fourth order blind identification (FOBI)

method (Cardoso 1989; Nordhausen and Virta 2019) has

been used; this is designed for iid data and uses higher

order moment for the signal separation. Moreover, the non-

stationary source separation time delayed joint diagonal-

ization (NSS.TDJ) method (Choi and Cichocki 2000) with

rt ¼ 1 and the spatial non-stationary source separation

spatial joint diagonalization (SNSS.SJD) method (Muehl-

mann et al. 2022a) with a ring kernel with parameters

(0, 1) have been applied. The latter two methods are tem-

poral and spatial non-stationary methods. NSS.TDJ diag-

onalizes autocovariance matrices for the time series

observed for each spatial location, and SNSS.SJD diago-

nalizes local covariance matrices for the random fields

observed for each time point.

Figure 5 depicts the average MDI based on 2000 sim-

ulation repetitions for the three contender methods, stA-

MUSE.t, stSOBI.st2 and the random guess for Model 1–6

and different sample sizes. It is worth pointing out the

following aspects:

• The quantitative results are similar for Model 1 and

Model 2 as before. For Model 1 only SNSS and for

Model 2 only NSS are able to separate the signals. The

worse performance of SNSS in Model 1 compared to

the performance of NSS for Model 2 might be again

explained by the imbalance between information avail-

able in space and time for the datasets. For a given

sample size NSS can use double the amount of samples

to estimate the autocovariance compared to SNSS.

• NSS and SNSS are able to estimate the signal in

Model 3, 5 and 6, where SNSS is always outperformed

by NSS (intuitively explained again by the imbalanced

datasets).
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• Interestingly, NSS is able to perform equally wells as

stSOBI in Model 6, since the temporal part of the

sources is much more discriminant.

• In Model 4 the contender methods only use marginal

spatial or temporal dependence, hence, they are not able

to fully recover the signal. However, with increasing

sample size these two contender methods are able to

properly estimate two out of three latent process entries

as the entries one and two have different marginal

temporal and entries two and three have different

marginal spatial dependence. This might explain their

increasing performance with sample size.

5 Data example

The aim of this section is to show how the proposed

methods can be used in the analysis of a spatio-temporal

dataset; moreover, possible ways of downstream analysis

based on the stBSS results are presented. The considered

Model 5 Model 6

Model 3 Model 4

Model 1 Model 2

[0
,3

]^2
 x

 1
8

[0
,4

]^2
 x

 3
2

[0
,5

]^2
 x

 5
0

[0
,6

]^2
 x

 7
2

[0
,7

]^2
 x

 9
8

[0
,8

]^2
 x

 1
28

[0
,9

]^2
 x

 1
62

[0
,3

]^2
 x

 1
8

[0
,4

]^2
 x

 3
2

[0
,5

]^2
 x

 5
0

[0
,6

]^2
 x

 7
2

[0
,7

]^2
 x

 9
8

[0
,8

]^2
 x

 1
28

[0
,9

]^2
 x

 1
62

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Domain

M
D

I

stAMUSE.t

stSOBI.t

stAMUSE.s

stSOBI.s

stAMUSE.st

stSOBI.st

stSOBI.st2

Fig. 4 Average MDI computed

based on 2000 simulation

repetitions for different sample

sizes, different stBSS methods

and Models 1–6

Stochastic Environmental Research and Risk Assessment (2023) 37:1593–1613 1605

123



datasets are hourly averaged measurements of nitric oxide

(NO), nitrogen dioxide (NO2) and particulate matter with a

diameter not greater than 10 lm (PM10) in lg=m3 at 18

different monitoring stations in the Glasgow area between

01/01/2017 and 12/31/2017. This dataset is provided by air

quality monitoring sites operated by the Scottish Govern-

ment and Local Authorities from http://www.scottishairqu

ality.scot/data/. The left panel of Fig. 6 depicts the

considered sample locations. The measurements show a

diurnal behaviour which was removed by using the algo-

rithm REMOVEMULT (De Iaco et al. 2010) prior the

following analysis. In total, the deseasonalized dataset is

three-variate and contains 130894 spatio-temporal samples.

Note that for each space-time location each of the three

measurements are available except for some missing val-

ues which are assumed to occur randomly. This is not a

problem in estimating the local autocovariance matrices as
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the specific time of the measurements are accounted for

when computing lags amongst them.

Besides the kernel setting, hereafter discussed, also the

scale of the original data must be considered before

applying stBSS. If the scale differs between variables the

loadings are difficult to compare. The left Table 1 shows

the sample mean and sample standard deviation of the

original data. As the scales are different in one order of

magnitude, the data have been scaled to zero mean and unit

variance before applying stBSS. Note that as the transfor-

mation is affine, it does not affect the resulting latent

components as stBSS methods are affine equivariant.

Moreover as clarified, in a first step of stSOBI proper

spatio-temporal kernels need to be chosen. As this dataset

is highly imbalanced between space and time it might be a

good strategy to focus on serial kernels and only consider a

few spatial ones. For the spatial parts of the kernel, the

radius equals 8000 m in order to include enough neigh-

bouring samples per spatial sample location as seen in the

boxplot on the right panel of Fig. 6. In the left panel of

Fig. 6 the blue circle depicts this parameter choice. For the

temporal lags, the lags between one and ten hours are

included and also the lags 12 and 24 hours. The latter two

choices are meant to account for effects from morning and

evening traffic. In total, 16 kernels have been considered,

where one is sole spatial (ring kernel with serial lag zero

and spatial parameters ðrs0 ; rs1Þ ¼ ð0; 8000Þ m), three spa-

tio-temporal (ring kernel with serial lags 1, 2 and 3 and

spatial parameters ðrs0 ; rs1Þ ¼ ð0; 8000Þ m) and twelve sole

temporal (ball kernel with lags 1 to 10, 12 and 24 and

spatial parameter rs ¼ 0 m). Table 2 summarizes these

choices. Generally, the choice of the considered kernel

settings should be based on domain experts as the most

informative temporal and spatial lags might be identified

by specific domain knowledge. Another strategy might be

given by simply trying out different kernel settings and use

the ones which produce stable solutions in terms of the

unmixing matrix and the found components. This strategy

is based on the fact that if the stBSS model holds, the

solution is independent of the kernel setting (for all kernel

settings that satisfy the identifiability conditions). Thus,

stable solutions should indicate valid and useful kernel

settings.

After running stSOBI the pseudo-eigenvalues, unmixing

matrix and found processes can be used for interpretation

and further analysis. As the found transformation is linear,

the unmixing matrix can be seen as the loadings matrix and

the found processes are the scores leading to the same

interpretation scheme as in classical PCA. The right

Table 1 shows the loadings matrix and Table 2 summarizes

the pseudo-eigenvalues for the used 16 local autcovariance

matrices. The pseudo-eigenvalues give an idea which

kernel setting is important for which latent process. E.g.:

higher values for the serial kernels for lags 12 and 24 of z2
indicate that this lags are more important than for z1 and z3;

similarly, higher values for the spatial and spatio-temporal
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Fig. 6 (Left) Map of Glasgow

with the 18 considered

measuring stations indicated by

the red crosses. The blue circle

indicates the used kernel

parameter of 8000 m. Distances

are computed in UTM zone 30.

(Right) Boxplot depicting the

number of neighbouring sample

locations defined by the ring

kernel for each sample location.

Map tiles by Stamen Design,

under CC BY 3.0. Data by

OpenStreetMap, under ODbL

Table 1 Sample mean and sample standard deviation for each original

variable (left). Loadings matrix (unmixing matrix) for the three found

latent spatio-temporal random fields (right)
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kernels of z1 indicate that the chosen lags are more sig-

nificant than for z2 and z3. The sums of the columns can

also be used in scree-plot setting, however, for this three-

variate dataset the pseudo-eigenvalues show that all three

components are important. For a similar use of such

pseudo-eigenvalues in other BSS contexts see also Mati-

lainen et al. (2019); Muehlmann et al. (2021c).

The loadings (right Table 1) indicate that z1 is mainly

driven by PM10 and the difference between NO and NO2.

Similarly, z2 is formed mainly by NO2 and roughly the

difference of NO and twice PM10. Lastly, z3 could be seen

as the difference between NO and NO2 with a negligible

effect of PM10. This difference represents the discrepancy

between primary and secondary pollutants, as NO and NO2,

respectively. In the event of accidental pollution by nitro-

gen monoxide, the concentration decays in 2-5 days, but in

the case of continuous emissions (for example in urban

areas with heavy vehicular traffic), the activation of a daily

cycle leads to the production of secondary pollutants, such

as nitrogen dioxide.

Another advantage of stBSS is the fact that the found

latent processes are marginally and spatio-temporally

uncorrelated. Thus, in a downstream analysis each process

can be considered individually. For example, visual tools

such as Hovmöller diagrams (Allard et al. 2017) for certain

time periods and monitoring stations, spatial maps for

different time points and time series plots for certain

monitoring sites can be used to further investigate the latent

processes. Hence, visualization of cross-dependencies are

discarded. Figure 7(a–c) show these tools for the three

latent processes.

Further interpretations of the results can be carried out

with these plots in conjunction with the loadings matrix.

E.g.: The time series plot for one station seen in the right

panel of Fig. 7(c) indicates that z3 is higher in absolute

value, during winter months and lower during summer,

spring and autumn. As z3 is mainly driven by the difference

of NO and NO2 this means that the concentration of NO2 is

higher compared to NO, the opposite happens during the

other months of the year. A similar effect is also seen in the

time series plot of Fig. 7(b) right panel for z2.

In spatio-temporal prediction the uncorrelatedness

property of the latent realizations can be utilized advanta-

geously as well. As underlined in Muehlmann et al.

(2021b), this can be done by using univariate prediction

tools for each component of the latent process individually

in order to predict each regionalized variable at the desired

spatio-temporal location. E.g.: univariate spatio-temporal

Kriging can be used based on structural analysis conducted

separately for each latent random field. For the specific

case study, the three sample covariance functions or vari-

ograms for z1, z2 and z3, as seen in Fig. 8 have to be

computed, then on the basis of the fitted models, three

individual Kriging predictions for the three sources can be

collected into a vector and then multiplied by the inverse of

the loadings matrix which forms the prediction of the

original data at the unobserved spatio-temporal location.

This reduces computation time and model complexity

significantly, as no cross-dependencies need to be esti-

mated and modeled. Especially in a space-time domain,

modeling direct and cross covariance functions is burdened

by the evaluation of the corresponding three-dimensional

empirical covariance surfaces, from which is not easy to

stem reasonable assumptions on the multivariate random

field (such as the number of variability scales or the pres-

ence of anthropic factors influencing the phenomenon). On

the other hand, univariate modeling of spatio-temporal

covariance functions can be supported by the existence of

numerous classes of space-time covariance functions which

are able to cover a wide spectrum of dependence structures;

moreover, some computational tools can also help users to

select the appropriate class for the given spatio-temporal

sample covariance surface.

Table 2 Pseudo-eigenvalues for

the 16 used kernel functions.

Type is the type of the kernel.

Par gives used parameters for

the spatial part in meters. Lag is

the used lag in hours

Type Par Lag z1 z2 z3 Type Par Lag z1 z2 z3

Ring (0, 8000) 0 1.39 1.25 1.08 Ball 0 5 0.84 0.88 0.57

Ring (0, 8000) 1 1.91 1.71 1.41 Ball 0 6 0.78 0.83 0.51

Ring (0, 8000) 2 1.79 1.58 1.18 Ball 0 7 0.73 0.79 0.46

Ring (0, 8000) 3 1.67 1.45 0.94 Ball 0 8 0.69 0.76 0.43

Ball 0 1 1.21 1.26 1.19 Ball 0 9 0.65 0.73 0.40

Ball 0 2 1.09 1.14 0.99 Ball 0 10 0.62 0.71 0.37

Ball 0 3 0.99 1.03 0.81 Ball 0 12 0.57 0.66 0.34

Ball 0 4 0.91 0.94 0.67 Ball 0 24 0.48 0.68 0.35
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6 Conclusions

In this contribution the BSS methods for data that exhibit

spatio-temporal dependence were presented. A new scatter

functional, namely local autocovariance matrices, which

characterizes spatio-temporal second-order dependence,

was introduced. A discussion on different forms of spatio-

temporal kernel functions, based on different possible

metrics, was proposed. Two novel methods (stAMUSE and

stSOBI) which simultaneously or jointly diagonalize these

scatter matrices to recover spatio-temporally uncorrelated

sources were also introduced. The simulation study con-

firmed the usefulness of these methods. It was also

emphasized that the stBSS methodology can be seen as a
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Fig. 7 Hovmöller diagram for the first week of July 2017 for all 18

stations (left). Map of the 18 stations for 07/01/2017 (middle). Time

series plot for the station indicated by the red circle in Fig. 6 (right),

for: a) z1, b) z2, c) z3 Map tiles by Stamen Design, under CC BY 3.0.

Data by OpenStreetMap, under ODbL
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special case of ST-LMC, and as such it acts also as a way

of modelling multivariate spatio-temporal covariance. But

the real strength of the proposed methodology lies in the

fact that the found signals are spatio-temporally uncorre-

lated. This in turn means that downstream analysis of the

original multivariate date can be carried out with univariate

statistical tools on each component of the sources indi-

vidually. Hence, pre-processing the data with an stBSS

method reduces multivariate modelling to several univari-

ate ones, modelling of cross-dependencies is discarded.

So far, a model based on second-order stationary spatio-

temporal random fields, was considered. Obviously, these

assumptions are highly likely to be not fulfilled in the two

following ways. Either a trend might be present in the data

and/or the second order dependence specifically depends

on space-time locations. For the latter case a first adapta-

tion of the stBSS methods can be given by assuming local
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Fig. 8 Variogram surface (left), marginal spatial (middle) and marginal temporal (right) variogram for the latent random field a) z1, b) z2, c) z3
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stationarity and computing local autocovariance matrices

for parts of the spatio-temporal domains. The influence of a

trend can be reduced by replacing the local autocovariances

with scatters that are based on difference processes. Such a

procedure is common practice in geostatistics where often

the variogram is favoured over the covariance. Character-

izing the large sample behaviour of local autocovariance

matrices and the unmixing matrix estimators is desirable in

order to build asymptotic tests and provide estimation

errors. Furthermore, to aid practitioners in choosing rea-

sonable kernel settings, visual analytic tools which were

developed for SBSS, AMUSE and SOBI in Piccolotto et al.

(2022a, 2022b) will be extended to the spatio-temporal

case.

The choice of suiting kernel functions and their

parameters is an open question which is generally consid-

ered a challenging task in BSS (Tang et al. 2005). The

problem lies in the fact that the quality of the separation

depends on the dissimilarity of the eigenvalues of the

matrices LACFf ðzðs; tÞÞ (see Propositions 3.1 and 3.2).

These eigenvalues are not accessible as the latent random

field is unknown a-priori. Therefore, it is advisable to

rather use stSOBI with a larger number of kernels. A very

practical guideline might be given by simply using

equidistant ring kernels to a maximum extend of half the

maximum distance (similarly as in variogram estimation)

for the spatial part and a small number of lags for the

temporal part. Note, that for a very imbalanced dataset it

might be a good strategy to use kernels which account for

the imbalance. For example, if the temporal resolution is

much higher compared to the spatial, a small number of

spatial but a higher number of temporal kernels might be

suitable. Besides these insights, it is also possible to esti-

mate the latent field with a high number of kernels and sort

out uninformative ones based on asymptotic arguments.

Such a strategy is utilized for temporal BSS by Taskinen

et al. (2016).
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