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Abstract: The memristor, a revolutionary electronic component, mimics both neural synapses and
electromagnetic induction phenomena. Recent study challenges are the development of effective
neural models and discovering their dynamics. In this study, we propose a novel Hopfield neural
network model leveraging multistable memristors, showcasing its efficacy in encoding biomedical
images. We investigate the equilibrium states and dynamic behaviors of our designed model through
comprehensive numerical simulations, revealing a rich array of phenomena including periodic orbits,
chaotic dynamics, and homogeneous coexisting attractors. The practical realization of our model
is achieved using a microcontroller, with experimental results demonstrating strong agreement
with theoretical analyses. Furthermore, harnessing the chaos inherent in the neural network, we
develop a robust biomedical image encryption technique, validated through rigorous computational
performance tests.

Keywords: Hopfield neural network model; multistable memristor synapse; dynamic analysis;
numerical simulations; microcontroller-based implementation; biomedical image encryption

1. Introduction

Hopfield networks have emerged as pivotal models in the field of neuroscience owing
to their dynamic behavior and efficient structure [1]. These networks provide a valuable
framework for exploring human memory mechanisms, with both continuous and discrete
models being extensively studied [2–4]. Their practicality lies in their ability to capture
associative memory processes, making them indispensable tools for investigating cognition
and learning [5–8].

Recent research has exposed an overabundance of intriguing dynamics within memristor-
based Hopfield networks. Notably, Sun et al. introduced the concept of boosting dynamics,
amplifying the network’s computational capabilities [9]. Investigations into multistability
have shed light on the diverse states these networks can exhibit, offering potential avenues
for information storage and retrieval [8,10]. Furthermore, the exploration of chaos and
multiple scrolls in memristor-cascaded Hopfield networks underscores their rich dynamical
repertoire [11–13]. Symmetric behaviors observed in bi-neuron Hopfield networks hint at
their robustness and potential for pattern recognition tasks [14]. Synapse-coupled archi-
tectures have revealed intriguing phenomena such as initial sensitivity, further enhancing
our understanding of network dynamics [15]. Additionally, the incorporation of hidden
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neurons has bolstered the recognition abilities of Hopfield models, paving the way for
more sophisticated cognitive architectures capable of long-term memory storage [16–19].

The attraction of Hopfield networks lies not only in their theoretical elegance but also
in their myriad practical applications. Image encryption utilizing Hopfield networks has
garnered considerable attention due to its promise of robust security and efficient encoding
schemes [20–23]. Beyond encryption, these networks have found utility in various artificial
intelligence applications, harnessing their associative memory properties for tasks such as
pattern recognition and optimization [24]. Implementation-wise, the realization of both
continuous and discrete Hopfield networks has been achieved using diverse hardware
platforms, ranging from STM32 microcontrollers to DSPs and analog circuits [25,26]. In
other papers, authors focus on optimizing the realization of Hopfield networks through
both analog and digital circuit implementations, aiming to harness the full potential of
these networks in practical applications [27–30].

This paper introduces a novel approach to a coupled bi-Hopfield network, unraveling
its dynamics and laying the groundwork for its practical deployment. By delving into
the intricacies of network realization and dynamics, we aim to facilitate its application. A
comparison of this work related to published ones is made in Table 1.

Table 1. A comparison of this work related to published ones.

References Number of Neurons Coexisting Attractors Implementation Applications

[8] 3 Yes Pspice and DSP board NA

[9] 4 Yes NA Image encryption

[10] 3 Yes Hardware breadboard NA

[12] 3 Yes PSIM simulation NA

[14] 2 Yes PSIM circuit simulation NA

This work 2 Yes Microcontroller Biomedical image encryption

2. System Description and Mathematical Model

In this work, we consider a multi-state flux-controlled memristor described as{
iM = W(z)VM = cos(z)VM.
z = sin(z)− VM

(1)

where W(z) is the memductance.
In order to characterize the elaborated memristor described above, we apply an exter-

nal force vM = A sin(2π f t) into the memristor. The I-V characteristics of the considered
memristor are presented in Figure 1. All system parameter values are given in the figure
caption. From Figure 1c, we can remark that the hysteresis loop areas retain the same
shapes and the characteristic has different states depending on the initial conditions. Thus,
the considered memristor is multistable.

We use the multi-state flux-controlled memristor described above to couple two
neurons, as shown in Figure 2.

In Figure 2, an electromagnetic induction current, created by the difference in mem-
brane potential between the two neurons, flows between the two neurons. This electro-
magnetic induction current influences the two neurons, and the state equations can be
expressed as follows 

.
x = −x + T11 f (x) + T12 f (y) + kW(φ)VM.
y = −y − T21 f (x) + T22 f (y)− kW(φ)VM.
z = VM − φ

(2)
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The parameters T11, T12, T21, and T22 represent the synaptic connection weights con-
sidering constant. ρ represents the memristor coupling strength parameter, f (x) and f (y)
are applied to activate the neurons and expressed as

f (u) = tanh(2u − 3) + tanh(2u + 3)− 2tanh(2u) (3)

By taking a synaptic weight matrix as follows

T =

(
T11 T12
T21 T22

)
=

(
0 γ
−1 0

)
(4)

We obtain the multistable memristor synapse-based coupled bi-Hopfield neuron
model as 

.
x = −x + γ f (y) + ρ cos(z)(y − x)
.
y = −y − f (x)− ρ cos(z)(y − x)
.
z = sin(z)− (y − x)

(5)

In system (5), the auto-connection weights for the two Hopfield neurons are set to zero
in order to simplify the final model.
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Figure 1. I-V characteristics of the considered memristor. (a) A = 1 V, 2 V, 3 V, 4 V and f = 1 Hz;
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3. Equilibrium Analysis

The equilibrium can be expressed as

P = (x0, y0, z0) (6)
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in which z0 = sin−1(y0 − x0), x0 and y0 are solved using the following equations H1(x0, y0) = −x0 + γ f (y0) + ρ(y0 − x0)
√

1 − (y0 − x0)
2

H2(x0, y0) = −y0 − f (x0)− ρ(y0 − x0)
√

1 − (y0 − x0)
2

(7)

where f (x0) and f (y0) are the functions used to activate the neurons.
The Jacobin matrix can be calculated at P as

JP =

 −1 − ρ cos(z0) γ f ′(y0) + ρ cos(z0) −ρ sin(z0)(y0 − x0)
ρ cos(z0)− f ′(x0) −1 − ρ cos(z0) ρ sin(z0)(y0 − x0)

1 −1 cos(z0)

 (8)

in which f ′(u) = 2
(

sech2(2u − 3) + sech2(2u + 3)− 2sech2(2u)
)

.
According to Equation (7), the features of the equilibrium states P are studied based

on the system parameters γ and ρ. The two functions H1(x0, y0) and H2(x0, y0) given in
Equation (7) with the parameters (γ, ρ) = (0.7, 1) are plotted in Figure 3. The values of x0
and y0 are determined at the intersections of the two function curves.
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Figure 3. Determination of the equilibrium states x0 and y0, which are indicated by the intersections
of two function curves.

From Figure 3, system (5) has three equilibrium states for (γ, ρ) = (0.7, 1). The
analysis of these equilibrium states is presented in Table 2.

Table 2. Equilibria and their stability.

ρ γ Equilibria Eigenvalues Stability

1 0.7
P0 = (0, 0, 0) 1, −1.1 ± j3.2941 Unstable saddle point (USP)

P1, 2 = (±0.62, ±0.29, ∓0.3363) −1.0927 ± j2.3594, 0.9406 Unstable saddle point (USP)

From the results in Table 2, we can conclude that the equilibrium points are unstable
saddle points for the considered values of the system parameters γ and ρ.
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4. Numerical Study

Bifurcation diagrams associated with corresponding Lyapunov exponents as a function
of system parameters, as well as initial states, phase portraits, and basin of attraction, are
computed to illustrate the complicated behaviors of the model under consideration.

Figure 4 shows the bifurcation diagram and Lyapunov exponents versus ρ computed
from 1 to 2, for γ = 0.7 and (x(0), y(0), z(0)) =

(
0, 10−9, 0

)
.
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exponents for γ = 0.7 and (x(0), y(0), z(0)) =

(
0, 10−9, 0

)
.

Figure 4 reveals that chaos occurs in the considered model through period-doubling
bifurcation. We can identify some windows indicating periodic oscillations intercalated by
chaos. The route to chaos is confirmed by plotting phase spaces presented in Figure 5, for
γ = 0.7 and diverse selected values of ρ.

It is very clear from Figure 5 that the system in the study displays complex and
abundant patterns.

The impact of the initial state z(0) associated with the memristor on the comportments
of the model is shown in Figure 6, for γ = 0.7 and ρ = 1.97.

The initial state z(0) considerably impacts the dynamic behavior of the considered
model (see Figure 6).

Phase portraits and basin of attraction are shown in Figures 7 and 8 in order to support
the result carried out in Figure 6, for γ = 0.7 and ρ = 1.97.
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Figure 5. Phase spaces confirming the occurrence of chaos in the system for γ = 0.7,
(x(0), y(0), z(0)) =

(
0, 10−9, 0

)
and diverse selected values of ρ: (a) period-1 for ρ = 1.087,

(b) period-2 for ρ = 1.1, (c) period-3 for ρ = 1.105, (d) chaos for ρ = 1.107, (e) period-3 for ρ = 1.13,
(f) period-6 for ρ = 1.134, (g) chaos for ρ = 1.14, (h) chaos for ρ = 1.15, (i) chaos for ρ = 1.4,
(j) period-3 for ρ = 1.728, (k) period-6 for ρ = 1.972.
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5. Experimental Study

We carried out here a microcontroller implementation of the system. Implementing
chaotic systems using microcontrollers has many advantages over using electronic compo-
nents. These advantages include high computing performances, excellent precision, flexibil-
ity and stability, and the facility to manage the system parameters conveniently [25–29]. In
this work, we use an Arduino Due microcontroller card, which is constructed with an Atmel
SAM3X8E ARM Cortex-M3 processor having a clock frequency of 84 MHz. Compared with
other boards, this card has the advantage of incorporating two digital-to-analog converters,
which makes it easy to implement chaotic systems. The main steps, which describe the
implementation procedure of the elaborated multistable memristor synapse-based coupled
bi-Hopfield neuron model, are shown in Figure 9.

The microcontroller implements the discrete form of system (5) using the Runge–Kutta
algorithm with a fixed iteration step size of 0.01. The model parameters and initial condi-
tions are chosen as they have identical values to those used in the numerical simulations.
The hardware implementation devices are shown in Figure 10.
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Figure 10. Hardware implementation devices. The dual-channel digital oscilloscope displays a
chaotic attractor in the plane (Vz − Vy) for γ = 0.7, ρ = 1.15, and (x(0), y(0), z(0)) =

(
0, 10−9, 0

)
.

Figure 11 shows the route to chaos for a fixed value of γ and specific values of the
coupling strength ρ.

The results carried out from the microcontroller implementation (see Figure 11) are
very similar to those obtained from numerical simulations (see Figure 5). This confirms
that the Arduino Due microcontroller card is able to investigate the complete dynamics of
the designed multistable memristor synapse-based coupled bi-Hopfield neuron model.
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Figure 11. Phase portraits for γ = 0.7 and specific values of the coupling strength ρ: (a) period-1 for
ρ = 1.087, (b) period-2 for ρ = 1.1, (c) period-3 for ρ = 1.105, (d) chaos for ρ = 1.107, (e) period-3 for
ρ = 1.13, (f) period-6 for ρ = 1.134, (g) chaos for ρ = 1.14, (h) chaos for ρ = 1.15, (i) chaos for ρ = 1.4,
(j) period-3 for ρ = 1.728, (k) period-6 for ρ = 1.972, and (x(0), y(0), z(0)) =

(
0, 10−9, 0

)
.

6. Application of the Designed Model for Biomedical Encryption Image

We exploit here the abundant dynamics of the elaborated model for image encryption.

6.1. Designing of Encryption Algorithm

Figure 12 presents the encryption algorithm.
There are five steps in the algorithm:

(1) Integrate the chaotic system and carry out the public key KP(i);
(2) Generate and test the random bits to construct the key KS(i);
(3) In the layer of permutation, build the permuted image P(i) with the initial image and

the public key KP(i);
(4) Introduce the permuted image into the layer of confusion, which works with the S-box

function to construct the confused image C(i);
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(5) Using a substitution operation (XOR), combine the image resulting from the confusion
layer C(i) with the key KS(i) to obtain the masked image.
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For the decryption process, we apply the reverse of all operations realized during the
encryption procedure.

The NIST test results are shown in Table 3.

Table 3. NIST test results.

Name of the Considered Test
p-Value Test Results

x y z

Frequency 0.17360 0.50790 0.49918 Validated

Block-frequency 0.18189 0.14409 0.18861 Validated

Runs 0.96599 0.15381 0.21472 Validated

Longest runs of ones 0.63350 0.65267 0.74264 Validated

Rank 0.49885 0.49928 0.44669 Validated

DFT 0.79219 0.30442 0.25890 Validated

No overlapping templates 0.59850 0.07790 0.04530 Validated

Overlapping templates 0.28548 0.37728 0.79657 Validated

Universal 0.76180 0.99902 0.35890 Validated

Linear complexity 0.79980 0.22241 0.94489 Validated

Serial test 1 0.81870 0.68489 0.22395 Validated

Serial test 2 0.34090 0.70814 0.11562 Validated

Approximate entropy 0.43162 0.72734 0.61123 Validated

Cumulative sums (forward) 0.26100 0.82875 0.45276 Validated

Random excursions x = 1 0.51045 0.57860 0.35246 Validated

Random excursions variant x = 1 0.96169 0.59897 0.84990 Validated

As all p-values in Table 3 are greater than the standard value 0.001, all NIST tests are validated.
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6.2. Numerical Results

The numerical results are carried out in MATLAB16b environment. We use biomed-
ical images of size 256 × 256 for cerebrovascular accident, pulmonary fibrosis, and lung
cancer. Applying the encryption and decryption algorithm described below, the results for
encrypted and decrypted biomedical images are shown in Figure 13.
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Figure 13. Numerical results: (a) initial image of cerebrovascular accident, (b) initial image of pulmonary
fibrosis, (c) initial image of lung cancer, (d) encrypted image of cerebrovascular accident, (e) encrypted
image of pulmonary fibrosis, (f) encrypted image of lung cancer, (g) decrypted image of cerebrovascular
accident, (h) decrypted image of pulmonary fibrosis, (i) decrypted image of lung cancer.

We can see that the unencrypted biomedical images (see Figure 13a–c) are very differ-
ent from those obtained after the decryption process (see Figure 13d–f). Thus, the algorithm
is efficient.

6.3. Analysis of Performances of the Elaborated Biomedical Image Encryption Method
6.3.1. Analysis of Key Space and Key Sensibility

To withstand exhaustive attacks, the key space of the cryptosystem must exceed
2100 [31]. Our elaborated multistable memristor synapse-based coupled bi-Hopfield neuron
model involves two constant system parameters and three initial states. For a precision of
1017, the key space is 1017×3 = 1085, which exceeds the required value. This confirms that
the developed algorithm will be able to withstand exhaustive attacks.

The key sensitivity is analyzed by introducing a small perturbation of 1017 to all
parameters of the system before the decryption of the sending image (cerebrovascular
accident), as reported in Figure 14.
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means that the correlation coefficients of the initial image are highly correlated and those 
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rithm will resist statistical aggressions. 

Figure 14. Results of slight key modification: (a) correct keys, (b) γ + 10−17, (c) ρ + 10−17,
(d) x(0) + 10−17, (e) y(0) + 10−17, and (f) z(0) + 10−17.

Looking at Figure 14, the key changes 1017, generating a high impact on the decrypted
image. The initial image can no longer be received after a small key modification. We can
conclude that this algorithm is very sensitive to secret keys.

6.3.2. Information Entropy

The entropy is examined using its expression [32]

H(m) = −
N

∑
i=0

P(mi) log2P(mi) (9)

in which N and P(mi) refer to the total number and frequency of occurrences of symbol mi,
respectively.

The entropy is reported in Table 4, and its value for encrypted images approaches the
standard value 8, which means that the encrypted image is more random. This confirms
the good performance of the scheme.

Table 4. Information entropies of initial images and their corresponding encrypted versions.

Entropy
Gray-Scale Images

Cerebrovascular Accident Pulmonary Fibrosis Lung Cancer

Initial image 5.9029 7.3089 6.0119

Encrypted version 7.9972 7.9974 7.9973

6.3.3. Correlation Analysis

The correlation coefficient (CC) is calculated using its expression [33]

E(x) =
1
N

N
∑

i=1
xi

D(x) =
1
N

N
∑

i=1
(xi − E(x))2

cov(x, y) =
1
N

N
∑

i=1
(xi − E(x))(yi − E(y))

rxy =
cov(x, y)√
D(x)

√
D(y)

(10)
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in which x and y are the pixel values. The CC is reported in Table 5.

Table 5. Computed correlation coefficients.

Direction

Gray-Scale Images

Initial Image Encrypted Version

Cerebrovascular
Accident

Pulmonary
Fibrosis Lung Cancer Cerebrovascular

Accident
Pulmonary

Fibrosis Lung Cancer

Horizontal 0.9440 0.9923 0.9434 0.0048 −0.0019 −0.0024

Vertical 0.9487 0.9927 0.9668 0.0022 −0.0020 −0.0034

Diagonal 0.9004 0.9868 0.9255 0.0064 −0.0026 −0.0025

Average 0.9310 0.9906 0.9452 0.0045 −0.0022 −0.0027

Looking at the values in Table 5, we can remark that the values of correlation coefficient
in horizontal, vertical, and diagonal directions of the image approach the standard values
(i.e., CC is 1 for initial biomedical images and 0 for their encrypted versions). This means
that the correlation coefficients of the initial image are highly correlated and those for the
encrypted image are uncorrelated. In conclusion, the designed encryption algorithm will
resist statistical aggressions.

6.3.4. Histogram Study

The histogram should dispose uniformly for an encrypted image and randomly for an
unencrypted one. Figure 15 illustrates the distribution of the pixels of biomedical images.
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Figure 15. The distribution of the pixels of the unencrypted images (a), encrypted images (b), and
decrypted images (c).
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From Figure 15, we can see that the histograms of the unencrypted images and those
of the encrypted ones are completely different. The distribution of the pixels of the initial
image is random and the one of the encrypted image is uniform, respecting the above
characteristics. Thus, the biomedical image encryption system can resist differential attacks.

6.3.5. Impacts of External Perturbations and Information Loss on the Performances of
the Scheme

Every encryption system is subjected to external perturbations and information loss.
Therefore, it is necessary to study their impacts on the performance of the encryption
system. Two different external perturbations, namely, Gaussian and Salt and Pepper
noise, are subjected to the initial images before using them in the encryption system. The
results for decrypted images are shown in Figure 16(a2(i)–a2(iii)) for Gaussian noise and
Figure 16(b2(i)–b2(iii)) for Salt and Pepper noise. The intensity of each noise is indicated
in the figure caption. Similarly, a part of the unencrypted image (see Figure 16(c1(i)–c1(iii))
is canceled before encryption. Figure 16(c2(i)–c2(iii)) present decrypted images. The
percentage of the canceled data is indicated in the figure caption.
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encrypted image with 1/32, 1/16 , and 1/4 information loss, respectively. (c2(i)–c2(iii)) correspond-
ing decrypted images.

From Figure 16, we observe that, although a part of the initial image has been canceled
and the noise has been subjected to the encryption system, the decrypted images remain
exploitable. These results mean that the designed encryption algorithm has the ability to
prevent noise and occlusion attacks.

6.3.6. NPCR and UACI Analysis

The performance of an encryption system is influenced by differential attacks. Com-
mon methods called NPCR and UACI are used to study their effects on the encryption
system. They are expressed as [34]:
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m
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d(i, j)
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in which d(i, j) is defined by: d(i, j) =
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(12)

NPCR and UACI are computed and their values are recorded in Table 6.

Table 6. NPCR and UACI test results.

Plaintext Sensitivity

Images NPCR (%) UACI (%)

Cerebrovascular accident 99.6201 30.5290

Pulmonary fibrosis 99.6094 28.3197

Lung cancer 99.5773 33.3278
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From the data in Table 6, we can conclude that the encryption system is impacted by
small modifications of the image’s pixels. This means that the studied image encryption
algorithm has a strong capacity to resist differential attacks.

6.3.7. Comparison of this Scheme with Certain Recent Encryption Methods

The performance of the image encryption scheme is compared with that of certain
recent studies and the comparisons are recorded in Table 7.

Table 7. Comparison of this image encryption scheme with certain recent encryption methods.

Algorithm Entropy
Correlation Coefficients of Adjacent Pixels

NPCR (%) UACI (%)
H V D

Our algorithm 7.9971 −0.0048 0.0034 −0.0013 99.5651 30.6253

Ref. [35] 7.8152 0.0692 0.0544 0.0396 96.42 27.35

Ref. [36] 7.9964 −0.0057 −0.0034 0.0073 99.6185 33.6245

Ref. [37] 7.9972 −0.0245 −0.0193 −0.0226 99.60 28.62

Ref. [38] 7.9969 0.0059 0.0016 0.0029 99.2172 33.4639

The results of Table 7 confirm that the developed image encryption algorithm is more robust than some of the
ones studied in recent works.

7. Conclusions

We designed a Hopfield neural network with a multistable memristor and its use
for encoding biomedical image encryption. The equilibrium states, their stability, and
the dynamics of the model were studied. Numerical simulations revealed that the model
exhibits abundant and complicated comportments such as periodic orbits, chaos, and
homogenous coexisting chaotic attractors. The model was realized using a microcontroller
board. Numerical results and those obtained from the microcontroller looked very similar.
The attractive behaviors of the Hopfield neural network were used to construct a scheme
to mask images of cerebrovascular accidents, pulmonary fibrosis, and lung cancer. The
performance of the scheme was verified by computing different statistical and security tests.

In future work, to construct a high-order neural network model that is closer to the
biological one, we will use a non-polynomial memristor to couple two sub-neural networks.
The two sub-neural networks will represent two different encephalic regions in the brain.

Author Contributions: Conceptualization, V.K.T.; Investigation, A.L.M.B.; Methodology, V.K.T.;
Resources, V.-T.P.; Software, A.L.M.B.; Visualization, G.G.; Writing—original draft, V.-T.P.; Writing—
review and editing, G.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition;

Cambridge University Press: Cambridge, UK, 2014. [CrossRef]
2. Yu, Z.; Abdulghani, A.M.; Zahid, A.; Heidari, H.; Imran, M.A.; Abbasi, Q.H. An overview of neuromorphic computing for

artificial intelligence enabled hardware-based hopfield neural network. IEEE Access 2020, 8, 67085–67099. [CrossRef]
3. Sun, J.; Sathasivam, S.; Ali, M.K.B.M. Analysis and Optimization of Network Properties for Bionic Topology Hopfield Neural

Network Using Gaussian-Distributed Small-World Rewiring Method. IEEE Access 2022, 10, 95369–95389. [CrossRef]
4. Tsodyks, M.V. Hierarchical associative memory in Neural Networks with Low Activity Level. Mod. Phys. Lett. B 1990, 4, 259–265.

[CrossRef]
5. Miller, N.E.; Mukhopadhyay, S. A quantum Hopfield associative memory implemented on an actual quantum processor. Sci. Rep.

2021, 11, 23391. [CrossRef] [PubMed]

https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1109/ACCESS.2020.2985839
https://doi.org/10.1109/ACCESS.2022.3204821
https://doi.org/10.1142/S0217984990000325
https://doi.org/10.1038/s41598-021-02866-z
https://www.ncbi.nlm.nih.gov/pubmed/34862426


Electronics 2024, 13, 2414 18 of 19

6. Alway, A.; Zamri, N.E.; Mansor, M.A.; Kasihmuddin, M.S.M.; Jamaludin, S.Z.M.; Marsani, M.F. A novel Hybrid Exhaustive
Search and data preparation technique with multi-objective Discrete Hopfield Neural Network. Decis. Anal. J. 2023, 9, 100354.
[CrossRef]

7. Karpov, Y.L.; Karpov, L.E.; Smetanin, Y.G. Some Aspects of Associative Memory Construction Based on a Hopfield Network.
Program. Comput. Softw. 2020, 46, 305–311. [CrossRef]

8. Huang, L.L.; Zhang, Y.; Xiang, J.H.; Liu, J. Extreme Multistability in a Hopfield Neural Network Based on Two Biological Neuronal
Systems. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4568–4572. [CrossRef]

9. Sun, L.; Luo, J.; Qiao, Y. Initial Offset Boosting Dynamics in A Memristive Hopfield Neural Network and Its Application in Image
Encryption. Jisuan Wuli/Chin. J. Comput. Phys. 2023, 40, 106. [CrossRef]

10. Lin, H.; Wang, C.; Tan, Y. Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network
affected by electromagnetic radiation. Nonlinear Dyn. 2020, 99, 2369–2386. [CrossRef]

11. Lin, H.; Wang, C.; Yao, W.; Tan, Y. Chaotic dynamics in a neural network with different types of external stimuli. Commun.
Nonlinear Sci. Numer Simul. 2020, 90, 105390. [CrossRef]

12. Li, R.; Dong, E.; Tong, J.; Wang, Z. A Novel Multiscroll Memristive Hopfield Neural Network. Int. J. Bifurc. Chaos 2022, 32,
2250130. [CrossRef]

13. Chen, C.; Min, F.; Cai, J.; Bao, H. Memristor Synapse-Driven Simplified Hopfield Neural Network: Hidden Dynamics, Attractor
Control, and Circuit Implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 2308–2319. [CrossRef]

14. Chen, C.; Min, F. Memristive bi-neuron Hopfield neural network with coexisting symmetric behaviors. Eur. Phys. J. Plus 2022,
137, 841. [CrossRef]

15. Biamou, A.L.M.; Tamba, V.K.; Kuate, G.C.G.; Tagne, F.K.; Takougang, A.C.N.; Fotsin, H.B. Initial states-induced complex behaviors
in a memristive coupled Hopfield neural network model and its application in biomedical image encryption. Phys. Scr. 2024, 99,
015215. [CrossRef]

16. Benedetti, M.; Dotsenko, V.; Fischetti, G.; Marinari, E.; Oshanin, G. Recognition capabilities of a Hopfield model with auxiliary
hidden neurons. Phys. Rev. E 2021, 103, L060401. [CrossRef]

17. Wen, L.; Ong, C.K. Study of Short-Term and Long-Term Memories by Hodgkin-Huxley Memristor. Int. J. Bifurc. Chaos 2024, 34,
2450040. [CrossRef]

18. Chen, C.; Min, F.; Zhang, Y.; Bao, B. Memristive electromagnetic induction effects on Hopfield neural network. Nonlinear Dyn.
2021, 106, 2559–2576. [CrossRef]

19. Li, C.; Yang, Y.; Yang, X.; Zi, X.; Xiao, F. A tristable locally active memristor and its application in Hopfield neural network.
Nonlinear Dyn. 2022, 108, 1697–1717. [CrossRef]

20. Isaac, S.D.; Njitacke, Z.T.; Tsafack, N.; Tchapga, C.T.; Kengne, J. Novel compressive sensing image encryption using the dynamics
of an adjustable gradient Hopfield neural network. Eur. Phys. J. Spec. Top. 2022, 231, 1995–2016. [CrossRef]

21. Deng, Q.; Wang, C.; Lin, H. Chaotic dynamical system of Hopfield neural network influenced by neuron activation threshold and
its image encryption. Nonlinear Dyn. 2024, 112, 1–18. [CrossRef]

22. Xu, S.; Wang, X.; Ye, X. A new fractional-order chaos system of Hopfield neural network and its application in image encryption.
Chaos Solitons Fractals 2022, 157, 111889. [CrossRef]

23. Venkatesh, J.; Pchelintsev, A.N.; Karthikeyan, A.; Parastesh, F.; Jafari, S. A Fractional-Order Memristive Two-Neuron-Based
Hopfield Neuron Network: Dynamical Analysis and Application for Image Encryption. Mathematics 2023, 11, 4470. [CrossRef]

24. Ji, Y.; Wang, L.; Xie, D. Balance optimization method of energy shipping based on Hopfield neural network. Alex. Eng. J. 2023, 67,
171–181. [CrossRef]

25. Bao, H.; Ding, R.; Liu, X.; Xu, Q. Memristor-cascaded hopfield neural network with attractor scroll growth and STM32 hardware
experiment. Integration 2024, 96, 102164. [CrossRef]

26. Ma, T.; Mou, J.; Yan, H.; Cao, Y. A new class of Hopfield neural network with double memristive synapses and its DSP
implementation. Eur. Phys. J. Plus 2022, 137, 1135. [CrossRef]

27. Tlelo-Cuautle, E.; Díaz-Muñoz, J.D.; González-Zapata, A.M.; Li, R.; León-Salas, W.D.; Fernández, F.V.; Guillén-Fernández, O.;
Cruz-Vega, I. Chaotic image encryption using hopfield and hindmarsh–rose neurons implemented on FPGA. Sensors 2020,
20, 1326. [CrossRef]

28. Yu, F.; Lin, Y.; Xu, S.; Yao, W.; Gracia, Y.M.; Cai, S. Dynamic Analysis and FPGA Implementation of a New Fractional-Order
Hopfield Neural Network System under Electromagnetic Radiation. Biomimetics 2023, 8, 559. [CrossRef]

29. Chen, C.; Min, F.; Hu, F.; Cai, J.; Zhang, Y. Analog/digital circuit simplification for Hopfield neural network. Chaos Solitons
Fractals 2023, 173, 113727. [CrossRef]

30. Chen, C.; Min, F.; Zhang, Y.; Bao, H. ReLU-type Hopfield neural network with analog hardware implementation. Chaos Solitons
Fractals 2023, 167, 113068. [CrossRef]

31. Seyedzadeh, S.M.; Mirzakuchaki, S. A fast color image encryption algorithm based on coupled two-dimensional piecewise
chaotic map. Signal Process 2012, 92, 1202–1215. [CrossRef]

32. Zhu, S.; Zhu, C. Image encryption algorithm with an avalanche effect based on a six-dimensional discrete chaotic system.
Multimed. Tools Appl. 2018, 77, 29119–29142. [CrossRef]

33. Gao, T.G.; Chen, Z.Q. A new image encryption algorithm based on hyper-chaos. Phys. Lett. A 2008, 372, 394–400. [CrossRef]

https://doi.org/10.1016/j.dajour.2023.100354
https://doi.org/10.1134/S0361768820050023
https://doi.org/10.1109/TCSII.2022.3183340
https://doi.org/10.19596/j.cnki.1001-246x.8547
https://doi.org/10.1007/s11071-019-05408-5
https://doi.org/10.1016/j.cnsns.2020.105390
https://doi.org/10.1142/S0218127422501309
https://doi.org/10.1109/TCSI.2024.3349451
https://doi.org/10.1140/epjp/s13360-022-03050-6
https://doi.org/10.1088/1402-4896/ad0f7f
https://doi.org/10.1103/PhysRevE.103.L060401
https://doi.org/10.1142/S0218127424500408
https://doi.org/10.1007/s11071-021-06910-5
https://doi.org/10.1007/s11071-022-07268-y
https://doi.org/10.1140/epjs/s11734-022-00472-2
https://doi.org/10.1007/s11071-024-09384-3
https://doi.org/10.1016/j.chaos.2022.111889
https://doi.org/10.3390/math11214470
https://doi.org/10.1016/j.aej.2022.12.038
https://doi.org/10.1016/j.vlsi.2024.102164
https://doi.org/10.1140/epjp/s13360-022-03353-8
https://doi.org/10.3390/s20051326
https://doi.org/10.3390/biomimetics8080559
https://doi.org/10.1016/j.chaos.2023.113727
https://doi.org/10.1016/j.chaos.2022.113068
https://doi.org/10.1016/j.sigpro.2011.11.004
https://doi.org/10.1007/s11042-018-6078-2
https://doi.org/10.1016/j.physleta.2007.07.040


Electronics 2024, 13, 2414 19 of 19

34. Behnis, S.; Akhshani, A.; Ahadpour, S.; Mahnodi, H.; Akhavan, A. A fast-chaotic encryption scheme based on piecewise nonlinear
chaotic maps. Phys. Lett. A 2007, 366, 391–396. [CrossRef]

35. Faragallah, O.S. Efficient confusion–diffusion chaotic image cryptosystem using enhanced stan-dard map. SIViP 2015,
9, 1917–1926. [CrossRef]

36. De Dieu, N.J.; Ruben FS, V.; Nestor, T.; Zeric, N.T.; Jacques, K. Dynamic analysis of a novel chaotic system with no linear terms
and use for DNA-based image encryption. Multimed. Tools Appl. 2022, 81, 10907–10934. [CrossRef]

37. Chai, X.; Chen, Y.; Broyde, L. A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers. Eng.
2017, 88, 197–213. [CrossRef]

38. Wei, X.; Guo, L.; Zhang, Q.; Zhang, J.; Lian, S. A novel color image encryption algorithm based on DNA sequence operation and
hyper-chaotic system. J. Syst. Softw. 2012, 85, 290–299. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.physleta.2007.01.081
https://doi.org/10.1007/s11760-014-0683-y
https://doi.org/10.1007/s11042-022-12044-6
https://doi.org/10.1016/j.optlaseng.2016.08.009
https://doi.org/10.1016/j.jss.2011.08.017

	Introduction 
	System Description and Mathematical Model 
	Equilibrium Analysis 
	Numerical Study 
	Experimental Study 
	Application of the Designed Model for Biomedical Encryption Image 
	Designing of Encryption Algorithm 
	Numerical Results 
	Analysis of Performances of the Elaborated Biomedical Image Encryption Method 
	Analysis of Key Space and Key Sensibility 
	Information Entropy 
	Correlation Analysis 
	Histogram Study 
	Impacts of External Perturbations and Information Loss on the Performances of the Scheme 
	NPCR and UACI Analysis 
	Comparison of this Scheme with Certain Recent Encryption Methods 


	Conclusions 
	References

