
Citation: Kausar, A.; Ahmad, I.;

Maaza, M.; Eisa, M.H.; Bocchetta, P.

Polymer/Fullerene Nanocomposite

for Optoelectronics—Moving toward

Green Technology. J. Compos. Sci.

2022, 6, 393. https://doi.org/

10.3390/jcs6120393

Academic Editors: Francesco

Tornabene and Thanasis Triantafillou

Received: 18 October 2022

Accepted: 13 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Polymer/Fullerene Nanocomposite for
Optoelectronics—Moving toward Green Technology
Ayesha Kausar 1,2,3,* , Ishaq Ahmad 1,2,3, Malik Maaza 2, M. H. Eisa 4 and Patrizia Bocchetta 5,*

1 NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering,
Northwestern Polytechnical University, Xi’an 710072, China

2 UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS,
Somerset West 7129, South Africa

3 NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering,
National Centre for Physics, Islamabad 44000, Pakistan

4 Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh 13318, Saudi Arabia

5 Department of Innovation Engineering, University of Salento, Edificio La Stecca, Via per Monteroni,
73100 Lecce, Italy

* Correspondence: dr.ayeshakausar@yahoo.com (A.K.); patrizia.bocchetta@unisalento.it (P.B.)

Abstract: Optoelectronic devices have been developed using the polymer/fullerene nanocomposite,
as focused in this review. The polymer/fullerene nanocomposite shows significant structural, elec-
tronics, optical, and useful physical properties in optoelectronics. Non-conducting and conducting
polymeric nanocomposites have been applied in optoelectronics, such as light-emitting diodes, solar
cells, and sensors. Inclusion of fullerene has further broadened the methodological application of the
polymer/fullerene nanocomposite. The polymeric matrices and fullerene may have covalent or phys-
ical interactions for charge or electron transportation and superior optical features. Green systems
have also been explored in optoelectronic devices; however, due to limited efforts, further design
innovations are desirable in green optoelectronics. Nevertheless, the advantages and challenges of
the green polymer/fullerene nanocomposite in optoelectronic devices yet need to be explored.
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1. Introduction

Optoelectronic devices have outstanding optical and electronic properties [1–3]. Opto-
electronic devices can transform electrical energy into light energy using semiconducting
materials [4,5]. Important optoelectronic devices include the light-emitting diode, the
photovoltaic device, and the optical sensor [5–7]. The use of nanocomposites and green
nanomaterials in optoelectronics has been investigated [8,9]. Nanocomposites with high op-
tical transparency and electron transfer properties are preferred for optoelectronics devices.
Nanocomposites have been used in the light-emitting diode and exhibit low price, high
conductivity, and fine optical properties. In photovoltaic devices, nanocomposites provide
high charge transfer, high hole transport, and enhanced power conversion efficiency [10].
Optical sensors have also been developed using nanocomposites for enhanced sensing
properties and applications. Polymer/fullerene nanocomposites have been applied in
optical devices [11], such as the light-emitting diode [12], the photovoltaic device [13],
and the optical sensor [14]. Inclusion of the fullerene nanoparticle in polymers may form
physical or covalent interactions with the polymeric matrices. The polymer/nanofiller may
develop an interconnecting network to facilitate electron transference and photon transfer
properties [15]. For green nanocomposite technology, polymer/fullerene nanocomposites
have been developed and applied. However, extensive efforts are desirable for advanced
green-fullerene-based optoelectronics.

J. Compos. Sci. 2022, 6, 393. https://doi.org/10.3390/jcs6120393 https://www.mdpi.com/journal/jcs

https://doi.org/10.3390/jcs6120393
https://doi.org/10.3390/jcs6120393
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcs
https://www.mdpi.com
https://orcid.org/0000-0003-2497-6115
https://orcid.org/0000-0002-6845-1620
https://doi.org/10.3390/jcs6120393
https://www.mdpi.com/journal/jcs
https://www.mdpi.com/article/10.3390/jcs6120393?type=check_update&version=1


J. Compos. Sci. 2022, 6, 393 2 of 15

In this review, the research progress on the fullerene- and polymer/fullerene-derived
nanocomposite regarding optical devices is discussed. High-performance polymer/fullerene
nanocomposites have been successfully used in the light-emitting diode, photovoltaics,
and the optical sensor.

2. Optoelectronics

Polymer/nanocarbon nanocomposites have been applied in optical and electronic
industries [16,17]. Accordingly, polymer/nanocarbon nanocomposites have been used
in light-emitting diodes, sensors, and electronic devices [18–21]. Among nanocarbons,
graphene, carbon nanotubes, nanodiamond, etc., have been found useful in next-generation
devices [22–25]. Nanocomposites have been fabricated through in situ, solution, melt-
processing, spin-coating, printing, and other chemical and physical methodologies [26–28].
Fullerene is an important type of hollow cage-like nanocarbon nanostructure. Fullerene
is composed of sp2-hybridized carbon atoms with a π-conjugation system [29,30]. The
fullerene molecule is constructed by polygons, i.e., five- to seven-membered rings in the
structure. Fullerene with 60 carbon atoms is named the C60 fullerene molecule, also re-
ferred to as Buckminster fullerene. It was first discovered as a polygon with 60 vertices
and 32 faces [31]. This object is like a football or a soccer ball. Hence, C60 is the most
symmetrical form of fullerene, with superior optical, electrical, magnetic, and pharmaceuti-
cal properties, in addition to the properties of encapsulating small molecules for various
industrial applications. The optical properties of fullerenes have been widely examined in
different solvents through spectroscopic techniques. Furthermore, according to the laws of
quantum mechanics, the nonlinear optical polarizability of fullerene molecules was calcu-
lated and found to be higher than that of the carbon nanotube [31]. An electrical property
study of zero-dimensional fullerene showed that fullerenes have semiconducting-metallic
transitions in the large electric field, similar to the one-dimensional carbon nanotube and
two-dimensional graphene. The magnetic properties of fullerene have been studied using
density functional theory. In the presence of a magnetic field, fullerene exhibits diamag-
netism independent of a metallic or semiconducting nature, similar to the carbon nanotube.
Among pharmaceutical properties, fullerenes have the ability to inhibit the access of toxins
to the catalytic site of enzymes. Moreover, fullerenes may act as radical scavengers and
antioxidants, like other nanocarbons. Similarly, C70 is a higher fullerene analogue having
70 carbon atoms. C70 has excellent catalytic and photovoltaic properties for relevant appli-
cations [32]. The important forms of fullerene include C60 and C70 molecules (Figure 1) [33].
The higher fullerene analogues have also been reported with large cage sizes and a higher
number of carbon atoms [34]. Fullerenes have been prepared using numerous methods,
such as arc discharge, laser irradiation, plasma technique, microwave synthesis, CO2 re-
duction with metallic lithium, and chemical methods [35]. Among these techniques, the
arc discharge method is a successful, advantageous, and widely used method to generate
high-quality fullerene in high yield. The fullerene production time and method parameters
are also easily controllable. The plasma technique and microwave synthesis also produce
good-quality fullerene. However, the plasma and microwave techniques have lower yield,
high cost, and complicated parameters involved, relative to the arc discharge method.
The use of a chemical method usually yields byproducts and has lower fullerene quality
compared to the other methods. Kroto et al. [36] synthesized fullerene via carbon source va-
porization using the laser irradiation method. The resulting fullerene consisted of clusters
of 60 carbon atoms. The plasma technique was used to form good-quality fullerenes [37].
Xie et al. [38] used the microwave plasma synthesis method to attain fullerenes from chloro-
form plasma in a low-pressure and high-temperature argon atmosphere. Chen and Lou [39]
developed fullerene C60 by reduction of CO2 using metallic lithium at 700 ◦C and 100 MPa.
Scott et al. [40] adopted multi-step chemical conditions to convert the carbon precursor to
fullerene C60. Henceforth, several methods were used to synthesize fullerene structures, al-
though all the techniques have relative advantages and disadvantages involved. Fullerene
molecules have fine structural, electronic, optoelectronic, fluorescence, and photochemical
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properties [41–44]. Substituted fullerene nanostructures have also been used to develop
optoelectronics [45–47].
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Figure 1. Comparison of C60 and C70 nanostructures.

Fullerene and derived fullerene molecules have been used in various technical areas,
as shown in Figure 2 [48]. The applications of fullerene include solar cells, fuel cells,
capacitors, sensors, catalysis, and adsorption. In optical devices, electron affinity, charge
transference, optoelectronic features, band gap, and other tunable properties have been
studied. The compatibility between the polymer and fullerene has been improved through
using modified fullerene molecules and an appropriate polymer. Mostly, conjugated
polymers have been found well matched with fullerenes. Especially, the π-conjugated
structure of polythiophene has been found compatible with the fullerene sp2-hybridized
nanocarbon structure [49]. Similarly, polythiophene derivatives have been found to be quite
compatible with the fullerene molecule. Other conjugated polymers, such as polyaniline
and polypyrrole, may also develop π–π stacking interactions with fullerene.
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3. Polymer/Fullerene Nanocomposite for LEDs: Insertion of Green Technology

The term “green technology” means the use of eco-friendly, renewable, and biodegrad-
able materials for desired applications, i.e., optoelectronic devices [50]. In this regard, on
the one hand, green polymers (naturally derived biodegradable) and green nanofillers
have been used to construct these devices. On the other hand, green synthesis methodolo-
gies have been applied to develop desired biodegradable nanomaterials. The ecofriendly
nanocomposites developed for optoelectronics have low cost, light weight, fine processabil-
ity, and electrical and optical properties [51,52]. The green-nanomaterial-derived donor–
acceptor structures possess fine photo-energy conversion for LED devices. Fullerene-based
organic light-emitting diodes (OLEDs) have been focused on in the literature [53,54]. OLEDs
with fullerene nanoparticles have been fabricated due to inexpensiveness and high effi-
ciency for next-generation optoelectronics [55]. OLEDs have been designed using the
polythiophene/fullerene nanocomposite (Figure 3) [56]. In this attempt, the promising
solution-processing approach was used to form low-cost, flexible, and compact sensor
arrays of polythiophene/fullerene. The novelty of the OLED sensing system relies on its
workability in two operating modes, i.e., photoluminescence intensity and decay time
detection modes. The dye-embedded polythiophene/fullerene-derived OLED had a fast
photo-response toward red-emitting dye-based oxygen and glucose sensors. Another
successful design for the LED is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
(PEDOT:PSS) [57]. In another attempt [58], an OLED based on tetracene, indium tin
oxide/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (ITO/PEDOT:PSS),
polycyclopentadithiophene-benzothiadiazole (PCPDTBT), phenyl-C70-butyric acid methyl
ester (PC70BM), and phenyl-C71-butyric acid methyl ester (PC71BM) has been reported.
Figure 4 shows the chemical structures and energy-level diagrams of solar cell devices [58].
It has been observed that the HOMO-LUMO was 5.4 and 3.0 eV for tetracene. PCPDTBT
revealed a HOMO-LUMO of 5.1 and 3.7 eV. Tetracene/PCPDTBT exhibited an energetic
barrier of 0.3 eV for hole extraction. The results suggested that the presence of a conjugated
system promotes electron transport and hole extraction processes. Kang et al. [59] proposed
LED devices with a high power conversion efficiency of 3.1% (AM 1.5 irradiation) and
luminance of 8000 cd/m2 [60]. For green OLED technology, Herrera et al. [61] developed
a nanocomposite system using a green design and fabrication route. Inclusion of a small
amount of polymer/fullerene may modify the optical response of the LED or OLED. Never-
theless, more focused research efforts may be needed to develop green polymer/fullerene
systems to be applied in diode-based devices. In this regard, novel solution-processable
polymer/fullerene-based flexible conductors can be developed to replace the ITO/glass
electrode in these devices. The main advantages of using polymer/fullerene-based materi-
als in LEDs (relative to ITO or glass materials) include design flexibility, light weight, low
cost, and high efficiency. In this regard, the development of new green polymer/fullerene
systems and ecofriendly processing routes must be focused on to form next-generation
efficient, green OLED devices.
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of a bulk heterojunction device [58]. ITO/PEDOT:PSS = indium tin oxide/poly(3,4-
ethylenedioxythiophene):polystyrene sulfonate; PCPDTBT = polycyclopentadithiophene-
benzothiadiazole; PC70BM = phenyl-C70-butyric acid methyl ester; PC71BM = phenyl-C71-butyric
acid methyl ester. Reproduced with permission from Wiley.

4. Polymer/Fullerene Nanocomposite in Solar Cells via the Green Approach

Advanced nanocomposites have always been of interest for application in solar
cells [62–64]. Nanocomposites have good crystallinity, good contact between layers, good
electrical conductivity, and promising light absorption properties, resulting in an improve-
ment in the net efficiency of solar cells [65–67]. The design combination of a conducting
polymer and nanocarbon nanofillers has resulted in enhanced solar cell efficiency [68]. Con-
jugated polymer/nanocarbon nanocomposites mostly act as electron donors, whereas the
nanocarbon performs as the electron acceptor [69,70]. Generally, low-band-gap nanocom-
posites and blends have been found valuable in solar cell application [71]. Initially, various
non-green polymeric nanocomposite systems were used in solar cell devices. PEDOT:PSS
has been applied as an essential solar cell material [72]. PEDOT:PSS possesses fast electron
and hole transportation features. The PEDOT:PSS-based nanocomposite was coated on
the indium tin oxide (ITO) electrode using the spin-casting technique [73]. Consequently,
the morphological, electron-conducting, and solar cell properties of PEDOT:PSS have been
examined [74,75]. In this case, a solar cell efficiency of ~9% was obtained, which was high
enough to obtain a high-performance solar cell device. Another successful system identified
for the solar cell was poly(3-hexylthiophene-2,5-diyl):[6,6]-penyl-C61-butyric-acid-methyl-
ester (P3HT:PCBM) [76]. For bulk heterojunction solar cell application, P3HT:PCBM film
was developed through the spin-casting technique. The power conversion efficiency was
found to be ~3.5%. For the P3HT:PCBM system [77], solvent methods, annealing, and
drying approaches have been found useful. The microstructure analysis and optical mi-
crographs have been obtained (Figure 5). Both micrometer-size crystalline domains and
small domains (<200 nm) have been detected in the micrographs of P3HT:PCBM films [77].
It has been observed that the presence of impurities may produce inhomogeneities in the
samples. The spin-coated and slow-dried nanocomposite showed homogeneous dispersion;
however, impurities were still present in the sample. An important solar cell system was
reported by Roy et al. [78]. Poly(methyl methacrylate) (PMMA), fullerene, quantum dots,
single-walled carbon nanotubes, and reduced graphene oxide were used (Figure 6). Here,
fullerene addition affected the charge carrier ability of the nanocomposites. With fullerene
addition, the power conversion efficiency improved up to 1.15% (Table 1) [78]. PMMA
and fullerene and other nanocarbons have the ability to develop interconnecting pathways
for electron conduction [79,80]. Later research shifted toward the use of green designed
materials and green synthesis approaches in solar cells.
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Figure 5. Optical microscope images for P3HT:PCBM film: (a) untreated (i.e., fast spin coated),
(b) thermally annealed, (c) vapor annealed, and (d) slow dried. Inhomogeneities produced by
impurities in (d) (upper-right corner of image) can often be seen in spin-coated P3HT:PCBM films [77].
P3HT:PCBM = poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester. Reproduced with
permission from Nature.
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Figure 6. Schematic diagram of (a) sequential fabrication of solar cells using different allotropes
of carbon and (b) probable arrangement of different allotropes used during sequential fabri-
cation of carbon solar cells [78]. PMMA = poly(methyl methacrylate); QD = quantum dot;
SWCNT = single-walled carbon nanotube; r-GO = reduced graphene oxide. Reproduced with
permission from ACS.
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Table 1. Solar cell parameters of nanocarbon-based solar cells [78]. PMMA/C60 = poly(methyl
methacrylate)/fullerene C60; PCE = photo-conversion efficiency; Jsc = short-circuit current density;
Voc = open-circuit voltage; FF = fill factor. Reproduced with permission from ACS.

Cell Voc (mV) Jsc (mA·cm−2) FF PCE (%)

No PMMA/C60 500 1.54 0.56 0.56
PMMA/C60 506 3.93 0.59 1.15

For green nanocomposite technology, polymer/fullerene systems have been designed
and studied in the literature [81]. However, limited reports have focused on the use of green
polymers and green fabrication routes for solar cells. Amb et al. [82] designed conjugated
polymer/fullerene-based blue-green solar cells using the thin-film deposition technique,
i.e., spin coating. They reported a blue-green-colored low-bandgap polymer (PGREEN)-
based nanocomposite (Figure 7) [82]. The poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric
acid methyl ester (PCBM)-based nanocomposite was used as a light-absorbing layer.
The spin-coated PCBM-based PGREEN revealed fine solar cell performance. The donor–
acceptor bulk heterojunction solar cell design is given in Figure 8 [82]. The J–V features
of the devices with the PGREEN nanocomposite are also give in Figure 8. With fullerene
inclusion, the solar cell system had a power conversion efficiency of up to 1.92%. The results
were observed due to the high electron mobility of fullerenes effectively promoting charge
dissociation and transportation in solar cell devices. Khlyabich et al. [83] reviewed the
use of polymer/fullerene designs using non-halogenated solvent systems, such as toluene
and tetrahydrofuran. Recent efforts have focused on the replacement of non-halogenated
organic solvents with green solvent systems, such as water and ionic liquid [84]. The green-
solvent-based methods have been successful in the fabrication of photoactive fullerene
solar cells. Lee et al. [85] also proposed routes to develop polymer solar cells with a power
conversion efficiency of >17%. Such solar cells have been developed using the green sol-
vent and green fabrication route (Figure 9) [85]. The appropriate material design, choice
of processing technique, and choice of solvent may lead to the formation of green solar
cells on a large scale. Thus, green polymer/fullerene systems provide a roadmap to design
efficient green future solar cell materials. The latest advances in perovskite solar cells have
also pointed out the use of fullerene molecules [86]. Thus, fullerene-based high-efficiency
perovskite solar cells have been reported. The inclusion of fullerene molecules in interfacial
selective electron extraction layers in perovskite have remarkably improved the solar cell
efficiency and device stability [87]. In this regard, facile processing methods have been
used to form perovskite films. In conclusion, fullerene-based perovskite solar cells have
been produced for large-scale and commercial applications [88].
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5. Polymer/Fullerene for Optical Sensors: On the Road to Green Nanocomposites

Optical or electronic sensors have been reported using various relevant
materials [89–91]. Conducting polymers have notable electron donor or acceptor proper-
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ties valuable for sensor applications [92]. Consequently, conducting polymers have been
used for optical, electrical, and sensing properties. The conducting polymer/nanocarbon
nanocomposite has also been prepared and analyzed [93,94]. Nanocarbon nanostructures,
such as graphene and carbon nanotubes, have been applied in sensing applications [95].
Among conducting polymers, polyaniline has been frequently chosen for optical sens-
ing [96–98]. The sensing mechanism of the nanocomposite has been found dependent
on the matrix–nanofiller interactions and interface development [99–101]. Similarly, the
conducting polymer/fullerene nanocomposite has been fabricated using appropriate tech-
niques [102–104]. In this regard, organic thin-film photodiode (OPD) devices have been
developed for optical sensors [105]. Optical sensors have been formed through advanced
techniques, such as printing, spraying, and spin casting [106]. Analytes have been de-
tected using the fluorescence/luminescence detection technique with the OPD device [107].
Various conducting polymers, such as P3HT, PCBM, PEDOT:PSS, and PEDOT:PSS, have
been applied in optical sensors. In optical sensors, fullerene molecules, such as C60 and
C70, have been applied [108–110]. Amao et al. [111] fabricated an optical temperature
sensor using a PMMA- and C60-derived nanocomposite. The fluorescence intensity was
explored in the range of 260–373 K. However, initial efforts on optical sensors have focused
on the use of non-green materials and methods. Similar to solar cells, the technology for
optical sensors has also been upgraded toward the use of green nanocomposite or green
synthesis routes. For green nanocomposite technology, Rather et al. [112] developed a
green polymer/fullerene optical sensor. The sensor was used for sensing bisphenol A in
the concentration range of 74 nM to 0.23 M. A detection limit of 3.7 nM was observed.
Zhang et al. [113] formed a porphyrin–diazocine–porphyrin–fullerene (PDP–C60)- and
porphyrin–diazocine–porphyrin–fullerene/glassy carbon electrode (PDP–C60/GCE)-based
optical sensor. The fine dopamine detection of the PDP–C60/GCE nanocomposite electrode
was analyzed. Figure 10 shows the cyclic voltammetry (CV) curves of the PDP–C60/GCE
nanocomposite [113]. The linear relationship between the peak currents and scan rates
of the nanocomposite revealed fine sensing performance toward dopamine. The sensor
shows a detection limit of 0.015 µM. Here again, the development and analysis of better
polymer/fullerene-based green nanocomposite systems have been found essential to obtain
high-performance advanced optical sensors.
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Figure 10. (a) CV curves of PDP–C60/GCE nanocomposite (pH 7.4) containing 400 µM of DA at
different scan rates (v) ranging from 0.1 to 1.0 V s−1 and (b) linear relationship between the peak
currents and scan rates [113]. CV = cyclic voltammetry; PDP–C60/GCE = porphyrin–diazocine–
porphyrin–fullerene/glassy carbon electrode; DA = dopamine. Reproduced with permission
from Elsevier.
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6. Future and Conclusions

Polymer/fullerene nanocomposites have fine optical, electronic, electrical, thermal,
mechanical, sensing, and other valuable properties for technical applications. Fullerene
and fullerene-derived nanomaterials have led to high-performance optoelectronics, such as
the light-emitting diodes, photovoltaic devices, and optical sensors (Table 2).

Table 2. Stipulations of the polymer/fullerene nanocomposite in optoelectronic applications.

Polymer Nanofiller Property/Application Ref.

Polythiophene Fullerene
OLED device,

photoluminescence,
oxygen sensitivity

[56]

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate Fullerene
OLED device,

energetic barrier,
hole extraction

[57]

Polycyclopenta-dithiophene-benzothiadiazole Fullerene
OLED device,

energetic barrier,
hole extraction

[58]

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate Fullerene

LED,
power conversion efficiency 3.1% (AM

1.5 irradiation),
luminance of 8000 cd/m2

[59]

Poly(3-hexylthiophene-2,5-diyl):[6,6]-penyl-C61-
butyric-acid-methyl-ester Fullerene

Bulk heterojunction solar cell,
power conversion efficiency,

solar cell efficiency ~3.5%,
electron transport,
interface formation

[76]

Poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid
methyl ester Fullerene Optical micrographs,

PCBM domains <200 [77]

Poly(methyl methacrylate) Fullerene

Photovoltaic device,
power conversion efficiency 1.15%,

short-circuit current density
3.93 mA/cm2

open-circuit voltage 506 mV,
fill factor 0.59

[78]

Poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid
methyl ester Fullerene Power conversion efficiency 1.92% [82]

Polymer Fullerene Power conversion efficiency >17% [85]

Poly(methyl methacrylate) Fullerene Optical sensor,
fluorescence intensity 260–373 K [111]

Polymer Fullerene Bisphenol A detection limit 3.7 nM [112]

Porphyrin–diazocine–porphyrin Fullerene
Optical sensor,

dopamine,
detection limit 0.015 µM

[113]

In such devices, mostly conducting polymers, such as polyaniline, polypyrrole, poly-
thiophene, and poly(3,4-ethylenedioxythiophene), have been used [114–116]. To further
enhance properties, nanocarbon nanoparticles are incorporated in conjugated polymers.
The optoelectronic performance of polymer/fullerene nanomaterials is dependent on the
fullerene dispersion and matrix–fullerene interactions. However, non-conjugated poly-
mers have also been applied in optoelectronics devices. The future of polymer/fullerene
nanocomposite-derived optoelectronics depends on the design novelties and fullerene dis-
persion and functionality in the conjugated polymers. For all types of optoelectronic devices,
facile fabrication techniques, modified polymers, and functional fullerene nanoparticles
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need to be incorporated. The systems developed for green polymer/fullerene nanocompos-
ite technology show fine performance; however, further efforts must be made to develop
green LEDs, OLEDs, solar cells, and optical sensors. Thus, in recent years, great advance-
ments have been made in fabrication skills and integration of optoelectronic nanomaterials
to improve performance and the final device architecture. For next-generation optoelec-
tronics, fullerene-based green nanocomposites can be studied as promising candidates
for creating miscellaneous flexible and miniature devices. The recent advances in opto-
electronics, in material selection and fabrication approaches, have proposed the use of
thiophene-derived green polymers and green synthesized/functionalized fullerenes. These
materials are considered ideal to obtain eco-friendly energy conversion, sensing, and diode
devices. In this regard, green nanocomposites processed through the eco-friendly solution
route can lead to the best results. However, the challenges and future research direction in
this area need to be analyzed.

In short, this review summarizes the critical properties and performance of the poly-
mer/fullerene nanocomposite in optoelectronic devices. Numerous facile fabrication and
design approaches have been used to fabricate these technical devices. The versatility of the
polymer/fullerene nanocomposite for optoelectronic devices relies on processing, fullerene
dispersal, matrix–nanofiller compatibility, and essential properties. Future advancements in
the field of the polymer/fullerene nanocomposite may develop advanced next-generation
green optoelectronic devices.
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