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1 Introduction and summary

The expectation value of the Wilson loop (WL) operator 〈TrPei
∮
A〉 is a key observable

in gauge theories. In supersymmetric theories, it has a “locally supersymmetric” analog
obtained by adding a particular coupling to extra fields in the gauge field multiplet. The
prototypical example is the Wilson-Maldacena loop (WML) [1, 2] in the N = 4 Super
Yang-Mills (SYM) theory which contains an extra scalar coupling, and as a result has
a particularly simple structure controlled by the underlying supersymmetry. When the
Wilson loop contour is a circle or a straight line, both the WL and WML preserve a one-
dimensional conformal symmetry SL(2,R) and may be regarded as 1d conformal defects
of the N = 4 SYM theory. A circular or straight WML also globally preserves half of the
superconformal symmetry.

For a generic smooth contour, the standard WL in YM theory is known to be renor-
malizable: power divergences exponentiate and factorize (or simply absent in dimensional
regularization) while the logarithmic divergences disappear after the renormalization of
gauge coupling [3–8]. The latter are absent in N = 4 SYM so both WL and WML have
finite expectation values which in the planar limit are given by the functions of the ’t Hooft
coupling λ = g2

YMN .
It is of interest to study a family of more general Wilson loop operators that interpolate

between the WML and the standard WL [9]. This one-parameter family was introduced
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in [10] and further studied in [11, 12]. It is of interest, in particular, in the context of the 1d
defect QFT interpretation (see, in particular, [13–19]). Explicitly, this generalized Wilson
loop operator depends on an arbitrary coefficient ζ in front of the coupling to the 6 scalars
φm and so it interpolates between the standard the WL (ζ = 0) and the WML (ζ = 1)
cases [10]

W (ζ)(C) = 1
N

TrP exp
∮
C
dτ
[
i Aµ(x) ẋµ + ζφm(x) θm |ẋ|

]
, θ2

m = 1 . (1.1)

We may choose the unit vector θm to be along 6-th direction, i.e. φmθm = φ6 ≡ φ. The
expectation value 〈W (ζ)〉 for a smooth contour C will have logarithmic divergences that
can be absorbed into a renormalization of the coupling ζ. Then the renormalized value of
〈W (ζ)〉 will be given by (in the planar limit)

〈W (ζ)〉 ≡W
(
λ; ζ(µ), µ

)
, µ

∂

∂µ
W + βζ

∂

∂ζ
W = 0 , βζ = µ

dζ

dµ
, (1.2)

where µ is a renormalization scale.1 The running of ζ then defines a 1d RG flow between
the WL and WML operators. Since φm → −φm is a symmetry of the SYM path integral,
W should be invariant under ζ → −ζ. In what follows we shall assume that ζ ≥ 0. In
the planar weak coupling expansion the leading order term in the beta-function was found
in [10] to be

βζ = − λ

8π2 ζ(1− ζ2) + O(λ2) . (1.3)

The WL (ζ = 0) and WML (ζ = 1) cases in (1.1) are expected to be the only two fixed
points also at higher orders in λ.2

One may view the running of ζ as an RG flow in the effective 1d defect theory coupled
to the bulk SYM theory. This interpretation may be made more explicit by representing
the path ordering in (1.1) using the auxiliary 1d fermion path integral as in [5, 6, 20, 21] and
thus getting an interacting 1d defect action. Considering a circular contour, F = − log W
may be interpreted as a 1d defect theory free energy on S1 (normalized by the partition
function of the bulk theory). It is then natural to expect that this quantity provides a defect
analog of the F-theorem. Specifically, the d = 1 version of the generalized F-theorem [22–24]
adapted to defects [25] requires that F̃ ≡ sin πd

2 logZ(Sd)
∣∣∣
d=1

= logZ(S1) = −F = log W
decreases under RG flow: F̃UV > F̃IR. This is analogous to the g-theorem [26, 27] that
applies to a 1d boundary of a 2d theory. The beta-function (1.3) implies that ζ = 0 is the
UV fixed point and ζ = 1 the IR one, and so one shall find that

log〈W (ζ=0)〉 > log〈W (ζ=1)〉 . (1.4)
1For a specific contour W will depend on µ (that has dimension of a mass) in combination with some

effective length characterizing the loop geometry, like radius for a circular loop.
2While we shall mostly discuss only planar contributions let us mention that in general the coefficient

N in λ (1.3) for a general simple group is the value of quadratic Casimir in the adjoint representation (and
thus does not depend on the representation of the Wilson loop). For U(N) the coefficient in (1.3) is to be
multiplied by (1 − 1/N2) and thus vanishes in the abelian U(1) case.
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This was indeed verified in [11] to hold both in perturbation theory and in the strong
coupling expansion. A proof of the d = 1 defect version of the F-theorem was recently pro-
posed in [19], where a quantity that monotonically decreases along the flow (and coincides
with F̃ at fixed points) was also given.

On general grounds, consistent with the interpretation of log W as a defect free eneren-
ergygy, we should have

∂

∂ζ
log W = Cβζ , (1.5)

where the function C = C(λ, ζ) has the weak coupling expansion C = λ
4 + O(λ2) [11].

In the case of a circle or straight line the flow of ζ(µ) is driven by the scalar operator
φ6 ≡ φ(x(τ)) in (1.1) restricted to the line. Then ∂

∂ζ 〈W
(ζ)〉
∣∣∣
ζ=0,1

= 0 implies that its
one-point function vanishes at the fixed points, as required by the 1d conformal invariance
on the defect line. From (1.5) we also have

∂2

∂ζ2 log W
∣∣∣∣∣
ζ=0,1

= C
∂βζ
∂ζ

∣∣∣∣
ζ=0,1

. (1.6)

According to (1.1) this second derivative is given by the integrated 2-point function of
φ restricted to the line [11]. The latter is determined by the corresponding anomalous
dimensions at ζ = 0 and ζ = 1. Indeed, from (1.3) one finds that ∂βζ

∂ζ reproduces [10] the
leading weak-coupling terms in the anomalous dimensions [9] of φ at the conformal points
ζ = 1 and ζ = 0

∆(ζ) − 1 = ∂βζ
∂ζ

, (1.7)

∆(1) = 1 + λ

4π2 + O(λ2) , ∆(0) = 1− λ

8π2 + O(λ2) . (1.8)

Our main aim here will be to find the λ2 term in the beta-function (1.3) which should
also exhibit the factor ζ(1− ζ2). Let us start with writing down the general structure of βζ

βζ = b1 λ ζ(1− ζ2) + λ2 ζ (1− ζ2) (b2 + b3 ζ
2) + λ3 ζ (1− ζ2) (b4 + b5 ζ

2 + b6 ζ
4) + O(λ4) ,

(1.9)

where b1 = − 1
8π2 (cf. (1.3)) and b2, b3, . . . are to be determined. The dependence on

powers of ζ at each order in λ follows from the structure of the relevant perturbation-
theory diagrams.

An important observation is that the coefficients of the highest ζ2n+1 powers at each
λn order in (1.9), i.e. b1, b3, b6, . . . , are determined by diagrams with maximal number
of scalar propagators attached to the line. Thus they should not have internal vertices,
i.e. should be given just by the scalar ladders. We shall compute them using the vertex
renormalization method of [4] generalizing the one-loop computation in [10]. The resulting
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terms in βζ may be written as

βladder
ζ = q1

λ

4π2 ζ
3 + q2

(
λ

4π2

)2
ζ5 + q3

(
λ

4π2

)3
ζ7 + q4

(
λ

4π2

)4
ζ9 + q5

(
λ

4π2

)5
ζ11 + · · · ,

q1 = 1
2 , q2 = −1

4 , q3 = 1
4 −

ζ2

8 , q4 = −17
48 + ζ2

3 −
ζ3

12 , (1.10)

q5 = 29
48 −

37 ζ2

48 + 29 ζ3

96 + 25 ζ4

128 , bn(n+1)
2

= − 1
(4π2)n qn ,

where ζn ≡ ζ(n) are the Riemann zeta-function values. In particular, at the two-loop order,
we get from q2

b3 = 1
4

1
(4π2)2 . (1.11)

To find the five-loop expression for the βladder
ζ in (1.10) we used planar loop equation (2.5)

and dimensional regularization. As the higher coefficients qn are transcendental, the exact
expression for this planar ladder-theory beta-function should be complicated. Note that
as this is essentially a one-coupling (ξ ≡ λζ2) model, the three and higher loop coefficients
are scheme-dependent (see below).

An indirect way to fix some combinations of other coefficients in the full beta-func-
tion (1.9) is to use the relation (1.7) between βζ and the anomalous dimension of the
scalar operator and the value of ∆(1) that was already found earlier from diagrammatic
computation for a cusp line in [28] (at the two-loop level) and from the quantum spectral
curve in [29] (at several higher loop orders). Explicitly, according to [29]

∆(1)− 1=d1
λ

4π2 + d2

(
λ

4π2

)2
+ d3

(
λ

4π2

)3
+ d4

(
λ

4π2

)4
+ · · · , (1.12)

d1 =1, d2 =−1, d3 =2− 7 ζ4
4 , d4 =−5 + ζ2 + ζ3

2 −
ζ3ζ2

2 − 5 ζ5
8 + 119 ζ6

16 , . . . .

(1.13)

Comparing this with (1.7), (1.9) gives

b1 = − d1
2(4π2) , b2 + b3 = − d2

2(4π2)2 , (1.14)

b4 + b5 + b6 = − d3
2(4π2)3 , b7 + b8 + b9 + b10 = − d4

2(4π2)4 . . . . (1.15)

Using (1.11) then (1.14) implies that

b2 = 1
4

1
(4π2)2 . (1.16)

Thus the explicit form of the 2-loop βζ is given by

βζ = − λ

8π2 ζ (1− ζ2) + λ2

64π4 ζ(1− ζ4) + O(λ3) . (1.17)

This in turn implies that the two-loop terms in the anomalous dimensions (1.8) are given by

∆(1) = 1 + λ

4π2 −
λ2

16π4 + O(λ3), ∆(0) = 1− λ

8π2 + λ2

64π4 + O(λ3) , (1.18)
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where ∆(1) is of course the same as in (1.13) while the two-loop term in ∆(0) is a new non-
trivial result.3 Note that the sign-alternating structure of λ-expansion in (1.17) and (1.18)
is consistent with expectation that the planar weak coupling expansion should have a finite
radius of convergence

∣∣∣ λ4π2

∣∣∣ = 1 with the strong-coupling λ � 1 asymptotics [9, 11, 14]

∆(1) = 2− 5√
λ

+ O
(

1
λ

)
, ∆(0) = 5√

λ
+ O

(
1
λ

)
.4

It is important to stress that the two-loop coefficients b2, b3 in (1.9), (1.17), are scheme
independent: they are invariant under redefinitions of ζ that do not change the positions
of the fixed points

ζ ′ = ζ + ζ (1− ζ2)
[
λ z1 + λ2 (z2 + z3 ζ

2) + · · ·
]
. (1.19)

Since the βζ transforms as a vector, we find that the coefficients in (1.9) change as

b′i = bi + δbi , δb1 = δb2 = δb3 = δb4 = 0, δb5 = −δb6 = b1 (3z2
1 + 2z3)− 2b3z1.

(1.20)

This means that the beta-function is scheme independent at two loops, while the invariant
combinations of the three-loop coefficients are b4 and b5 + b6. This is consistent with the
fact that the dimensions ∆(0) = 1 + b1λ + b2λ

2 + b4λ
3 + . . . and ∆(1) in (1.13) (and thus

dn in (1.14), (1.15)) should be scheme independent.
Let us now comment on the implications of the above discussion for the structure of

higher order terms the expectation value of 〈W (ζ)〉 in (1.2) on a circle (see [11, 12]). Since
the first derivative of W = 〈W (ζ)〉 at the conformal points ζ = 0, 1 should vanish (cf. (1.5)),
we should have

W = 〈W (1)〉
[
1 + w1 λ

2 (1− ζ2)2 + λ3 (1− ζ2)2(w2 + w3 ζ
2) + · · ·

]
, (1.21)

where [31–33]

〈W (1)〉 = 2√
λ
I1
(√

λ
)

= 1 + λ

8 + λ2

192 + O(λ3) . (1.22)

The coefficients w1 and w2 are scheme-independent, while w3 is finite after renormalization
of ζ and in general contains logµ dependence on the renormalization scale [12]. Using the
general relation (1.5) to the beta-function (1.9) where on general grounds we should have

C = λ c1 + λ2(c2 + c3ζ
2) + O(λ3) , (1.23)

we find

w1 = −1
4b1c1, w2 = − 1

12[b1 (3c2 + c3) + (3b2 + b3)c1], w3 = −1
6(b1c3 + b3c1) .

(1.24)

3It would be interesting to reproduce it by a direct diagrammatic approach similar to the one in [28].
4Ref. [29] found also several higher-order terms in the strong-coupling expansion, correcting the leading

terms [14] in ∆(1) = 2 − 5√
λ

+ . . . . These corrections were also obtained analytically from the bootstrap
approach in [30].
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As b1, b2, b3, w2 are scheme independent while w3 is not this implies that c3 in (1.23) is
scheme dependent but 3c2 + c3 is scheme independent.5 Here [11]

w1 = 1
128π2 , c1 = 1

4 . (1.25)

w3 is determined by the contribution of scalar ladder diagrams (which is not UV finite
at order λ3). Its renormalized value was found (using a particular regularization scheme)
in [12] to be w3 = − 1

96 (4π2)2
[
5+6 log(µR)

]
. Here R is the radius of the circle and the coeffi-

cient 6 of logµ in the bracket is related to the coefficient in the one-loop beta-function (1.3)
(cf. (1.2)) while 5 is scheme-dependent. In view of (1.24) this then also fixes the value of
c3 in the same scheme. The value of w2 remains currently unknown. If we choose a scheme
in which the value of w3 is equal to −w2 then the λ3 term in (1.21) will be proportional to
(1−ζ2)3. One can then conjecture that there exists a scheme in which similar simplification
happens to all orders in λ [11], i.e. one gets

〈W (ζ)〉 = 〈W (1)〉
[
1 + F

(
λ (1− ζ2)

)]
, (1.26)

where the function F(x) has a regular power series expansion F(x) = w1 x+ w2 x
2 + · · · .

The rest of this paper is organized as follows. In section 2 we shall explain how to
compute the coefficients in the beta-function (1.10) in ladder approximation using dimen-
sional regularization. We shall mention that defining the effective ladder theory in d = 4−ε
dimensions the corresponding beta-function has a Wilson-Fisher-like zero and the value of
the Wilson loop at the corresponding IR fixed point is consistent with the 1d defect version
of F-theorem [11, 19].

In section 3 we shall consider the computation of two-point functions of scalars inserted
on the Wilson loop at two loops in ladder approximation. We shall consider separately the
cases of a “transverse” scalar not coupled to the loop and the scalar coupled to the loop.
Using the Callan-Symanzik equation we shall find the corresponding anomalous dimensions
of the scalar operators relating them to the beta-function βζ and its derivative.

There are also a few technical appendices. In particular, in appendix D we shall present
some details of the computation of the linear in ζ term in βζ in (1.3) which were not spelled
out in [10].

2 Scalar ladder contributions to the beta-function

In this section we shall present the derivation of the coefficients of the λnζ2n+1 terms in
the beta-function (1.10).

5This of course follows also directly from the transformation law C′(ζ′) =
(
dζ′

dz

)−2
C(ζ) with ζ′ in (1.19):

c′2 = c2 − 2c1z1 and c′3 = c3 + 6c1z1 so that 3c′2 + c′3 = 3c2 + c3. In general, for a set of couplings ζi we have
βi = µdζi/dµ transforming as a vector under their redefinitions and the relation ∂

∂ζi
log W = Cijβ

j means
that Cij transforms as a tensor. At a conformal point βi(ζ∗) = 0, one has ∂2

∂ζi∂ζj
log W

∣∣
ζ=ζ∗

= Cij
∂βj

∂ζi

∣∣
ζ=ζ∗

.
Here ∂βj

∂ζi

∣∣
ζ=ζ∗

does not transform under ζ′ = ζ +X(ζ) that does not change the position of the conformal
point, i.e. if X(ζ∗) = 0.

– 6 –
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2.1 Vertex renormalization method

To compute the highest in ζ terms in each order of the small λ expansion in the beta-
function we need to consider ladder graphs with only scalar propagators attached to Wilson
loop. The perturbative expansion of the corresponding 〈W (ζ)〉ladder is then given in the
planar limit by a power series in a single effective coupling ξ

〈W (ζ)〉ladder = W (ξ), ξ ≡ λ ζ2 , (2.1)

where (for a closed contour parameterized by τ ∈ (0, 2π))

W = W(2π), W(τ) = lim
N→∞

1
N

〈
TrP exp

∫ τ

0
dτ ′ φ(τ ′)

〉
. (2.2)

Compared to (1.1) we have redefined the scalar φ → ζ−1φ, and set φ(τ) ≡ φ(x(τ)). The
averaging is done in the free adjoint scalar theory with the action

S = N

ξ

∫
d4x Tr(∂φ∂φ) . (2.3)

In what follows we shall consider the case of a circular or straight line contour when the
(unregularized) propagator D(τ − τ ′) = 〈φ(τ)φ(τ ′)〉 has the following form6

circle: D(τ) = ξ

8π2
1

4 sin2 τ
2
, line: D(τ) = ξ

8π2
1
τ2 . (2.4)

The problem of computing (2.2) with (2.4) is well defined and we expect W to admit a
renormalizable perturbative expansion in ξ such that all UV divergences can be absorbed
into a redefinition of ξ (any possible multiplicative renormalization of the loop operator
should be absent in dimensional regularization).

In the planar limit the function W(τ) in (2.2) obeys the following integral equation7

∂W(τ)
∂τ

=
∫ τ

0
dτ ′W(τ ′)W(τ − τ ′)D(τ − τ ′). (2.5)

Note that by definition in (2.2) we have W(0) = 1 and in (2.5) one has also W′(0) =
0. Eq. (2.5) follows upon differentiation of the integral equation that is implied by the
structure of the planar expansion of (2.2) in the free scalar theory (here thick line denotes
the contour parameterised by τ)

0 τ

W(τ)

=
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′ 0 τ

W(τ ′′) W(τ ′ − τ ′′)
τ ′′ τ ′

D(τ ′′ − τ ′)

. (2.6)

6The original N = 4 SYM action is schematically S = 1
g2

YM

∫
d4x Tr(F 2 + DφDφ + φ4 + . . . ), and

λ = g2
YM N . Eq. (2.4) takes into account a factor 1/2 from T aT a = N

2 1, valid for the generators T a of
SU(N) in the fundamental representation.

7K. Zarembo, private communication.
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Eq. (2.5) is valid for any propagator D. In particular, it can be applied to the case of the
ladder contributions to the expectation value of WML (i.e. ζ = 1 case of (1.1)) for a circle
when the effective propagator is constant [31]

〈
[iAa(τ) + φa(τ)] [iAb(τ ′) + φb(τ ′)]

〉
= δab

λ

8π2N
, D(τ) = D0 = λ

16π2 , (2.7)

where we used that T aT a = N
2 1. Taking the Laplace transform of (2.5) we have −1 +

s W̃(s) = D0 W̃
2(s) and thus finally

W̃(s) = s

2D0

1−

√
1− 4D0

s2

 → W(τ) = 1
τ
√
D0

I1
(
2 τ
√
D0
)
, (2.8)

reproducing (1.22) after setting τ = 2π as in (2.2). Similar Dyson integral equations also
appear for the correlation function of two Wilson loops [34].

For a non-constant propagator D(τ), the solution of the loop equation (2.5) appears
to be highly non-trivial, in particular, due to divergences starting at three loops. In ap-
pendix B we demonstrate how to use (2.5) to reproduce the two-loop result for (1.21), i.e.
find the value of w1 in (1.25).

Following [4] and adapting their discussion to the present case, to compute the renor-
malization of ζ it is useful to consider the “one-point” scalar correlator on a straight Wilson
line segment. Before performing the rescaling of ζ into φ introduced above, one starts with
the quantity

〈Tr
(
φ(τ0)P exp

[ ∫ τ2
τ1
dτ ζφ(τ)

])
〉

〈Tr
(
P exp

[ ∫ τ2
τ1
dτ ζφ(τ)

])
〉

. (2.9)

Note that this is not exactly the standard one-point function of the operator φ on the
Wilson line, because we are integrating only over a segment τ1 < τ < τ2 (with far-separated
points τ1, τ2) and τ0 is also assumed to be far from that interval (hence φ(τ0) does not
participate in the path-ordering). Following [4], all UV divergences should come from
“internal” coinciding points not involving τ0, τ1, τ2, so it is sufficient to look at this object in
order to find the renormalization of ζ (or ξ). The normalization in (2.9) by the expectation
value of the Wilson line segment without insertion is needed in order to remove some
spurious divergences associated with the finite endpoints [4]. After performing the rescaling
φ→ ζ−1φ, eq. (2.9) becomes

〈Tr
(
φ(τ0)P exp

[ ∫ τ2
τ1
dτ φ(τ)

])
〉

ζ 〈Tr
(
P exp

[ ∫ τ2
τ1
dτ φ(τ)

])
〉

. (2.10)

In the planar limit, the numerator in this expression satisfies a relation analogous to (2.6)
and can be written as

lim
N→∞

1
N
〈Tr

[
φ(τ0)P exp

∫ τ2

τ1
dτ φ(τ)

]
〉 =

∫ τ2

τ1
dτW(τ − τ1)D(τ0 − τ)W(τ2 − τ). (2.11)

– 8 –
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On the other hand, the denominator factor in (2.10) is simply equal to ζW(τ2− τ1). When
performing the renormalization of (2.10), we may effectively factor out the τ integration on
the right-hand-side of (2.11), since the integral over τ cannot bring in new UV divergences
as the point τ0 is supposed to be far away from τ1, τ2. Therefore, one can see that in the
planar limit the calculation reduces to study the renormalization of the “vertex function”

V = ξW(τ1)W(τ2) , (2.12)

where τ1, τ2 are arbitrary (far separated) fixed points on the line. Note that at planar level
the normalization by the denominator factor in (2.10) does not play an important role
since, being equal to ζW(τ2 − τ1), it is essentially the same as the “square root” of the V
function defined above (recall that ξ = λζ2), and hence it is finite once V is made finite by
renormalization (or vice-versa). At the non-planar level, however, the denominator factor
is expected to play a non-trivial role.

To summarize, in the planar limit it will be sufficient to consider the renormalization of
V as given in (2.12). The relevant collection of diagrams may be represented symbolically as

φ(x0)

0
τ1τ2

W(τ1)W(τ2)

. (2.13)

Here we have chosen the “middle” point τ in (2.11) as 0 (using translational invariance)
and replaced the argument τ0 of φ by a generic point x0 that may or may not lie on the
line. The vertical line represents the propagator D(τ0− τ) or D(x0−x(0)) which will play
only a spectator role.

The strategy is to find the divergent part of V in (2.12) and then absorb the divergences
into the renormalization of ξ. This requires computing W from the corresponding sum of
planar ladder diagrams (or using the loop equation (2.5)).

Let us note that the reason why this “scalar ladder” model is effectively an interacting
one (despite the bulk theory being free) is due to the path ordering in (2.2). As was
mentioned in the Introduction, one can cast the problem of renormalization of ζ or ξ in a
more standard form by representing the path ordering using a functional integral over 1d
fermions χi(τ) in the fundamental representation. Integrating first over the free adjoint
bulk scalar field we then get an effective 1d action of the following schematic form

I ∼
∫
dτ χ̄iχ̇

i + ξ

∫
dτ dτ ′ χ̄j(τ)χi(τ) 1

|τ − τ ′|2
χ̄i(τ ′)χj(τ ′) . (2.14)

Introducing a cutoff into the propagator and expanding in ξ one should be able then to
compute the corresponding βξ in the usual way.

2.2 Five-loop beta-function in ladder approximation

Let us consider the loop equation (2.5) on a line with a simple analytic regularization of
the propagator

D(τ − τ ′) = ξ

8π2
1

|τ − τ ′|2−ε
. (2.15)
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This is essentially the standard dimensional regularization with d = 4 − ε, ε > 0, where
we did not include the usual ε-dependent normalization factor (this is equivalent to a
redefinition of the renormalization scale). Solving the loop equation perturbatively, i.e.
expanding in powers of ξ

W(τ) = 1 + ξW1(τ) + ξ2 W2(τ) + · · · , (2.16)

we find at the leading order

∂

∂τ
W1(τ) = 1

ξ

∫ τ

0
dτ ′D(τ − τ ′) =

∫ τ

0
dτ ′

1
8π2(τ − τ ′)2−ε = − τ−1+ε

8π2(1− ε) . (2.17)

Integrating this with the boundary condition W1(0) = 0 gives

W1(τ) = − τ ε

8π2(1− ε)ε . (2.18)

The corresponding one-loop correction to the vertex (2.13) is represented by 1×W1(τ1) +
W1(τ2)× 1, i.e. by the following diagrams

φ(x0)

0
τ1τ2 =

φ(x0)

0
τ1τ2 +

φ(x0)

0
τ1τ2 + · · · .

(2.19)
Next, W2(τ) is given by

W2(τ) = 0 τ + 0 τ , (2.20)

with the explicit expression being

W2(τ) =
τ2ε[2ε(−1 + 2ε)Γ(−1 + ε)Γ(1 + ε) + Γ(1 + 2ε)

]
128π4(−1 + ε)ε2(−1 + 2ε)Γ(1 + 2ε) . (2.21)

All higher order functions Wn(τ) may be expressed as

Wn(τ) = Kn(ε)
Γ(1 + nε) τ

nε, (2.22)

where the coefficients Kn(ε) are determined by the recurrence relation

Kn(ε) = 1
8π2

n−1∑
p=0

Kp(ε)Kn−1−p(ε)
Γ(−1 + (p+ 1)ε)

Γ(1 + pε) , K0(ε) = 1. (2.23)

This follows from the Laplace transform L of the loop equation on the line that reads8

s W̃(s)− 1 = ξ

8π2 W̃(s)L
[
W(τ)
τ2−ε

]
= ξ

8π2 W̃(s) (−∂s)ε−2W̃(s). (2.24)

8The perturbative solution takes the form W̃n(s) = Kn(ε)
s1+nε , cf. (2.22). Replacing this in the loop equation

and using (−∂s)α 1
sβ

= Γ(α+β)
Γ(β)

1
sα+β gives (2.23).
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In the following we shall present the explicit results to five loop order, i.e. including W5(τ)
in (2.16).

We can then find the divergences in (2.12), i.e. coefficients of poles in ε→ 0 in

V = ξW(τ1)W(τ2) = ξ + V2 ξ
2 + V3 ξ

3 + · · · (2.25)

and cancel them by replacing the bare coupling ξ in terms of the renormalized one using
the familiar general relation9

ξ = µε
[
ξ(µ) + p11

ε
[ξ(µ)]2 +

(
p21
ε

+ p22
ε2

)
[ξ(µ)]3 +

(
p31
ε

+ p32
ε2

+ p33
ε3

)
[ξ(µ)]4

+
(
p41
ε

+ p42
ε2

+ p43
ε3

+ p44
ε4

)
[ξ(µ)]5 + · · ·

]
. (2.26)

The condition that the bare coupling does not depend on µ implies various relations be-
tween the coefficients in (2.26) and the resulting beta-function expressed in terms of the
renormalized coupling is given by (see (A.15), (A.16))

βξ = µ
d

dµ
ξ = p11ξ

2 + 2 p21ξ
3 + 3 p31ξ

4 + 4 p41ξ
5 + · · · . (2.27)

Requiring that the vertex (2.25) expressed in terms of ξ(µ) is finite gives

p11 = 1
4π2 , p21 = − 1

64π4 , p31 = 12− π2

4608π6 , p41 = −51 + 8π2 − 12ζ3
73728π8 , . . . (2.28)

and thus

βξ = ξ

[
ξ

4π2 −
1
2

(
ξ

4π2

)2
+
(1

2 −
ζ2
4

)(
ξ

4π2

)3
+
(
−17

24 + 2ζ2
3 −

ζ3
6

)(
ξ

4π2

)4

+
(29

24 −
37ζ2
24 + 29ζ3

48 + 25ζ4
64

)(
ξ

4π2

)5
+ · · ·

]
, (2.29)

where we added also the five-loop contribution and ζn are the zeta-function values. Re-
calling that according to (2.1) ξ = λζ2 where λ is not running we may then read off the
ladder contribution to the beta-function of ζ

βξ = µ
d

dµ
(λζ2) = 2λ ζ βladder

ζ , (2.30)

reproducing (1.10). Explicitly, at the two-loop order

βladder
ζ = λ

8π2 ζ
3 − λ2

64π4 ζ
5 + · · · . (2.31)

Note that higher loop terms in βladder
ζ obtained in this way have similar transcendental

structure to higher loop terms in ∆(1) in (1.12), (1.13) found in [29].
9Note that the factor µε is required to match the dimensions: defining the theory in d = 4−ε dimensions

we keep the dimension of the scalar field to be 1 (as it is coupled to the line which still has dimension 1)
so that the bulk action N

ξ

∫
d4−εxTr(∂φ∂φ) should have ξ with the mass dimension ε. Equivalently, this

follows from the fact that the propagator (2.15) should still have dimension 2.
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2.3 Comment on Wilson-Fisher fixed point

Let us note that considering the theory in d = 4− ε dimensions and thus keeping the order
ε term in the beta-function (2.29), we get from (2.26)

βξ = −ε ξ + ξ2

4π2 −
ξ3

32π4 + · · · . (2.32)

This implies that the effective 1d theory corresponding to the scalar ladder approximation
has, in addition to the trivial UV fixed point ξ = 0, a non-trivial IR fixed point

ξ∗ = 4π2ε+ 2π2ε2 + · · · . (2.33)

The expectation value of 〈W (ζ)〉 for a circle found in d = 4 − ε in ladder approximation
may be written as [11]10

〈W (ζ)〉ladder ≡W (ξ) = 1− ε

16 ξ + 1
128π2 ξ

2 + · · · . (2.34)

Evaluated at the fixed point (2.33) this gives

W (ξ∗) = 1− π2

8 ε2 + · · · . (2.35)

Thus logW (ξ∗) < logW (0) = 0 in agreement with the 1d defect version of F-theorem. On
the other hand, note that directly in d = 4, the beta-function in the ladder approximation is
positive in perturbation theory, which means that the coupling ξ grows in the UV. From the
point of view of the F-theorem, this is consistent with the fact that logW (ξ) = 1

128π2 ξ
2+· · ·

is positive in perturbation theory.

3 Two-point function of scalars on the Wilson line

3.1 Two-point function for “transverse” scalar

Using the scalar ladder approximation let us compute the defect two-point function for
one of the “transverse” scalars φ1, . . . , φ5 (to be denoted by φ̃) which is not coupled to the
scalar Wilson line operator defined in (2.2)

G̃(τ) =
〈Tr

[
P φ̃(0) φ̃(τ) exp

∫ L
−L dτ

′ φ(τ ′)
]
〉

〈Tr
[
P exp

∫ L
−L dτ

′ φ(τ ′)
]
〉

. (3.1)

Here we shall consider an infinite straight line with L as an IR cutoff. We shall treat
φ̃ and φ on equal footing rescaling both by ζ, i.e. the averaging is done with the free
scalar action (2.3) where now S = N

ξ

∫
d4x Tr(∂φ∂φ + ∂φ̃∂φ̃). Then ξ will appear in

the propagators of both φ and φ̃ as in (2.4). Alternative equivalent option is to rescale
both fields in (3.1) by

√
ξ getting the factor

√
ξ in the exponents in (3.1), ξ-independent

propagator and the overall factor of ξ in (3.1). It is then natural to remove it by rescaling

G̃ → ξ−1G̃ . (3.2)
10Note that in [11] we used d = 4 − 2ε while here d = 4 − ε.
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The renormalization of G̃ and ξ−1G̃ will differ just by a Z-factor corresponding to ξ, i.e.
they will satisfy closely related Callan-Symanzik equations (see below).

At the tree and one loop level we will then have from (3.1)

〈Tr
[
P exp

∫ L

−L
dτ ′ φ(τ ′)

]
〉 = 1 + −L Lτ1 τ2

+ · · · , (3.3)

〈Tr
[
P φ̃(0) φ̃(τ) exp

∫ L

−L
dτ ′ φ(τ ′)

]
〉 = −L L0 τ

+ −L L0 τ τ1 τ2
+ −L Lτ1 τ2 0 τ

+ −L L0 ττ1 τ2
+ −L Lτ1 τ20 τ

+ · · · . (3.4)

Using the propagator (2.15) and explicit expressions in (C.1)–(C.6), we get

G̃(τ) = τ−2+εξ

8π2 + τ−2+ε((L− τ)ε + 2τ ε − (L+ τ)ε)ξ2

64π4(−1 + ε)ε + O(ξ3). (3.5)

Here ξ is the bare coupling. Applying the renormalization, i.e. the redefinition of ξ as
in (2.26)–(2.28), we find a finite result

G̃ren(τ ;µ) = ξ

8π2
1
τ2

[
1− ξ

4π2

(
1 + 1

2 log L− τ
L+ τ

+ log(µτ)
)

+ O(ξ2)
]
, (3.6)

where ξ is now the renormalized coupling ξ(µ) and the limit L → ∞ is straightforward.
Similarly, at two loops, from the results in (C.7)–(C.23) and using again the redefini-
tion (2.26)–(2.28), we find a finite expression which in the limit L→∞ gives

G̃ren(τ ;µ) = ξ

8π2
1
τ2

[
1− ξ

4π2 (1 + log(µτ)) +
(

ξ

4π2

)2(
2 + π2

24 + 5
2 log(µτ) + log2(µτ)

)
+O(ξ3)

]
.

(3.7)
Note that since G̃ren(τ) requires only the renormalization of ξ for its finiteness (i.e. no extra
Z-factor) it satisfies (

µ
∂

∂µ
+ βξ

∂

∂ξ

)
G̃ren(τ ;µ) = 0 . (3.8)

Since for generic ξ its beta-function is non-zero, i.e. the conformal invariance is broken in
the ladder theory in d = 4, this correlator cannot be put into the standard conformal form.

A way to achieve conformal invariance is to consider the scalar ladder theory in d = 4−ε
and specify to the Wilson-Fisher fixed point (2.33). Considering one loop order we have to
keep the full ε dependence of the tree and one-loop terms. Then instead of (3.7) we get

G̃ren(τ) = µε

2 τ2−ε
ξ

4π2 + µε(2− 2ε− µε(L− τ)ε − 2µετ ε + µε(L+ τ)ε)
4τ2−ε(1− ε)ε

(
ξ

4π2

)2

+ 1
τ2

(
1 + π2

48 + 5
4 log(µτ) + 1

2 log2(µτ)
) (

ξ

4π2

)3
+ · · · . (3.9)
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Evaluating this at ξ = ξ∗ in (2.33), expanding in ε, and taking the infinite line limit L→∞
gives simply

G̃ren(τ)
∣∣∣
ξ=ξ∗

= 1
2τ2

(
ε− 1

2 ε+ π2

24 ε
3 + · · ·

)
. (3.10)

The fact that all log τ terms cancel implies that the scaling with τ is non-anomalous at the
conformal fixed point (i.e. the corresponding dimension is ∆̃∗ = 1), at least to two loops.

This is analogous with what happens in full N = 4 SYM theory case, where the
insertion of the “transverse” scalars into the WML is BPS-protected. Here in the ladder
model we do not have an argument based on supersymmetry, but we can explain why
∆̃∗ = 1 as follows. If one starts with the WL coupled to two scalars as

TrP exp
∫
dτ (ζ1φ+ ζ2φ̃) , (3.11)

then setting ζ1 = ζ cosα, ζ2 = ζ sinα and redefining the scalars (using SO(6) symmetry of
the bulk scalar action) we get back to the WL coupled to a single scalar with the coupling
ζ. Thus the beta-function cannot be a function of α, but only of ζ, i.e. the angle α should
be a parameter of an exactly marginal deformation. For infinitesimal α the integrand in
the exponent in (3.11) is ζφ + ζα φ̃ so that the insertion of φ̃ into the WL coupled to φ
should be exactly marginal with ∆ = 1 at a fixed point.

3.2 Two-point function for coupled scalar

The same calculation for the scalar coupled to the loop, i.e. for

G(τ) =
〈Tr

[
Pφ(0)φ(τ) exp

∫ L
−L dτ

′ φ(τ ′)
]
〉

〈Tr
[
P exp

∫ L
−L dτ

′ φ(τ ′)
]
〉

, (3.12)

requires us to consider all possible contractions, including those involving the fields at 0
and τ . At tree and one-loop orders we then get the following contributions

〈Tr
[
Pφ(0)φ(τ) exp

∫ L

−L
dτ ′ φ(τ ′)

]
〉 =

0 τ
+
∫
d2τ

 +

+ · · · .

(3.13)

Each structure splits into 6 diagrams depending on the order of τ ′ < τ ′′ with respect to
0 < τ . The result is∫

d2τ = ξ2(L(L− τ))−1+ε

64π4(−1 + ε)2 + Lεξ2τ−2+ε

64π4(−1 + ε)ε + ξ2(L− τ)ετ−2+ε

64π4(−1 + ε)ε

+ ξ2(Lτ)−1+ε

64π4(−1 + ε)2 + ξ2((L− τ)τ)−1+ε

64π4(−1 + ε)2 + ξ2τ−2+2εΓ(−1 + ε)Γ(ε)
64π4(−1 + ε)Γ(−1 + 2ε) ,
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∫
d2τ = ξ2τ−2+2ε

64π4(−1 + ε)ε + ξ2τ−2+ε(Lετ − Lτ ε)
64Lπ4(−1 + ε)2

+ ξ2τ−2+ε((−1 + 2ε)Lε + τ ε − (L+ τ)ε)
64π4(−1 + ε)ε + ξ2τ−2+ε(−τ ε(L+ τ) + τ(L+ τ)ε)

64π4(−1 + ε)2(L+ τ)

−
ξ2τ −2+2εB τ

L
(2− 2ε, ε)

64π4(−1 + ε) −
2−5−2εξ2τ−2+2εΓ

(
3
2 − ε

)
Γ(−1 + ε)

π9/2(−1 + ε)

+
ξ2
(
(L(L+ τ))−1+ε − (Lτ)−1+ε

2F1
(
1− ε,−1 + ε; ε;−L

τ

))
64π4(−1 + ε)2 . (3.14)

Taking L→∞ limit in the B-function,11 using

2F1(1− ε,−1 + ε, ε;−x) = x1−εΓ(2− 2ε)Γ(ε)
Γ(1− ε) + O(x−1+ε), x→ +∞, (3.15)

and redefining ξ according to (2.26) we find that the renormalization of G(τ) in (3.12)
requires also an additional Z-factor

Gren(τ ;µ) = lim
L→∞

lim
ε→0

Z G(τ), Z = 1 + 1
2π2

µ−ε ξ

ε
+ · · · . (3.16)

As a result, we find

Gren(τ ;µ) = µ2 ξ

8π2 (µτ)2−ε

[
1 + (−2− 3 log(µτ)) ξ

4π2 + · · ·
]
, (3.17)

where we restored the full ε-dependence of the tree-level term. Replacing now ξ by its
Wilson-Fischer fixed point value ξ∗ = 4π2ε+ 2π2ε2 + · · · in (2.33) we find

G∗(τ ;µ) = ε

2τ2
[
1 + (−2− 2 log(µτ))

]
ε+ O(ε2). (3.18)

This has the conformal form with a non-trivial dimension ∆∗ = 1 + ε+ . . . , in agreement
with the expected relation between the anomalous dimension and the derivative of the
beta-function in (2.32)

∆∗ = 1 + β′ξ∗ = 1 + ε− 1
2ε

2 + · · · . (3.19)

At the two-loop order we need the following contributions

∫
d4τ

 + +

+ +

 . (3.20)

11Here B is the incomplete beta function Bz(α, β) =
∫ z

0 dww
α−1(1 − w)β−1 with B0(α, β) = 0.
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Each diagram correspond to 15 possible orderings of the positions on the line, two fixed at
0 and τ , and four at various possible positions consistent with the planarity constraint. To
extract divergences from closed expressions for the diagrams here we use a simple cutoff
regularization

D(τ)→ Da(τ) = ξ

8π2
1

(|τ |+ a)2 , a→ 0 . (3.21)

Then one finds, for example, that

∫
d4τ = L

(−2a+ τ)ξ3 log 2
256aπ6τ3 −

ξ3 (−1 + log 256 + 16 log τ
L

)
1024π6a2

+
ξ3 (−8 + log 32 + 20 log a

L − 12 log τ
L

)
512π6τa

(3.22)

+ ξ3

1024 π6τ2

[
−19 + π2 − 12 log 2− 16 log a

L
− 8 log 2 log a

L

+12 log2 a

L
− 4 log τ

L
+ 2 log 4 log τ

L
− 32 log a

L
log τ

L
+ 18 log2 τ

L

]
+ · · ·

where we already expanded in large L and small a (before the expansion the expression
is unwieldy). Recomputing the one-loop diagrams with this regularization and adding the
two-loop ones, one finds that one can define the renormalized correlator as12

Gren(τ) = lim
L→∞

lim
a→0

Z G(τ) . (3.23)

The bare coupling ξ(a) appearing in the expansion of G is related to the renormalized
coupling ξ = ξ(µ) at the inverse length scale µ by

ξ(a) = ξ − log(aµ) ξ2

4π2 +
[1

2 log(aµ) + log2(aµ)
]

ξ3

(4π2)2 + · · · , (3.24)

corresponding to the beta-function in (2.29). The renormalization factor Z is given by

Z = 1− 2 log(aµ) ξ2

4π2 + [2 log(aµ) + log2(aµ)] ξ2

(4π2)2 + · · · . (3.25)

The renormalized two-point function then reads

Gren(τ ;µ) = 1
2 τ2

ξ

4π2

[
1 + (1− 3 log(µτ)) ξ

4π2 +
(
−2 + 5π2

24 −
3
2 log(µτ) + 6 log2(µτ)

)
ξ2

(4π2)2 + · · ·
]
.

(3.26)
Like (3.7) this expression cannot be put into the conformal form (with all τ dependence
appearing only as a power (µτ)2∆) since the conformal invariance is broken for generic ξ.

The renormalized correlator satisfies the Callan-Symanzik equation[
µ
∂

∂µ
+ βξ

∂

∂ξ
+ 2(∆− 1)

]
ξ−1Gren(τ ;µ) = 0 . (3.27)

12The order of limits here is important.
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We have written (3.27) for the rescaled (3.2) correlator corresponding to the picture where√
ξ coupling appears in the exponent of the WL operator and the two-point function

is defined for the canonically normalized fields (i.e. without extra coupling factor in the
bulk action compared to (2.3)). Thus ∆ − 1 in (3.27) is the anomalous dimension of the
canonically normalized scalar φ.

Using (2.29), i.e. βξ = 1
4π2 ξ

2 − 1
32π4 ξ

3 + · · · , we obtain

∆ = 1 + 3
8π2 ξ −

5
64π4 ξ

2 + · · · . (3.28)

This expression is in agreement with the general relation for the anomalous dimension
∆− 1 = d

dgβg where the coupling here is g =
√
ξ appearing in front of the scalar φ in the

exponent, i.e.

βg = µ
∂

∂µ
g = 1

2
√
ξ
βξ = 1

8π2 g
3 − g5

64π4 + · · · . (3.29)

The dimension (3.28) in the effective ladder model corresponds to the terms with highest
power of ζ in the dimension of the scalar φ = φ6 in the full N = 4 SYM theory (cf. (1.17))

∆(ζ) = 1 + β′(ζ) = 1 + λ

8π2 (3ζ2 − 1) + λ2

64π4 (1− 5ζ4) + O(λ3). (3.30)

Similarly, the Callan-Symanzik equation (3.8) for the two-point function G̃ren for the “trans-
verse” scalar φ̃ in (3.7) rewritten for the rescaled (3.2) correlator, i.e. in the form (3.27), is(

µ
∂

∂µ
+ βξ

∂

∂ξ

)
G̃ren(τ ;µ) =

[
µ
∂

∂µ
+ βξ

∂

∂ξ
+ 2(∆̃− 1)

]
ξ−1G̃ren(τ ;µ) = 0 . (3.31)

It implies that the anomalous dimension ∆̃− 1 of the canonically normalized scalar field φ̃
found in the ladder approximation is directly proportional to the beta-function βξ in (2.29)

∆̃ = 1 + 1
2ξ
−1βξ = 1 + ξ

8π2 −
ξ2

64π4 + O(ξ3). (3.32)

To reconstruct the expression for the corresponding anomalous dimension ∆̃− 1 in the full
SYM theory (i.e. the analog of (3.30)) which is a function of λ and ζ we may use that (i)
it should reduce to (3.32) if one keeps only highest powers of ζ at each order in λ; (ii) it
should vanish at ζ = ±1; (iii) it should be equal to (3.30) at ζ = 0 as then all 6 scalars are
on equal footing (not coupled to the loop). This gives

∆̃(ζ) = 1 + λ

8π2 (ζ2 − 1)− λ2

64π4 (ζ4 − 1) + O(λ3). (3.33)

This is simply related to the beta-function βζ in (1.17)13

∆̃(ζ) = 1 + ζ−1 βζ . (3.34)

Thus while the anomalous dimension of the coupled scalar (3.30) is given by the derivative
of the beta-function of ζ, the anomalous dimension of the “transverse” scalar (3.34) is
proportional to the beta-function itself.

13The relation between the prefactors in (3.32) and in (3.34) follows from 1
2ξ
−1 d

dµ
ξ = 1

2ζ
−2 d

dµ
ζ2 = ζ−1βζ .
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A way to understand why this relation of ∆̃(ζ) to the beta-function should hold in
general let us start again with the loop (3.11) coupled to the two scalars (φ = φ6 and a
“transverse” φ̃) with different coefficients, i.e.

ζ1 φ+ ζ2 φ̃ , ζ1 = ζ cosα, ζ2 = ζ sinα . (3.35)

In this case we may formally define two beta-functions βζi = µ d
dµζi but since α is an exactly

marginal parameter not running with µ (see discussion below (3.11)) we should have

βζ1 = cosαβζ , βζ2 = sinαβζ . (3.36)

At the same time, the general relations for the anomalous dimensions of φ and φ̃ at the
point ζ2 = 0 or α = 0 (when φ̃ is not coupled to the loop) are given by

∆− 1 = ∂

∂ζ1
βζ1

∣∣∣∣
ζ2=0

= β′ζ , ∆̃− 1 = ∂

∂ζ2
βζ2

∣∣∣∣
ζ2=0

= ζ−1βζ , (3.37)

where in the last equality we used that ∂
∂ζ2

βζ2

∣∣∣
ζ2=0

=
(
ζ−1cosα ∂

∂α+sinα ∂
∂ζ

)
(sinαβζ)

∣∣
α=0=ζ−1βζ .

The above argument implies, in particular, that the fact that ∆̃ = 1 at the fixed points
when βζ = 0 and ζ 6= 0 follows essentially from the rotational symmetry in the scalar space.
For the fixed point at ζ = 0, where all scalars are not coupled to the loop and the full
SO(6) rotational symmetry is restored, this does not apply as here all scalars have then
the same dimension ∆(0) = 1 + β′ζ |ζ=0.
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A Conventions and useful formulae

For SU(N) generators in the fundamental representation we have

[T a, T b] = i fabc T c, TrT a = 0, TrT aT b = 1
2δ

ab, (T aT a)ij = N2− 1
2N δij .

(A.1)

T aijT
a
kl = 1

2

(
δilδjk −

1
N
δijδkl

)
, facdf bcd = Nδab. (A.2)

In computing higher-order corrections one also needs

Tr(T aT aT bT b) = 1
2 Tr(1) Tr(T bT b)− 1

2N Tr(T bT b) =
(
N

2 −
1

2N

)
N2 − 1

2 = (N2 − 1)2

4N ,

(A.3)

Tr(T aT bT aT b) = 1
2 Tr(T b) Tr(T b)− 1

2N Tr(T bT b) = − 1
2N

N2 − 1
2 = −N

2 − 1
4N , (A.4)

Tr(T aT bT bT a) = Tr(T aT aT bT b) = (N2 − 1)2

4N . (A.5)
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Useful formulae for diagram computations are

∫ 1

0

N∏
i=1

dαiα
νi−1
i δ

(
1−
∑
i

αi

)
= Γ(ν1) ·· ·Γ(νN )

Γ(ν1 + ·· ·+νN ) , (A.6)

∫
d2ωw

1
(w2 +M2)s =πωΓ(s−ω)

Γ(s) (M2)ω−s, (A.7)∫
τ>τ1>τ2>τ3>0

dτ1dτ2dτ3 (τ1−τ2)c12(τ2−τ3)c23(τ1−τ3)c13 =

τ c12+c23+c13+3 Γ(c12 +1)Γ(c23 +1)
(c12 +c23 +c13 +2)(c12 +c23 +c13 +3)Γ(c12 +c23 +2) , (A.8)

∫ 1

0
dα

∫ 1−α

0
dβ (αβ)p(α+β)q(1−α−β)r=

2−1−2p√πΓ(1+p)Γ(2+2p+q)Γ(1+r)
Γ
(

3
2 +p

)
Γ(3+2p+q+r)

. (A.9)

Let us also recall some general relations between pole coefficients and beta-function in
dimensional regularization. If ξ(ε) is a bare coupling and ξ(µ) is a renormalized one we have

ξ(ε) = µε
[
ξ(µ) + T1(ξ(µ))

ε
+ T2(ξ(µ))

ε2
+ · · ·

]
, (A.10)

where Tn(ξ) have perturbative expansions

T1(ξ) = p11ξ
2 + p21ξ

3 + p31ξ
4 + p41ξ

5 + · · · , T2(ξ) = p22ξ
3 + p32ξ

4 + p42ξ
5 + · · · ,

T3(ξ) = p33ξ
4 + p43ξ

5 + · · · , T4(ξ) = p44ξ
5 + · · · , . . . . (A.11)

Differentiating (A.10) over µ, using µ d
dµξ(ε) = 0 and setting to zero the resulting coefficients

of poles in ε gives differential constraints on Tn

−T2 + ξT ′2 + T1T
′
1 − ξT ′21 = 0, (A.12)

−T3 + T2T
′
1 − T1T

′
1

2 + ξT ′1
3 + T1T

′
2 − 2ξT ′1T ′2 + ξT ′3 = 0, (A.13)

−T4 + T3T
′
1 − T2T

′
1

2 + T1T
′
1

3 − ξT ′14

+T2T
′
2 − 2T1T

′
1T
′
2 + 3ξT ′12T ′2 − ξT ′22 + T1T

′
3 − 2ξT ′1T ′3 + ξT ′4 = 0, . . . . (A.14)

Plugging here the expansions (A.11) gives coefficients of all higher poles in terms of the
coefficients of the simple one

p22 = p2
11, p32 = 7

3 p11p21, p33 = p3
11, p42 = 3

2p
2
21 + 5

2p11p31, p43 = 23
6 p

2
11p21, p44 = p4

11, . . . .

(A.15)
The beta-function can be expressed in terms of T1 as

β(ξ) = µ
d

dµ
ξ(µ) = −T1 + ξT ′1 = p11ξ

2 + 2 p21ξ
3 + 3 p31ξ

4 + 4 p41ξ
5 + · · · . (A.16)
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B Computation of Wilson loop on a circle in ladder approximation

Let us illustrate how to use the loop equation (2.5) to automatically generate relevant
ladder diagrams in the planar expansion on the example of the two-loop calculation of
the WL in (1.21). Following the mode regularization approach in [12], we replace the
propagator on the circle in (2.4) by its regularized version

Dε(τ) = ξ

8π2

∞∑
n=1

e−n ε (−n) cos(n τ) , (B.1)

where ε = a
R → 0 and a is a cutoff of dimension of length. Using this in the loop equa-

tion (2.5), the first-order term in the expansion (2.16) is simply

W1(τ) =
∞∑
n=1

e−n ε
cos(nτ)− 1

8π2 n
. (B.2)

Setting τ → 2π before summing over n, one gets

W1(2π) = 0. (B.3)

Next, using (B.2) in the loop equation, we obtain

W2(τ) =
∞∑

n1,n2=1
e−ε(n1+n2)

{
n2

2 sin(n1τ) sin(n2τ)
32π4(n2

1 − n2
2)2 + cos(n1τ)

[
(n2

1 + n2
2)n2 cos(n2τ)

64π4n1(n2
1 − n2

2)2

+ n2
64π4(n3

1 − n1n2
2)

]
+ (n2

2 − 2n2
1) cos(n2τ)

64π4n1(n2
1 − n2

2)n2
+ (2n4

1 − 5n2
2n

2
1 + n4

2)
64π4n1(n2

1 − n2
2)2n2

}
.

(B.4)

Here the special case n1 = n2 should be treated separately and one gets

W2(τ) =
∞∑

n1 6=n2=1
(· · · ) +

∞∑
n=1

e−2nε
[

15− 2n2τ2

512π4n2 − cos(nτ)
32π4n2 + cos(2nτ)

512π4n2 −
τ sin(nτ)
128π4n

]
,

(B.5)

where the first term in the r.h.s. vanishes for τ = 2π. As a result,

W2(2π) = − 1
64π2

∞∑
n=1

e−2nε = − 1
128π2ε

+ 1
128π2 + O(ε). (B.6)

Dropping the singular term (linear divergence), we reproduce the ladder part of the ex-
pression in (1.21), (1.25) (cf. (2.1))

W = 1 + 0 · ξ + 1
128π2 ξ

2 + . . . . (B.7)
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C Contributions to two-point function for “transverse” scalar to two
loops

Using the propagator in (2.15), we have the following explicit expressions for the one loop
diagrams in (3.4) and (3.3)

−L L0 τ
= ξ

8π2
1

τ2−ε , (C.1)

−L L0 τ τ1 τ2
= (L− τ)ετ−2+ε

64π4(−1 + ε)εξ
2, (C.2)

−L Lτ1 τ2 τ0 τ
= Lετ−2+ε

64π4(−1 + ε)ε ξ
2, (C.3)

−L L0 ττ1 τ2
= τ−2+2ε

64π4(−1 + ε)ε ξ
2, (C.4)

−L Lτ1 τ20 τ
= τ−2+ε((−1 + 2ε)Lε + τ ε − (L+ τ)ε)

64π4(−1 + ε)ε ξ2, (C.5)

−L Lτ1 τ2
= 2−3+εLε

π2(−1 + ε)ε ξ. (C.6)

At two loops, we have 15 diagrams Ni, i = 1, . . . , 15, in the numerator of (3.1) and two
diagrams D1, D2 in the denominator. Their expressions are14

N1 = = (L− τ)2ετ−2+εΓ(−1 + ε)2

512π6Γ(1 + 2ε) ξ3, (C.7)

N2 = = (L(L− τ)τ)ε

512π6(−1 + ε)2ε2τ2 ξ
3, (C.8)

N3 = = L2ετ−2+εΓ(−1 + ε)2

512π6Γ(1 + 2ε) ξ3, (C.9)

N4 = = (L− τ)2ετ−2+ε

1024π6(−1 + ε)ε2(−1 + 2ε) ξ
3, (C.10)

N5 = = Lετ−2+2ε

512π6(−1 + ε)2ε2
ξ3, (C.11)

N6 = =
log
(

2τ
L+τ

)
512π6τ2ε

ξ3

+ 1
6144π6τ2

[
π2 + 12(log2 2 + log 4) + 6 log 16 logL+ 6 log τ(4 + log 4 + 3 log τ)

−6 log(L+ τ)(4 + 3 log(L+ τ))− 12Li2
(

τ

L+ τ

)]
ξ3 +O(ε), (C.12)

14Here we omit the labels ±L at the ends of the line.
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N7 = = L2ετ−2+ε

1024π6(−1 + ε)ε2(−1 + 2ε) ξ
3, (C.13)

N8 = = (L− τ)ετ−2+2ε

512π6(−1 + ε)2ε2
ξ3, (C.14)

N9 = =−
log
(
L+τ
2τ
)

512(π6τ2)ε ξ
3

+ 1
1024π6τ2

[
2 log2 2 + log 16 + log 16 logL+ log 4 log(L− τ) + 4 log τ + log 4 log τ

+2 logL log τ + 3 log2 τ − 4 log(L+ τ)− log 4 log(L+ τ)− 2 logL log(L+ τ)

−2 log τ log(L+ τ)− log2(L+ τ) + 2Li2
(
− τ

L− τ

)
− 2Li2

(
−L+ τ

L− τ

)]
ξ3 +O(ε), (C.15)

N10 = = τ−2+3ε

1024π6(−1 + ε)ε2(−1 + 2ε) ξ
3, (C.16)

N11 = = τ−2+2ε((−1 + 2ε)Lε + τ ε− (L+ τ)ε)
512π6(−1 + ε)2ε2

ξ3, (C.17)

N12 = = 1
512π6τ2

[
−π

2

12 + iπ log 2 + log2 2
2 − log 2 log(L− τ) + log 2 log τ

+ log 2τ
L+ τ

−Li2
(

L

L− τ

)
+Li2

(
2L
L− τ

)
−Li2

(
−L
τ

)]
ξ3 +O(ε), (C.18)

N13 = = τ−2+3εΓ(−1 + ε)2

512π6Γ(1 + 2ε) ξ3, (C.19)

N14 = =−
log
(
L+τ
2τ
)

512(π6τ2)ε ξ
3

+ 1
1024π6τ2

[
log2 2 + log 16 + log 4 logL+ log 4 log(L− τ) + log 4 log τ + log2 τ − log2(L+ τ)

−4 log
(
L+ τ

τ

)
− 2 log(L− τ) log

(
L+ τ

τ

)
− 2 log τ log

(
L+ τ

τ

)
−2Li2

(
1− L

τ

)
+ 2Li2

(
−L+ τ

L+ τ

)]
ξ3 +O(ε), (C.20)

N15 = =
log
(

2τ
L+τ

)
512π6τ2ε

ξ3 + 1
512π6τ2

[
−π

2

12 + log2 2
2 + log 4 + 3 log2 τ

2

+ logL log
(

4τ
L+ τ

)
+ log τ(2 + log 2− log(L+ τ))

− 2 log(L+ τ)− 1
2 log2(L+ τ)−Li2

(
−L
τ

)]
ξ3 +O(ε). (C.21)
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D1 = = L2εΓ(ε)
64π7/2(−1 + ε)2εΓ

( 1
2 + ε

) ξ2, (C.22)

D2 = = 2−7+2εL2ε

π4(−1 + ε)ε2(−1 + 2ε) ξ
2. (C.23)

D Computation of order ζ term in the one-loop beta-function

Here we shall present some details of the computation of the one-loop term in βζ in (1.3)
that were not spelled out in [10]. Like the ζ3 term in (1.3) that follows from the scalar
ladder graphs (cf. (2.19)) the −ζ term comes from similar graphs with gluon propagator
instead of the scalar one. For example, in the case of the Wilson line along Euclidean
time t = τ direction the exponent in (1.1) is given by

∫
dτ(iAt + φ) and thus the gluon

contribution is minus that of the scalar due to extra i factor. This already reproduces the
expression (1.3) for the one-loop term in βζ .

However, there are two extra types of diagrams that are potentially contributing at
order ζ. Their total contribution should then be zero. Using the vertex renormalization
method discussed in section 2.1 they are represented by15

φ(x0)

0 τ =

φ(x0)

0 τ +

φ(x0)

0 τ . (D.1)

Here the wavy line stands for the gauge field propagator and the blob in the second diagram
is the scalar one-loop self-energy correction (given by the sum of the scalar-gluon loop
and fermion loop). Below we shall demonstrate the mutual cancellation of these two
contributions as claimed in [10] which is similar to the cancellation of the non-ladder
diagram contributions to the expectation value of the circular WML observed in [31].

Explicitly, the contribution of the first diagram in (D.1) is16

V = i

2!

∫
d2τ 〈Tr {φ(x0)P[2A(τ2)φ(τ3)]}

(
−
∫
d4y fabc ∂µφ

a
i (y)Abµ(y)φci (y)

)
〉, (D.2)

where A(τ) = Aaµẋ
µT a and φ(τ) = φa(x)|ẋ|T a assuming we keep the contour general. If

τ2 > τ3 this gives

− i fa′b′c′ Tr(T aT bT c)
∫
d2τ 〈φa(x0)Ab(τ2)φc(τ3)

∫
d4y ∂µφ

a′
i (y)Ab′µ (y)φc′i (y)〉

= −i fabc Tr(T aT bT c)
∫
d4y

∫
d2τ (ẋ(2) · ∂yD(y − x0))D(y − τ3)D(y − τ2)

− i f cba Tr(T aT bT c)
∫
d4y

∫
d2τ (ẋ(2) · ∂yD(y − τ3))D(y − x0)D(y − τ2) (D.3)

15There are, of course, two copies of the first diagram depending on ordering of the end-points of the
propagators.

16Here 2iA(τ2)φ(τ3) comes from the mixed term in the expansion of (φ+ iA)(φ+ iA).
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and for τ2 < τ3 we get

− i fa′b′c′ Tr(T aT bT c)
∫
d4y

∫
d2τ 〈φa(x0)Ac(τ2)φb(τ3)

∫
d4y ∂µφ

a′
i (y)Ab′µ (y)φc′i (y)〉

= −i facb Tr(T aT bT c)
∫
d4y

∫
d2τ (ẋ(2) · ∂yD(y − x0))D(y − τ3)D(y − τ2)

− i f bca Tr(T aT bT c)
∫
d4y

∫
d2τ (ẋ(2) · ∂yD(y − τ3))D(y − x0)D(y − τ2) . (D.4)

Using that fabc Tr(T aT bT c) = i
4N

3 + . . . where dots stand for subleading terms at large
N we get

V = N3
∫
d4y V(y), (D.5)

V = −1
4

∫
d2τ ε(τ2, τ3) (ẋ(2) · ∂yD(y − τ3))D(y − x0)D(y − τ2) , (D.6)

where ε(τ2, τ3) is the antisymmetric path ordering symbol. Specifying to the case of the
contour being straight line we get17

V = 1
4

∫
d2τ ε(τ2, τ3) ∂

∂τ3
D(y − τ3)D(y − x0)D(y − τ2). (D.7)

Integrating by parts (using that ∂
∂τ3
ε(τ2, τ3) = −2δ(τ2 − τ3)) gives

V = 1
2

∫
d2τ δ(τ2 − τ3)D(y − τ3)D(y − x0)D(y − τ2)

+ 1
4

∫
dτ2 [ε(τ2, τ3)D(y − τ3)D(y − x0)D(y − τ2)]τ3=τ

τ3=0

= 1
2

∫
dτ ′ D(y − τ ′)2D(y − x0)− 1

4

∫
dτ ′ D(y − τ)D(y − x0)D(y − τ ′)

+ 1
4

∫
dτ ′ D(y)D(y − x0)D(y − τ ′). (D.8)

This may be written as

V = 1
4

∫
dτ ′ [2H(x0, τ

′, τ ′)−H(x0, τ
′, τ) +H(x0, τ

′, 0)]. (D.9)

Here the function H is in general defined as (cf. [31])

H(x(1), x(2), x(3))=
∫
d2ωy∆(x(1)− y) ∆(x(2)− y) ∆(x(3)− y)

= Γ(ω− 1)3

43π3ω

∫
d2ωy

1
[(x(1)− y)2]ω−1

1
[(x(2)− y)2]ω−1

1
[(x(3)− y)2]ω−1 (D.10)

= Γ(ω− 1)3

43π3ω
Γ(3ω− 3)
Γ(ω− 1)3

∫
d2ωy

∫ 1

0
dαdβdγ

δ(1−α−β− γ) (αβγ)ω−2

[α(x(1)− y)2 +β(x(2)− y)2 + γ(x(3)− y)2]3(ω−1)

17To simplify the analysis we may assume that the point x0 also lies on the line but far away from other
points and thus not participating in limits leading to short-distance singularities.
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where ∆ is the scalar propagator in d = 2ω = 4− ε dimensions (with canonical normaliza-
tion). It can be put into the form

H(x(1), x(2), x(3)) = Γ(2ω − 3)
43π2ω

∫
dαdβdγ

δ(1− α− β − γ) (αβγ)ω−2

[M2]2ω−3 , (D.11)

M2(x(1), x(2), x(3)) = α(1− α) (x(1))2 + β(1− β) (x(2))2 + γ(1− γ) (x(3))2

− 2αβ x(1) · x(2) − 2αγ x(1) · x(3) − 2βγ x(2) · x(3). (D.12)

The UV divergent contribution to (D.9) comes only from the limits when two points on
the line approach each other, i.e. only from the first H-function term in (D.9). Focussing
on this term and setting x0 = 0 we have

V → 1
2

∫
dτ ′H(0, τ ′, τ ′)

= N3Γ(2ω − 3)
27π2ω

∫ τ

0
dτ ′

∫
dαdβdγ

δ(1− α− β − γ) (αβγ)ω−2

((α+ β)γ)2ω−3 τ ′−2(2ω−3). (D.13)

Using (A.9) then gives for the corresponding integral in (D.5)

V = N3 2−3−2ωπ
3
2−2ωτ7−4ω csc(πω)Γ(−3 + 2ω)

(−7 + 4ω)Γ(3− ω)Γ
(
−1

2 + ω
) = N3

64π4τ

1
ω − 2 + · · · . (D.14)

Turning to the scalar self energy contribution, it can be written as (see [31])

S = −1
2

Γ2(ω − 1)
32π2ω(2− ω)(2ω − 3)

∫ τ

0
dτ ′

1
(x0 − τ ′)2(2ω−3) . (D.15)

Setting as in (D.13) x0 = 0 we get

S = −1
2

Γ2(ω − 1)
32π2ω(2− ω)(2ω − 3)

∫ τ

0
dτ ′

1
τ ′2(2ω−3) = − π−2ωτ7−4ωΓ(−1 + ω)2

64(7− 4ω)(2− ω)(−3 + 2ω) .

(D.16)

Then one can check that the contributions of the triangular graph and self-energy correction
indeed cancel (even exactly in ω), i.e.

V + S = 0. (D.17)
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