
Semi-supervised learning and bidirectional
decoding for effective grammar correction
in low-resource scenarios
Zeinab Mahmoud1, Chunlin Li1, Marco Zappatore2, Aiman Solyman3,
Ali Alfatemi4, Ashraf Osman Ibrahim5 and Abdelzahir Abdelmaboud6

1 School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei,
China

2 Department of Engineering for Innovation, University of Salento, Lecce, Lecce, Italy
3 School of Software Engineering, South China University of Technology, Guangzhou, China
4 Computer Science, Graduate School of Arts and Sciences (GSAS), Fordham University, New
York, United States

5 Advanced Machine Intelligence Research Group, Universiti Malaysia Sabah, Kota Kinabalu,
Malaysia

6 Department of Information Systems, King Khalid University, Muhayel Aseer, Saudi Arabia

ABSTRACT
The correction of grammatical errors in natural language processing is a crucial task
as it aims to enhance the accuracy and intelligibility of written language. However,
developing a grammatical error correction (GEC) framework for low-resource
languages presents significant challenges due to the lack of available training data.
This article proposes a novel GEC framework for low-resource languages, using
Arabic as a case study. To generate more training data, we propose a semi-supervised
confusion method called the equal distribution of synthetic errors (EDSE), which
generates a wide range of parallel training data. Additionally, this article addresses
two limitations of the classical seq2seq GEC model, which are unbalanced outputs
due to the unidirectional decoder and exposure bias during inference. To overcome
these limitations, we apply a knowledge distillation technique from neural machine
translation. This method utilizes two decoders, a forward decoder right-to-left and a
backward decoder left-to-right, and measures their agreement using Kullback-Leibler
divergence as a regularization term. The experimental results on two benchmarks
demonstrate that our proposed framework outperforms the Transformer baseline
and two widely used bidirectional decoding techniques, namely asynchronous and
synchronous bidirectional decoding. Furthermore, the proposed framework reported
the highest F1 score, and generating synthetic data using the equal distribution
technique for syntactic errors resulted in a significant improvement in performance.
These findings demonstrate the effectiveness of the proposed framework for
improving grammatical error correction for low-resource languages, particularly for
the Arabic language.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech, Neural
Networks
Keywords Automatic correction of grammar, Deep learning, Multi-head attention network

How to cite this article Mahmoud Z, Li C, Zappatore M, Solyman A, Alfatemi A, Ibrahim AO, Abdelmaboud A. 2023. Semi-supervised
learning and bidirectional decoding for effective grammar correction in low-resource scenarios. PeerJ Comput. Sci. 9:e1639 DOI 10.7717/
peerj-cs.1639

Submitted 28 April 2023
Accepted 18 September 2023
Published 24 October 2023

Corresponding authors
Chunlin Li, 410144@whut.edu.cn
Aiman Solyman,
aiman_mutasem@hotmail.com

Academic editor
Vijay Mago

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.1639

Copyright
2023 Mahmoud et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1639
http://dx.doi.org/10.7717/peerj-cs.1639
mailto:410144@�whut.�edu.�cn
mailto:aiman_mutasem@�hotmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1639
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
Automatic correction of grammatical errors is one of the most common NLP tasks in
research and industry and it has seen rapid development with the advancement of deep
learning techniques. Recent deep neural network approaches are essentially an encoder-
decoder architecture (Solyman et al., 2022). In GEC neural-based systems, the encoder
receives the source, which is an ungrammatical sentence and maps it into an intermediate
hidden vector that encodes all the source information. The decoder takes the hidden vector
to generate the output correction word by word.

One major challenge in GEC is the lack of available massive parallel training data for
low-resource languages, such as Slovenian, Albanian, and Arabic. The classical form of
seq2seq GEC often uses a unidirectional decoder that suffers from unbalanced outputs
(Solyman et al., 2022), which leads the system to generate corrections with good prefixes
and bad suffixes. The effects of this problem vary depending on the model structure and
the length of the input sequence. However, the autoregressive structure of deep neural
network approaches in GEC has a limitation during inference when the previous target
word is unavailable; consequently, the model depends on itself and generates a new word
that may be out of context, thus generating the so-called exposure bias problem (Solyman
et al., 2022). The incorrect words generated during inference lead to weakness in the
prediction of the next word and result in unsatisfactory correction results. Previous studies
such as Yuan et al. (2019) sought to use a complementary decoder (R2L) to rerank the n-
best list of the L2R decoder, but still the same decoder suffers from an exposure bias
problem which leads to bad prefixes corrections.

The current research direction is aimed at lessening the discrepancy that exists between
the training and inference stages to increase robustness while feeding erroneous previous
predictions to overcome this issue. For instance, a Type-Driven Multi-Turn Corrections
approach was proposed by He et al. (2016), which involves constructing multiple training
instances from each original instance during training. Zhang et al. (2018) proposed a two-
stage decoding neural translation model in the inference, that is time-consuming. Another
notable work in Zhang et al. (2019), proposed a regularization method during training to
increase the agreement between two decoders (L2R and R2L); however, it complicates the
training phase because of dynamic sampling and requires more training time and
computation resources. To tackle the drawback associated with previous studies, the
current work introduces a semi-supervised confusion method that widens synthetic
training data. Furthermore, an Arabic grammatical error correction (AraGEC) model was
proposed, based on bidirectional knowledge distillation with a regularization method
inspired by NMT, as proposed by Zhang et al. (2022), which aims to improve the
agreement between the two decoders of forward (R2L) and backward (L2R) into a joint
framework. This forces both decoders to act as helper systems for each other and to
integrate their advantages to address the exposure bias problem and generate corrections
as output with good prefixes and suffixes. The notable outcomes of this work are outlined
below:

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 2/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

� A semi-supervised method is proposed to overcome the shortage of parallel training
data in AraGEC by generating synthetic training data.

� AraGEC model is proposed based on Transformer-base equipped with a bidirectional
knowledge distillation method to address the exposure bias problem typically
experienced in automatic GEC systems.

� Experimental results on two benchmarks demonstrate that our model outperforms the
current most powerful bidirectional decoding methods as well as previous AraGEC
systems.

This article is structured as follows. “Related Work” describes the related works. The
proposed confusion method and the GEC framework are presented in “Methodology”.
“Experiments” examines the experimental details, whereas “Results” reports our
evaluation results and analysis. Finally, conclusions are given in “Conclusion and Future
Work”. The comprehensive set of resources encompasses the codebase, trained models,
and essential data files, all of which can be found on GitHub (https://github.com/
Zainabobied/SLBDEGC).

RELATED WORK
Automatic detection and correction of grammatical and other related errors are one of the
most popular tasks in NLP, as the interest in it began in the late 1970s with the advent of
electronic computing. Rule-based systems were the earliest applications adopted to that
end, which use a simple knowledge base that contained all the grammar rules of the
relevant language (Simmons, 1978). In the 1990s, there was a significant development in
the field of computational linguistics that led to the use of n-gram language models to
measure the probability of characters and words in a contiguous sequence from a given
sample of text (Brown et al., 1992). Recently, GEC can be considered a machine translation
task, which translates text with errors (interpreted as the source language) into error-free
text. GEC-based SMT is a phrase-based system that optimizes the conditional probability
of finding the correct sentence Y given the input sentence X, among all possible corrections
(Junczys-Dowmunt & Grundkiewicz, 2016). Due to the increases in computer processing
capabilities and the availability of massive training data, GEC-based NMT systems
demonstrated the ability to outperform the previous and more traditional GEC techniques
thanks to their new approach that allows to correct texts using a set of hidden layers in the
form of seq2seq models such as Recurrent Neural Network (RNN), Convolutional Neural
Network (CNN), or Transformer (Solyman et al., 2022).

Extensive research attention has been devoted to the English and Chinese languages,
primarily due to the availability of rich resources including parallel text corpora, pre-
trained models, and open-access GEC systems. Notably, GPT-3, a pre-trained language
model with 175 billion parameters, has demonstrated powerful performance in generating
natural language text, particularly in the field of English GEC (Brown et al., 2020). Google
AI unveiled Pathways, a mega language model with a staggering capacity of 540 billion
parameters. This model has achieved a remarkable level of human-like performance in a
wide range of numerous NLP tasks, including GEC (Chowdhery et al., 2022).

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 3/25

https://github.com/Zainabobied/SLBDEGC
https://github.com/Zainabobied/SLBDEGC
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

However, the main challenge of low-resource languages1 such as Italian, French, and
Arabic is the lack of such resources. Ge, Wei & Zhou (2018) proposed an approach called
fluency boost learning based on CNN. This iterative routing process effectively corrects
texts and leads to a substantial improvement in the accuracy and fluency of GEC systems.
In another study, Acheampong & Tian (2021) introduced a GEC system that minimizes the
reliance on extensive training data, a common requirement for neural-based GEC systems;
the system used cascaded learning strategies. In their study, Wan, Wan & Wang (2020)
introduced a data augmentation method with the objective of improving the performance
and robustness of GEC models. This approach centers around modifying latent
representations of grammatical sentences to generate synthetic training samples
encompassing various grammatical errors. A copy-augmented approach based on the
Transformer baseline in Indonesian GEC was proposed by (Zhao et al., 2019). This
method enhances accuracy by copying correct or unchanged words from the source text
into the target text, resulting in improved performance. Sun et al. (2022) introduced a
unified strategy to enhance multilingual GEC models. Their approach involved leveraging
a pre-trained cross-lingual language model and employing synthetic data construction
techniques. By utilizing the non-autoregressive translation capability of the pre-trained
model, a diverse set of error-corrected data was generated, which was subsequently
employed for pre-training the GEC models. Náplava & Straka (2019) introduced a GEC
based on a neural machine translation approach, and also proposed a spell-confusion
method that was utilized to generate synthetic corpora from clean monolingual data that
was introduced specifically designed for GEC in Czech. The GitHub Typo Corpus,
introduced by Hagiwara & Mita (2020), serves as a valuable resource for training GEC
models. This vast multilingual training dataset comprises 15 languages.

AraGEC has gained significant attention due to its successful performance in shared
tasks during 2014 and 2015, as reported by Mohit et al. (2014) and (Rozovskaya et al.,
2015). Although AraGEC was recognized early on, it faces a significant challenge due to the
limited availability of training data. The existing annotated Arabic training data consists of
only 20,430 examples. To tackle this issue, Rozovskaya et al. (2014) introduced Columbia a
GEC system that achieved the top ranking in the QALB-2014 Shared Task on Arabic GEC.
This system incorporates statistical models, linguistic resources, and rule-based modules
designed to tackle various types of errors. Nawar (2015) proposed a framework
characterized as a probabilistic rule-based system that extracts error correction rules and
assigns probabilities to each rule. The proposed framework achieved the highest F1 score in
the QALB-2015 Shared Task. Sina (2017) utilized an attention-based RNN encoder-
decoder model as the first end-to-end neural-based AraGEC system. Watson, Zalmout &
Habash (2018) employed seq2seq Bidirectional Recurrent Neural Networks (BRNN) and
FastText word embeddings to extract richer linguistic information for their model.
Solyman, Wang & Tao (2019) introduced a convolutional AraGEC model, which was later
extended in their subsequent work (Solyman et al., 2021). This extended GEC model
incorporates a spell-confusion approach and a CNN seq2seq model with shared
embedding and fine-tuning, enhancing its capabilities for accurate error correction. In
another work by Solyman et al. (2023), seven data augmentation approaches were

1 The term ‘low-resource languages’ in
NLP encompasses languages with limited
resources, including training data, not
solely confined to GEC. While GEC is
affected by low-resource languages, the
concept extends to other areas within the
field of NLP.

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 4/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

proposed to increase the impact of source contribution in GEC systems. These approaches
led to improvements without the need for additional training data. Pajak & Pajak (2022)
investigate the application of multilingual sequence-to-sequence models for GEC. The
research shows that using a single model to address error correction in multiple languages
is effective. To achieve this, large pre-trained models such as mBART, mT5, and
ProphetNet were tuned. The study finds that fine-tuning large models for GEC can be
done with limited computational resources, and emphasizes that the size of the model
plays a crucial role in determining the quality of the results.

As it can be inferred from the in-domain literature overview provided so far, the existing
systems for low-resource scenarios predominantly use spell-confusion methods to
generate synthetic data that almost lacks diversity, thus leading to limited training patterns
and, consequently, limiting significantly the true application potential of those systems.
Therefore, an extended effort is needed to introduce more efficient approaches capable of
addressing the lack of training data and the exposure bias problem.

METHODOLOGY
System overview
In this section, we introduce the proposed GEC framework in detail and formulate the
hypotheses. Initially, a novel approach was proposed to construct reliable synthetic parallel
training data for GEC, as shown in Fig. 1. Furthermore, we introduce a knowledge
distillation with bidirectional decoding for AraGEC based on Transformer. This technique
was proposed by Zhang et al. (2022) in NMT, and we have successfully integrated it into
our model.

Figure 1 Architecture of the Equal Distribution of Synthetic Errors (EDSE) approach is made of two synthetic pipelines that have the same
probability of error generations, green refers to the original data, red is the synthetic data (erroneous), and blue is the parallel training data.

Full-size DOI: 10.7717/peerj-cs.1639/fig-1

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 5/25

http://dx.doi.org/10.7717/peerj-cs.1639/fig-1
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

Noise method
Despite the widespread use of Arabic on the Internet, there is still a lack of freely available
training data for NLP applications such as semantic analysis (Baghdadi et al., 2022), text
classifications (Masri & Al-Jabi, 2023), and automatic grammar correction. The Qatar
Arabic Language Bank (http://nlp.qatar.cmu.edu/qalb/) (QALB) is the only available
annotated parallel data for GEC: it consists of 20,430 examples, which is not enough to
train GEC neural-based systems effectively. Furthermore, building extensive parallel
training data for GEC is expensive, time-consuming, and requires appropriate tools. To
this end, numerous methods have been proposed such as back-translation (Kiyono et al.,
2020) and misspelling confusion sets (Grundkiewicz, Junczys-Dowmunt & Heafield, 2019)
to overcome the lack of training data. However, these techniques are unreliable to
construct high-quality training data containing the most common grammatical errors
(training patterns) and cannot control the types of errors, rate, and distribution.

While GEC has gained research attention in recent years, there has been a neglect of
error identification and classification, particularly in the context of AraGEC. Previous
approaches have focused on classifying grammatical errors in English, including style
errors, spelling errors, semantic errors, syntax errors, missing words, extra words, and
agreement errors (Naber, 2003;Wagner, Foster & van Genabith, 2007; Yuan, 2017). In the
case of Arabic, Zaghouani et al. (2014) have classified seven error types, such as spelling,
punctuation, incorrect word choice, morphology, syntactic, proper name errors, and
dialectal usage correction, which were utilized in Arabic GEC shared tasks (Mohit et al.,
2014; Rozovskaya et al., 2015). Drawing from the existing literature, our proposed method
considers five main types and 14 sub-types of errors for Arabic, as outlined in Fig. 2, which
includes examples and translations. These error types serve as the foundation for our
approach, ensuring comprehensive coverage of the most common errors in the Arabic
language, even those that were not addressed in Zaghouani et al. (2014) study.

The seed of our synthetic data was a monolingual corpus namely CC100-Arabic, created
by Conneau et al. (2020) from Facebook AI. The data was collected during January-
December 2018 Commoncrawl snapshots from the CC-Net repository, and the total data
size was 5.4 GB organized into a single text document. The CC100 arabic corpus was
selected because it is freely available and it is the most extensive monolingual Arabic
corpus. In addition, it contains various topics such as education, history, economy, law,
health, stories, cooking recipes, and sport. Several steps of data prepossessing were initially
applied over the given corpus, such as removing the duplicate paragraphs and spaces
between lines. We decided to use 25 million examples in different lengths, between 10 to
100 words. Then, data was normalized from diacritical marks, non-UTF8 encoding, links,
and mentions, and we kept punctuation, numbers, and Arabic stop words.

The performance of GEC systems was improved thanks to the monolingual data, which
was used during training to provide more training patterns; this depends on the size and
quality of the synthetic data (Grundkiewicz, Junczys-Dowmunt & Heafield, 2019). This
article proposes a semi-supervised method for generating massive synthetic data that
contains the most common types of grammatical errors in Arabic. In order to cover a wide

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 6/25

http://nlp.qatar.cmu.edu/qalb/
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

range of errors in AraGEC, two pipelines were applied; hence the type of errors was
grouped into two groups: group one includes spelling errors, sentence structure, and
punctuation errors; while group two includes syntax and semantic errors, as shown in
Fig. 2, which include examples, translation, and the rate. We relied on the error
distribution rates in the Arabic learner corpus (ALC) (Alfaifi, Atwell & Hedaya, 2014), in
which punctuation and spelling have high rates, respectively. Next are the syntax errors
(middle), semantic and sentence structure errors that have the lower rate (low),
respectively. This makes it easy to control the rate and distribution of each type of error.

The proposed method has two key parameters: N refers to a rate of words to be
processed and has an initial value between 0 and 1, we set the value of N during training to
0.1; T is the total number of words in each input sentence. Let us begin with the first
pipeline, which generates errors that include Misspelling (with four sub-classes),
Punctuation, and Sentence structure (with two sub-classes). For example, in the generation
of spelling errors, one method aims to tokenize the input sentence and then randomly
selects a word to either delete a character or add more characters. Punctuation errors are

Figure 2 Examples of error classes in Arabic intended for generation, including error types (sub-
classes), illustrative examples (with incorrect words highlighted in red), translations, and error
distribution rate (EDR) for each error type. Full-size DOI: 10.7717/peerj-cs.1639/fig-2

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 7/25

http://dx.doi.org/10.7717/peerj-cs.1639/fig-2
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

introduced by injecting specific punctuation marks from a given list or by removing
existing punctuation. Sentence structure errors are induced through a method that
transforms the input sentence into a part-of-speech (PoS) tagging format, followed by one
of these two operations: (1) Swapping two sentence components: the subject, object, or
verb, within the standard word order of VSO (verb-subject-object) in Arabic. For example,
it may entail reordering the sentence from VSO to SVO (subject-verb-object) or from VSO
to OVS (object-verb-subject); or (2) removing one of the sentence structures.

The second pipeline in the proposed method tackles the most complex error types:
Syntax (with five sub-classes) and Semantic (with two sub-classes). To begin, each input
sentence is initially converted into the PoS format. Within this pipeline, a total of seven
operations (functions) are applied at each iteration t. These operations include but are not
limited to, the following examples: (1) deletion of determiners; (2) replacement of the
subject with another word from the corpus vocabulary, resulting in a verb-subject
disagreement; (3) unification of the tense to the present tense format by utilizing PoS tags,
disregarding future and past tenses, thus introducing tense verb errors; (4) deletion of
suffixes and affixes to create morphological errors and inconsistencies within the sentence;
(5) substitution of a random word in the sentence with a word from the dataset, leading to
semantic errors that confuse the reader and impact the sentence context. The proposed
method is named Equal Distribution of Syntactic Errors (EDSE), and its architecture is
depicted in Fig. 1. Algorithm 1 provides an overview of the procedures and data flow,
illustrating a simplified representation with only six functions, whereas the actual
implementation encompasses a total of 16 functions. Each main error class, such as
Misspelling, Punctuation, and Syntax, consists of multiple sub-classes. During each
iteration t consisting of three steps, a random sub-function is chosen from each main class,
forming a pipeline that incorporates the selected sub-functions. However, the proposed
method is not perfect and there is room for refinement, it serves as a starting point for
generating different types of errors in Arabic text.

Bidirectional decoding
The proposed AraGEC framework utilizes both forward and backward decoders in its
decoding structure. Since Arabic is a right-to-left (R2L) language, the decoder that moves
in a forward direction employs a mask matrix in the form of an upper triangular shape,
allowing it to consider the information on the right of yt . This forward decoder is referred
to as the R2L decoder. The backward decoder in the regular language model perceives the
sequences from left to right and is named the L2R decoder. Furthermore, a lower triangular
mask matrix was used in the L2R decoder. Both given decoders are utilized to detect and
correct the next token, where t represents the current token index ranging from 1 to T in
the sequence. The decoders operate on the range of tokens from (t þ 1 to T) or (1 to t � 1)
given the source X and the target Y, as described by the following equations.

logPðyjX; h Þ ¼
YN
n¼1

Pðytjytþ1:T ;X; h
 Þ; (1)

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 8/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

Algorithm 1 Equal distribution of synthetic errors.

Require: Y1;Y2, α. ▹ Pair of original monolingual sentences, α value between 0–1

Ensure: ðX̂1;Y1Þ, ðX̂2;Y2Þ. ▹ Pair of parallel synthetic examples

function GENERATECHARACTERERROR (X̂i)

X̂i ¼ ½w1;w2;…;wn�;wi ¼ ½c1; c2;…; cn�; ci 2 ½c1; c2;…; cn� ▹ Choose a character ci

bci 2 ½c1; c2;…; cn� ▹Delete ci or Add ĉi to position iþ 1

ŵi ¼ ½c1; c2; ci; bci;…; cn�X̂i ¼ ½w1;w2;…;wn� ▹ Update ŵi and Ŷi

return bXi

end function

function GENERATEPUNCTUATIONERROR (X̂i)

X̂i ¼ ½w1;w2;…;wn�; lst ¼ ½!; }; ð; Þ; �; :; :; ?; ½; �; f; g� ▹ lst is a list of punctuation

X̂i ¼ ½w1;w2; lsti;…;wn� ▹ Insert lsti in a random position within X̂i

return bXi

end function

function GENERATESTRUCTURALERROR (X̂i)

X̂i ¼ ½w1;w2;…;wn� ▹ Convert bXi to PoS tags

X̂i ¼ ½w1;wn;…;w2� ▹ Delete or swap sentence components [subject, object, verb]

return bXi

end function

function GENERATEDETERMINERERROR (X̂i)

X̂i ¼ ½w1;w2;…;wn� ▹ Convert bXi to PoS tags

X̂i ¼ ½w1;�;…;wn� ▹ Delete a single element of determiner, suffix, prefix, etc.

return bXi

end function

function GENERATEVERBSUBJECTERROR (X̂i)

X̂i ¼ ½w1;w2;…;wn�; lst ¼ ½ŵ1; ŵ2;…; ŵn� ▹ lst is a list of training vocabulary words

X̂i ¼ ½w1;w2; ŵi;…;wn� ▹ Replace a subject with ŵi from the list

return bXi

end function

function GENERATESEMANTICERROR (X̂i)

X̂i ¼ ½w1;w2;…;wn�; lst ¼ ½ŵ1; ŵ2;…; ŵn� ▹ lst is a list of training vocabulary words

X̂i ¼ ½w1;w2; ŵi;…; ŵj� ▹ Replace 2 elements from bXi with 2 random entries from lst

return bXi

end function

procedure EQUALDISTRIBUTIONSYNTHETICERRORS (Y1;Y2; a)

X̂1 Y1;N1 ða� lenðY1ÞÞ
fns ¼ ½GenerateCharacterError, GeneratePunctuationError, GenerateStructuralError�
for i ¼ 1 to N1 do

(Continued)

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 9/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

logPðyjX;~hÞ ¼
YN
n¼1

Pðytjy1:t�1;X;~h Þ: (2)

The literature of the previous work in AraGEC demonstrates that the R2L performs
better than the L2R decoder as described by Solyman et al. (2022); hence, in this work the
backward decoder (R2L) will be the student and the forward decoder (L2R) represent the
teacher. R2L decoder learns dependencies of the output sequences from right to left,
whereas the L2R learns the dependencies of the output sequences from left to right, and
this is the relative future information of the R2L. Thereon, the output of both decoders
(R2L—L2R) which is the probability distribution of words in each position that can be
represented as complementary information of two decoding sides. This makes the model
force the probability distribution of PR2L and PL2R to support each other during training to
generate future information, as shown in the following equation.

PR2Lðyt ¼ wjy1:t�1;XÞ � PL2Rðyt ¼ wjytþ1:T ;XÞ (3)

where w is the given token from the training vocabulary, and t refers the tth position of the
output corrected sequence. However, these decoders cannot improve equally and cannot
fulfill Eq. (4) if optimized separately using the standard MLE. The L2R decoder cannot
learn the global coherence from R2L and this will lead to unsatisfactory corrections. To this
end, a knowledge distillation method was proposed to improve both decoders during
training process and the transferred information learning across R2L and L2R decoders.
Furthermore, the L2R decoder will not be used during inference so as to not affect
decoding speed as compared to the conventional GEC models that used the L2R model
during inference.

Knowledge distillation
The main objective of the proposed knowledge Distillation method is to incorporate the
learning information from the backward decoder to the forward decoder, which uses L2R
decoder as a teacher that has future knowledge (hidden states) of R2L decoder. This
approach utilizes the logits and the teacher’s final layer hidden states model for increased

Algorithm 1 (continued)

bXi choiceðfnsÞðX̂iÞ ▹ Apply one of three functions in fns

end for

X2 Y2;N2 ða� lenðY2ÞÞ
fnx ¼ ½GenerateDeterminerError, GenerateVerbSubjectError, GenerateSemanticError]

for i ¼ 1 to N2 do

bXi choiceðfnxÞðX̂iÞ ▹ Apply one of three functions in fnx

end for

return ðX̂1;Y1Þ, ðX̂2;Y2Þ
end procedure

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 10/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

versatility and effectiveness. Furthermore, since the student and teacher models will learn
during training at the same time, so we called this method Bidirectional Knowledge
Distillation Grammatical Error Correction (BKDGEC), which encompasses hidden state-
based distillation and logit-based as depicted in Fig. 3. In this context, we would like to
clarify that the term “knowledge distillation” typically implies transferring information
from a larger model to a smaller model. However, in our framework, we use the term
“knowledge distillation” to describe the transfer of knowledge from the teacher to the
student decoder, even though they have similar sizes.

In the realm of neural-based techniques, Logit alludes to the predictive vector that can
be produced using the last layer of the decoder. This layer has the same dimension as the
vocabulary size and is employed to determine the token that should be predicted in the
present time step. In this work, Kullback-Leibler (KL) divergence was utilized to quantify
the divergence between the logit probability distributions of the backward and forward

Figure 3 The design of our BKDGEC model incorporates two decoders, labeled as Backward and
Forward, represented by yellow boxes. These decoders consist of Self-Attention (SA), Cross-Atten-
tion (CA), and a Feed-Forward Neural Network (FFN). Full-size DOI: 10.7717/peerj-cs.1639/fig-3

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 11/25

http://dx.doi.org/10.7717/peerj-cs.1639/fig-3
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

decoders at the same position. Eqs. (4) and (5) demonstrate the implementation of this
method:

Llogit ¼
XT
n¼1

KLðPðytjy1:t�1;X~hÞjjPðytjytþ1:T ;X; h
 ÞÞ; (4)

KLðPðytjy1:t�1;X h
!ÞjjPðytjytþ1:T ;X; h

 ÞÞ

¼
X
w2V

Pðyt ¼ wjy1:t�1;X; h
!ÞÞ � log

Pðyt ¼ wjy1:t�1;X; h
!Þ

Pðyt ¼ wjytþ1:T;X; h
 Þ

:
(5)

Here, V represents the output vocabulary, and T denotes the target length.
Consequently, this led to the distillation of hidden states, which can be depicted through
the following equation.

Lhd ¼ MSEðHWh
 ���

; ~HÞ (6)

whereMSE is a loss function stands to mean squared error, H
 2 Rl��d and H

!2 Rl�d refers
to the hidden states of the both decoders R2L and L2R, respectively. Furthermore,

Wh 2 Rd
0 �d is a linear function that adjusts the L2R hidden states to have the same

dimension as the R2L hidden states, and d
0
d are the hidden dimension of both the decoders

and have the same value. In this work, two knowledge distillation functions were utilized to
encourage the backward decoder to grasp future representations. In addition, a joint
training framework was constructed to optimize both the decoders iteratively, as shown in
Eq. (7).

LðhÞ ¼
X
�logPð~yjX; ~hÞ � logPðy jX; h Þ þ Lkdð~y; y Þ; (7)

Lkd ¼ Llogit þ Lhd; (8)

As explained, the knowledge distillation learning process in this work is based on a
student model imitating the teacher model. This might raise concerns as the student’s
potential might be constrained by the teacher’s performance, resulting in limited ability to
surpass the teacher (Clark et al., 2019). Consequently, the student model could rely heavily
or excessively on the teacher model. To tackle this challenge in our BKDGEC framework,
we applied two distillation methods. These methods help the R2L decoder gain a better
understanding of future knowledge and drive the model to place more emphasis on the
L2R decoder as training progresses. To this end, an annealing mechanism was proposed
that is fitting for BKDGEC. It adjusts the training objective to consider the agreement
between both decoders as in Eq. (9).

LðhÞ ¼
Xn
i¼1
�ð1� kÞ � logP

h
 ðyijXiÞ

� �2
� k � logP~hðyijXiÞ þ ð1� kÞk � Lkdðyi; byiÞ

� �
; (9)

where k 2 ½0; 1� is a hyperparameter that controls the balance between the forward
decoder P~h and the backward decoder P

h
 . Here, yi is the ground truth label for the i-th

input sample Xi, and byi is the output label from the forward decoder. The value of k is

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 12/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

determined based on the current training step cstep and the warm start step wstep.
Specifically, if cstep,wstep, then k ¼ 1, and the training objective function only considers
the output of the forward decoder P~h to help the backward decoder P

h
 acquire sufficient

knowledge. Otherwise, k ¼ wstep

cstep
, indicating that the number of training steps is greater than

wstep. In this case, the effect of the backward decoder P
h
 (also known as the teacher)

increases, and the initial value of the divergence in agreement Lkdðyi; byiÞ also increases
during training, while the output of the forward decoder P~h (also known as the student)
decreases over time.

EXPERIMENTS
Data
The synthetic parallel training data used in our study originated from CC100-Arabic, a
dataset introduced by Conneau et al. (2020) from Facebook AI. Prior to utilization, the data
underwent preprocessing, and subsequently, our proposed confusion method, EDSE, was
applied to generate parallel training data, which was then divided into training and
development sets. For fine-tuning purposes, we used the data from QALB-2014. This
dataset provided us with 20,430 examples, making it a valuable resource for improving the
performance of our AraGEC system. The QALB-2014 corpus consisted of English articles
that had been translated into Arabic using machine translator, as well as the Arabic
Learners Written Corpus (ALWC) introduced by Alfaifi, Atwell & Hedaya (2014).
Additionally, it included users’ comments from the Al-Jazeera news platform that
contained a range of grammatical errors due to the various Arabic dialects represented. A
team of linguistic experts and native speakers corrected and annotated the data to ensure
the accuracy and reliability of the target sentences.

Model setting
The initial baseline model used in our experiments was based on the Transformer
architecture, as introduced by (Vaswani et al., 2017). However, certain modifications were
made to adapt it to our specific task. The model size was reduced from 512 to 256, and the
batch size was reduced from 2,048 to 128. These adjustments were necessary because our
proposed model operated on chunks of 2-to-4 characters instead of whole words, which
required smaller dimensions to ensure optimal performance. Additionally, the number of
layers in the Transformer was reduced from six to four during our experiments, while the
number of attention heads remained at eight, consistent with the original model. In the
encoder and decoder, the first layers were used for positional encoding instead of the static
encoding method employed in BERT (Devlin et al., 2019). However, we did not apply label
smoothing in our approach. To tackle overfitting, we employed the Adam optimizer
(Kingma & Ba, 2015) instead of using warm-up and cool-down steps for adjusting the
learning rate. We set the learning rate to 0.003 during the training phase and reduced it to
0.001 during the fine-tuning phase. Furthermore, to prevent the gradient from exploding,
we implemented gradient clipping with a threshold value of 1.0. Dropout regularization
was also utilized with probabilities of 0.15 and 0.10 during training and fine-tuning,
respectively. To handle the challenge of rare words, we applied the Byte Pair Encoding

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 13/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

(BPE) algorithm proposed by Sennrich, Haddow & Birch (2016). This algorithm enables
the segmentation of unknown tokens into sub-tokens, improving the model’s ability to
handle out-of-vocabulary words and enhance overall performance.

Early stop was applied during training, which led to 27 epochs using the monolingual
parallel synthetic data and three epochs for fine-tuning using parallel authentic data of
QALB-2014. A checkpoint of the best model was created after each epoch. Due to the small
chunks of input sequences, the maximum length of input sequences was set to 400 tokens
in training and testing. The tokenizer was the BPE algorithm with 1,000 vocabulary size.
Beam search was applied during inference with a five-beam size. The outputs of the test set
have been tuned after inference using a simple data preprocessing method to remove the
repetitions of words, characters, and some punctuation errors that the model failed to
correct well.

In this context, we acknowledge that the hyperparameters were deliberately set
manually. The decision to manually select hyperparameters was made to ensure careful
consideration of the unique characteristics of the data and task at hand. We acknowledge
that automated or systematic techniques for hyperparameter selection exist, but due to the
constraints of our study and the need for fine-tuned control over the models, we opted for
a manual approach. This allowed us to tailor the hyperparameter values to our specific
context and strike a balance between model performance and generalization.

Evaluation
We evaluated the proposed framework using two benchmarks: QALB-2014 and QALB-
2015, which were used for the Arabic GEC shared tasks inMohit et al. (2014), (Rozovskaya
et al., 2015). To assess the performance, we applied MaxMatch and the same tool used in
the aforementioned shared tasks. This tool measured the word-level edits in the output
compared to the reference sentences and provided precision, recall, and F1 scores under
different training scenarios. Furthermore, we applied the BLEU-4 score to evaluate the
quality of the machine-corrected sentences compared to high-quality human-corrected
sentences.

RESULTS
This section investigates the performance of the proposed framework, including the
impact of the synthetic data, the bidirectional knowledge distillation method, as well as
fine-tuning and re-ranking L2R as an improvement. We also investigated the performance
against the most powerful bidirectional methods in NMT: asynchronous and synchronous
decoding.

Impact of synthetic data
The constructed synthetic data have more diverse examples than those used to train
BKDGEC. Table 1 shows the effectiveness of our EDSE method to construct more reliable
data compared to previous approaches such as a semi-supervised confusion function (SCF)
(Solyman et al., 2021) and a simple spelling noise method (SSNM) (Solyman et al., 2022)
using the same data size for a fair comparison consisting of 250 k examples from each

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 14/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

training set. The three synthetic sets have been used to train the baseline Transformer base
without fine-tuning, BPE was applied with a vocabulary of 30k to reduce the confusion
caused by unknown words during training. EDSE performed better than SCF and SSNM in
the benchmark QALB-2014. This highlights the importance of multi-training patterns in
the training data, in which SCF contains only spelling errors, while SSNM has more
training patterns but is still limited compared to our synthetic data.

Eventually, the performance was investigated using the full synthetic data for training
the model. Table 2 shows that F1 score increased +18.71 and +3.06 for QALB-2014 and
QALB-2015, respectively. This emphasizes the importance and ability of producing
synthetic data to raise the level and effectiveness of the GEC systems during training, and
also the impact of 10k vocabulary of the BPE algorithm.

Impact of bid-knowledge distillation
The performance of different versions of the proposed GEC framework, utilizing two
benchmarks, is presented in Table 2. The baseline model was a Transformer-based
approach trained on the QALB-2014 authentic corpus, with slight modifications. The
results demonstrate that the proposed BKDGEC regularization technique can significantly
enhance the framework’s performance, as indicated by the F1 scores of 69.73 and 72.08 for
QALB-2014 and QALB-2015, respectively. Notably, the bid-knowledge distillation
approach proved to be particularly effective in improving the framework’s performance,
highlighting the backward decoder’s ability to predict the forward decoder’s concurrent
states accurately. These findings have significant implications for the development of more
effective GEC frameworks.

Impact of fine-tuning
BKDGEC has been carefully fine-tuned to improve its accuracy and performance. This
fine-tuning process involved using the original parallel corpus of QALB-2014 and a
monolingual dataset called CC-100 (https://data.statmt.org/cc-100/), consisting of 1 k
clean sentences. The results of this process were presented in Table 2, which achieved the
best results among all models with an F1 score of 70.29% for QALB-2014 and 73.13% for
QALB-2015. The impact of fine-tuning on both datasets was remarkable, as demonstrated
by the significant improvement in the model’s accuracy. Notably, the parallel corpus
yielded better results, likely due to the inclusion of additional authentic examples. These

Table 1 Performance of asynchronous and synchronous decoding in AraGEC using the same
baseline (Transformer) compared to BKDGEC. Bold indicates the highest scores.

Training data QALB-2014 QALB-2015

Prec. Recall F1 Prec. Recall F1

SCF 59.11 36.41 45.06 61.91 39.78 48.43

SSNM 62.01 39.51 48.26 63.17 42.76 50.99

EDSE 63.23 42.01 50.48 64.37 45.51 53.32

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 15/25

https://data.statmt.org/cc-100/
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

findings highlight the importance of using high-quality datasets for fine-tuning language
models, as it can have a significant impact on GEC performance.

Re-ranking n-best list
We applied re-ranking from NMT to enhance the performance after inference, which
achieved significant improvement (Liu et al., 2016). Initially, three different models were
trained on both sides (R2L and L2R) using BKDGEC method from scratch which utilized
the synthetic data for training and which was tuned using QALB-2014. This enriches the
hypothesis list which contains three different n-best lists with the corresponding scores of
the R2L and L2R models. Each n-best list of the L2R models is passed to each R2L model to
integrate both lists into a union relation resulting from the summation of the scores and
reordered to obtain the k-best list, which is the final output. This notably improves the
precision and F1 score, as shown in Table 2, which increases the F1 by 1.22 and 0.90 in
QALB-2014 and QALB-2015, respectively. The impact of joint search in the n-best lists
R2L and L2R led the system to improve the accuracy of prefixes and suffixes in the output.
This approach facilitated more comprehensive exploration of potential corrections,
enabling the system to capture and rectify errors specifically related to prefixes and suffixes.

Bidirectional decoding optimization
This subsection investigates the impact of the most common NMT bidirectional decoding
techniques in GEC compared to bidirectional knowledge distillation.

Asynchronous bidirectional decoding

Zhang et al. (2018) proposed an asynchronous bidirectional decoding method that
employs a standard encoder-decoder along with a backward decoder. In this work, the
existing L2R decoder was used as a backward decoder and the R2L decoder as a forward
decoder. R2L decoder generates the correction from right to left, considering the
bidirectional source and reversed hidden states of the backward decoder to improve the
correction accuracy. Asynchronous bidirectional decoding achieved F1 scores of 68.83 and
71.14 for QALB-2014 and QALB-2015, respectively, as shown in Table 3.

Table 2 Comparisons of precision, recall, and F1 of the baseline, with EDSE data, bidirectional knowledge distillation method (BKDGEC),
fine-tuning, as well as L2R re-ranking. Bold indicates the highest scores.

Model QALB-2014 QALB-2015

Prec. Recall F1 Prec. Recall F1

Transformer (baseline) 75.61 55.82 64.22 74.78 60.86 67.10

Transformer + EDSE data 77.14 62.73 69.19 75.36 67.53 71.23

Transformer + EDSE data + BKDGEC 77.91 63.11 69.73 76.17 68.42 72.08

Transformer + EDSE data + BKDGEC + fine-tuning 78.12 63.90 70.29 76.89 69.73 73.13

Transformer + EDSE data + BKDGEC + fine-tuning + L2R re-ranking 78.61 65.59 71.51 78.21 70.28 74.03

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 16/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

Synchronous bidirectional decoding
To circumvent the limitation of bidirectional decoding, Zhou, Zhang & Zong (2019)
proposed to integrate the R2L and L2R decoders into a synchronous and bidirectional
framework instead of performing independent bidirectional decoding. The same technique
has been applied, which used a single decoder to generate the output correction R2L and
L2R in an interactive and simultaneous decoding process. The simultaneous decoding
achieved 69.22 and 71.56 F1 scores in the QALB-2014 and QALB-2015, respectively, as
shown in Table 3. This technique allows the GEC framework to take advantage of the
history (backward decoding) and future (backward decoding) information into an
interactive decoding process that uses R2L and L2R at the same time.

Bidirectional knowledge distillation differs from the above methods, allowing the
system to utilize richer target-side contexts for corrections. This occurs when L2R target-
side context and R2L corrections are integrated into an end-to-end joint framework and
take the agreement between decoders as a regulation term. Hence, it will much alleviate the
error propagation of the reverse target-side context. In summary, Table 3 shows that our
bid-knowledge distillation without fine-tuning and re-ranking achieved the best
improvement over both methods.

BLEU score
In this subsection, we assess the performance of the proposed framework using the BLEU
score to compare the quality of its outputs to the reference or golden sentences, as well as to
the baseline performance (Transformer-based), which is an extra human evaluation.
Initially, source sentences of the benchmark QALB-2015 were grouped into eight different
lengths, also different settings have been used including n-grams with n from 1 to 4.

Table 4 shows that the proposed model achieved the highest scores in different lengths
compared to the baseline trained using the same dataset and hyperparameters. The
performance of both models gradually increased with the sentence length, and BLEU score
settings changed, with our model being superior as shown in Fig. 4. Once again, this
demonstrates the efficiency of the BKDGEC for low-resource GEC systems, which leads to
overcome the challenge of exposure bias problem and improved performance without the
need for extra resources or training additional models.

The proposed AraGEC framework has been compared with the existing approaches
including MT-based, NMT-based, and hybrid systems as shown in Table 5. CLMB-1 is the

Table 3 Performance of asynchronous and synchronous decoding in AraGEC using the same
baseline (Transformer) compared to BKDGEC, bold highlighting the highest scores.

Model QALB-2014 QALB-2015

Prec. Recall F1 Prec. Recall F1

Asynchronous bidirectional decoding 77.34 62.02 68.83 75.61 67.18 71.14

Synchronous bidirectional decoding 77.59 62.48 69.22 75.67 67.89 71.56

BKDGEC 77.91 63.11 69.73 76.17 68.42 72.08

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 17/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

best system in the first Arabic shared-task (Mohit et al., 2014) which is a hybrid system of
machine-learning techniques and linguistic knowledge. SCUT is a neural-based model that
employed CNN and attention mechanism. CUFE is a systematic rule-based system for
Arabic text correction that achieved the best score in the second shared-task (Rozovskaya
et al., 2015) of Arabic GEC. AHMADI andWATSON are neural-based models that exploit

Table 4 Performance of our AraGEC framework was assessed across various BLEU score thresholds and input lengths, with the best scores
highlighted in bold.

Sentence lengths in words Unigram Bigram Trigram Fourgram

Transf. BKDGEC Transf. BKDGEC Transf. BKDGEC Transf. BKDGEC

1 to 29 51.65 60.43 49.80 56.14 50.14 61.11 41.20 53.11

30–35 57.34 67.13 56.73 62.63 57.32 69.13 59.6 68.31

36–45 66.41 75.63 65.18 71.13 65.18 79.20 65.42 74.18

46–55 76.84 85.31 75.42 80.03 75.61 82.19 70.09 79.64

56–65 80.11 87.60 78.92 86.21 79.49 86.84 75.53 82.47

66–75 82.42 88.79 81.96 88.39 81.71 88.74 78.92 88.73

76–85 82.21 90.63 82.13 90.72 82.39 91.35 81.02 91.23

>85 83.14 91.23 83.22 91.72 84.52 93.64 86.32 95.14

Figure 4 Performance achieved using different settings of BLEU score.
Full-size DOI: 10.7717/peerj-cs.1639/fig-4

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 18/25

http://dx.doi.org/10.7717/peerj-cs.1639/fig-4
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

bidirectional RNN in different settings such as Fasttext pre-trained embeddings. PAJAK is
a multi-lingual neural-based model tuned for GEC. In closing, BKDGEC achieves
significant improvements over all AraGEC baselines in two benchmarks as shown in Fig. 5.

Case study
In this subsection, we assess the performance of different versions of the GEC framework
using a real-world example. The example is sourced from the QALB-2015 test set and
encompasses a total of 24 errors. Specifically, there are 18 instances of spelling errors
(labeled as “sp”), five instances of syntax errors (labeled as “sy”) in error number five, and
13 instances of syntax errors (labeled as “sy”) in error number 13. Additionally, there are
punctuation errors in four instances (labeled as “pt”), six instances (labeled as “pt”), 16
instances (labeled as “pt”), and four instances (labeled as “pt”). Figure 6 shows the output

Table 5 Comparisons of F1 scores: AraGEC framework vs existing approaches on two benchmarks,
bold highlighting the highest scores.

Models 2014 2015

CLMB-1 Rozovskaya et al. (2014) 67.91 N/A

SCUT Solyman et al. (2021) N/A 70.91

CUFE Nawar (2015) N/A 72.87

AHMADI Sina (2017) 50.34 N/A

WATSON Watson, Zalmout & Habash (2018) 70.39 73.19

PAJAK Pajak & Pajak (2022) N/A 69.81

BKDGEC (Our model) 71.51 74.03

Figure 5 Visualized F1 scores of leading systems in AraGEC across QALB-2014 and QALB-2015
benchmarks. Full-size DOI: 10.7717/peerj-cs.1639/fig-5

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 19/25

http://dx.doi.org/10.7717/peerj-cs.1639/fig-5
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

of the baseline, the baseline trained using EDSE data, the proposed model BKDGEC, and
BKDGEC with fine-tuning. Furthermore, we provide the source, target, and English
translation. Initially, the baseline that was trained using small training data of QALB-2014,
corrected fifteen errors and failed to correct seven spelling and two punctuation errors.

Whereas a version of the baseline trained using our data EDSE has successfully
corrected most of the reported errors except for three spelling and punctuation errors in 5
and 6 (pt) and caused a new punctuation error labeled “new”. BKDGEC model corrected
all the errors except two spelling errors in 17(sp), 18(sp), and the new punctuation error.
BKDGEC with fine-tuning has made significant improvements and successfully corrected
all reported errors, with the exception of the punctuation error labeled as “new”.

This indicates that BKDGEC has been somewhat successful in challenging the scarcity
of training data and also address the exposure bias problem. However, it still falls short of
perfection as it is unable to correct certain punctuation, dialectal words, and challenging
grammatical errors when the output of the test set is evaluated on a sentence-by-sentence
basis. Therefore, extra effort is needed to correct the dialectal words, punctuation, and the

Figure 6 Examples of output from different versions of BKDGEC framework, incorrect words are colored in red.
Full-size DOI: 10.7717/peerj-cs.1639/fig-6

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 20/25

http://dx.doi.org/10.7717/peerj-cs.1639/fig-6
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

most complex grammatical errors, taking into account the variability of punctuation usage
in Arabic language due to writer’s style.

CONCLUSION AND FUTURE WORK
This article introduced an AraGEC framework based on the Transformer-based equipped
with bidirectional knowledge distillation to overcome the exposure bias problem.
Furthermore, the proposed model applied a process of knowledge distillation using a
Kullback-Leibler divergence method as a regularization term to incorporate the learning
information from the backward decoder to the forward decoder. To address the challenge
of sparse data in GEC, a novel approach was proposed that utilized a supervised confusion
function called the equal distribution technique for syntactic errors, which is used to
construct massive synthetic data. The generated data exhibits more training patterns,
surpassing the classical confusion methods, and comprises a substantial training set of
25.162 million examples, making it the largest AraGEC training data available.
Experimental results on two benchmarks demonstrated that the synthetic data makes a
significant improvement, which reported the highest F1 score over the previous AraGEC
systems.

In the future, we aim to investigate the influence of the confusion method in producing
trustworthy syntactic training data for low-resource languages like Italian, Russian, and
Indonesian. In the same context, we are also interested in investigating the impact of
bidirectional knowledge distillation on other sequence-to-sequence tasks, such as text
classification, image captioning, and conversational models.

ACKNOWLEDGEMENTS
The authors would like to express deep gratitude to the Chinese Scholarship Council
(CSC) and the staff of the School of Computer Science, Wuhan University of Technology
for their assistance at every stage of the project and for their invaluable support throughout
the entire duration of this project. The authors extend their appreciation to the Deanship
of Scientific Research at King Khalid University for funding this work through a large
Groups Research Project under grant number (RGP.2/175/44).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by the Deanship of Scientific Research at King Khalid University
through large group Research Project under grant number (RGP.2/175/44). The funders
had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
King Khalid University: RGP.2/175/44.

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 21/25

http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Zeinab Mahmoud conceived and designed the experiments, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.
� Chunlin Li analyzed the data, prepared figures and/or tables, authored or reviewed drafts
of the article, and approved the final draft.
� Marco Zappatore conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.
� Aiman Solyman conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.
� Ali Alfatemi conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.
� Ashraf Osman Ibrahim performed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
� Abdelzahir Abdelmaboud performed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data, models, and scripts are available at Zenodo: Zainab Obied. (2023).
Zainabobied/SLBDEGC: GEC (GEC). Zenodo. DOI 10.5281/zenodo.8108476.

REFERENCES
Acheampong KN, Tian W. 2021. Toward perfect neural cascading architecture for grammatical

error correction. Applied Intelligence 51(6):3775–3788 DOI 10.1007/s10489-020-01980-1.

Alfaifi A, Atwell E, Hedaya I. 2014. Arabic learner corpus (ALC) v2: a new written and spoken
corpus of Arabic learners. In: Proceedings of Learner Corpus Studies in Asia and the World 2014.
Vol. 2 Kobe International Communication Center, 77–89.

Baghdadi NA, Malki A, Balaha HM, AbdulAzeem Y, Badawy M, Elhosseini M. 2022. An
optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer
Science 8(1):e1070 DOI 10.7717/peerj-cs.1070.

Brown PF, Della Pietra VJ, Desouza PV, Lai JC, Mercer RL. 1992. Class-based n-gram models of
natural language. Computational linguistics 18(4):467–480.

Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P,
Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R. 2020.
Language models are few-shot learners. In: Proceedings of the 34th International Conference on
Neural Information Processing Systems, 1877–1901.

Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung HW,
Sutton C, Gehrmann S, Schuh P, Shi K, Tsvyashchenko S, Maynez J, Rao A, Barnes P, Tay Y,
Shazeer N, Prabhakaran V, Reif E, Du N, Hutchinson B, Pope R, Bradbury J, Austin J, Isard

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 22/25

https://doi.org/10.5281/zenodo.8108476
http://dx.doi.org/10.1007/s10489-020-01980-1
http://dx.doi.org/10.7717/peerj-cs.1070
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

M, Gur-Ari G, Yin P, Duke T, Levskaya A, Ghemawat S, Dev S, Michalewski H, Garcia X,
Misra V, Robinson K, Fedus L, Zhou D, Ippolito D, Luan D, Lim H, Zoph B, Spiridonov A,
Sepassi R, Dohan D, Agrawal S, Omernick M, Dai AM, Pillai TS, Pellat M, Lewkowycz A,
Moreira E, Child R, Polozov O, Lee K, Zhou Z, Wang X, Saeta B, Diaz AM, Firat O, Catasta
M, Wei J, Meier-Hellstern K, Eck D, Dean J, Petrov S, Fiedel N. 2022. Palm: scaling language
modeling with pathways. Available at https://arxiv.org/pdf/2204.02311.pdf.

Clark K, Luong M-T, Khandelwal U, Manning CD, Le Q. 2019. Bam! Born-again multi-task
networks for natural language understanding. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. 5931–5937.

Conneau A, Khandelwal K, Goyal N, Chaudhary V, Wenzek G, Guzmán F, Grave E, Ott M,
Zettlemoyer L, Stoyanov V. 2020. Unsupervised cross-lingual representation learning at scale.
In: ACL.

Devlin J, Chang M-W, Lee K, Toutanova K. 2019. BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies.

Ge T, Wei F, Zhou M. 2018. Fluency boost learning and inference for neural grammatical error
correction. In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics.

Grundkiewicz R, Junczys-Dowmunt M, Heafield K. 2019. Neural grammatical error correction
systems with unsupervised pre-training on synthetic data. In: Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building Educational Applications.

Hagiwara M, Mita M. 2020. Github typo corpus: a large-scale multilingual dataset of misspellings
and grammatical errors. In: Proceedings of the 12th Language Resources and Evaluation
Conference. 6761–6768.

He D, Xia Y, Qin T, Wang L, Yu N, Liu T-Y, Ma W-Y. 2016. Dual learning for machine
translation. In: Advances in Neural Information Processing Systems. Vol. 29. Red Hook: Curran
Associates, Inc.

Junczys-Dowmunt M, Grundkiewicz R. 2016. Phrase-based machine translation is state-of-the-
art for automatic grammatical error correction. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. 1546–1556.

Kingma DP, Ba JL. 2015. Adam: a method for stochastic optimization. In: ICLR 2015:
International Conference on Learning Representations 2015.

Kiyono S, Suzuki J, Mizumoto T, Inui K. 2020. Massive exploration of pseudo data for
grammatical error correction. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 28:2134–2145 DOI 10.1109/TASLP.2020.3007753.

Liu L, Finch A, Utiyama M, Sumita E. 2016. Agreement on target-bidirectional LSTMS for
sequence-to-sequence learning. In: Thirtieth AAAI Conference on Artificial Intelligence.

Masri A, Al-Jabi M. 2023. A novel approach for Arabic business email classification based on deep
learning machines. PeerJ Computer Science 9(1):e1221 DOI 10.7717/peerj-cs.1221.

Mohit B, Rozovskaya A, Habash N, Zaghouani W, Obeid O. 2014. The first QALB shared task on
automatic text correction for Arabic. In: Proceedings of the EMNLP, 2014 Workshop on Arabic
Natural Language Processing (ANLP). 39–47.

Náplava J, Straka M. 2019. Grammatical error correction in low-resource scenarios. In:
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019). 346–356.

Naber D. 2003. A rule-based style and grammar checker. Available at https://danielnaber.de/
languagetool/download/style_and_grammar_checker.pdf.

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 23/25

https://arxiv.org/pdf/2204.02311.pdf
http://dx.doi.org/10.1109/TASLP.2020.3007753
http://dx.doi.org/10.7717/peerj-cs.1221
https://danielnaber.de/languagetool/download/style_and_grammar_checker.pdf
https://danielnaber.de/languagetool/download/style_and_grammar_checker.pdf
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

Nawar M. 2015. CUFE@QALB-2015 shared task: Arabic error correction system. In: Proceedings of
the Second Workshop on Arabic Natural Language Processing.

Pajak K, Pajak D. 2022.Multilingual fine-tuning for grammatical error correction. Expert Systems
with Applications 200(8):116948 DOI 10.1016/j.eswa.2022.116948.

Rozovskaya A, Bouamor H, Habash N, Zaghouani W, Obeid O, Mohit B. 2015. The second qalb
shared task on automatic text correction for Arabic. In: Proceedings of the Second Workshop on
Arabic Natural Language Processing. 26–35.

Rozovskaya A, Habash N, Eskander R, Farra N, Salloum W. 2014. The Columbia system in the
QALB-2014 shared task on Arabic error correction. In: Proceedings of the EMNLP, 2014
Workshop on Arabic.

Sennrich R, Haddow B, Birch A. 2016. Neural machine translation of rare words with subword
units. In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics.

Simmons RF. 1978. Rule-based computations on English. In: Pattern-Directed Inference Systems.
Amsterdam: Elsevier, 455–468.

Sina A. 2017. Attention-based encoder-decoder networks for spelling and grammatical error
correction. Available at https://arxiv.org/abs/1810.00660.

Solyman A, Wang Z, Tao Q. 2019. Proposed model for Arabic grammar error correction based on
convolutional neural network. In: 2019 International Conference on Computer, Control,
Electrical, and Electronics Engineering (ICCCEEE).

Solyman A, Zappatore M, Zhenyu W, Mahmoud Z, Alfatemi A, Ibrahim AO, Gabralla LA.
2023. Optimizing the impact of data augmentation for low-resource grammatical error
correction. Journal of King Saud University-Computer and Information Sciences 35(6):101572
DOI 10.1016/j.jksuci.2023.101572.

Solyman A, Zhenyu W, Qian T, Elhag AAM, Rui Z, Mahmoud Z. 2022. Automatic Arabic
grammatical error correction based on expectation maximization routing and target-
bidirectional agreement. Knowledge-Based Systems 241(8):108180
DOI 10.1016/j.knosys.2022.108180.

Solyman A, Zhenyu W, Qian T, Elhag AAM, Toseef M, Aleibeid Z. 2021. Synthetic data with
neural machine translation for automatic correction in Arabic grammar. Egyptian Informatics
Journal 22(3):303–315 DOI 10.1016/j.eij.2020.12.001.

Sun X, Ge T, Ma S, Li J, Wei F, Wang H. 2022. A unified strategy for multilingual grammatical
error correction with pre-trained cross-lingual language model. ArXiv preprint.
DOI 10.48550/arXiv.2201.10707.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I.
2017. Attention is all you need. Advances in Neural Information Processing Systems 30:
DOI 10.5555/3295222.3295349.

Wagner J, Foster J, van Genabith J. 2007. A comparative evaluation of deep and shallow
approaches to the automatic detection of common grammatical errors. In: Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL). 112–121.

Wan Z, Wan X, Wang W. 2020. Improving grammatical error correction with data augmentation
by editing latent representation. In: Proceedings of the 28th International Conference on
Computational Linguistics.

Watson D, Zalmout N, Habash N. 2018. Utilizing character and word embeddings for text
normalization with sequence-to-sequence models. In: Proceedings of the 2018 Conference on

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 24/25

http://dx.doi.org/10.1016/j.eswa.2022.116948
https://arxiv.org/abs/1810.00660
http://dx.doi.org/10.1016/j.jksuci.2023.101572
http://dx.doi.org/10.1016/j.knosys.2022.108180
http://dx.doi.org/10.1016/j.eij.2020.12.001
http://dx.doi.org/10.48550/arXiv.2201.10707
http://dx.doi.org/10.5555/3295222.3295349
http://dx.doi.org/10.7717/peerj-cs.1639
https://peerj.com/computer-science/

Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for
Computational Linguistics, 837–843.

Yuan Z. 2017.Grammatical error correction in non-native English. Technical Report, University of
Cambridge, Computer Laboratory.

Yuan Z, Stahlberg F, Rei M, Byrne B, Yannakoudakis H. 2019. Neural and FST-based
approaches to grammatical error correction. Florence, Italy: Association for Computational
Linguistics, 228–239.

Zaghouani W, Mohit B, Habash N, Obeid O, Tomeh N, Rozovskaya A, Farra N, Alkuhlani S,
Oflazer K. 2014. Large scale Arabic error annotation: Guidelines and framework. In:
Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14).

Zhang X, Shen L, Pan D, Wang L, Miao Y. 2022. Look backward and forward: self-knowledge
distillation with bidirectional decoder for neural machine translation. ArXiv preprint.
DOI 10.48550/arXiv.2203.05248.

Zhang X, Su J, Qin Y, Liu Y, Ji R, Wang H. 2018. Asynchronous bidirectional decoding for neural
machine translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

Zhang Z, Wu S, Liu S, Li M, Zhou M, Xu T. 2019. Regularizing neural machine translation by
target-bidirectional agreement. Proceedings of the AAAI Conference on Artificial Intelligence
33(1):443–450 DOI 10.1609/aaai.v33i01.3301443.

Zhao W, Wang L, Shen K, Jia R, Liu J. 2019. Improving grammatical error correction via pre-
training a copy-augmented architecture with unlabeled data. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). 156–165.

Zhou L, Zhang J, Zong C. 2019. Synchronous bidirectional neural machine translation.
Transactions of the Association for Computational Linguistics 7:91–105
DOI 10.1162/tacl_a_00256.

Mahmoud et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1639 25/25

http://dx.doi.org/10.48550/arXiv.2203.05248
http://dx.doi.org/10.1609/aaai.v33i01.3301443
http://dx.doi.org/10.1162/tacl_a_00256
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1639

	Semi-supervised learning and bidirectional decoding for effective grammar correction in low-resource scenarios
	Introduction
	Related work
	Methodology
	Experiments
	Results
	Conclusion and future work
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

