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Abstract: Extensive application of agrochemicals for crop production and protection has negatively
affected soil health, crop productivity, and the environment. Organic amendments have been
proposed as an efficient alternative for enhancing soil and plant health. Vermicompost amendment
offers a sustainable approach to plant nutrition, improving soil health and fertility. This review aims
to provide key insights into the potential of vermicompost to boost crop production and protect crops
from biotic and abiotic stresses without harming the environment. The role played by earthworms
in improving organic matter decomposition, soil fertility, and soil microorganisms’ activity is also
discussed here. The value of vermicompost is its promotion of plant growth based on its enrichment
with all essential nutrients, beneficial microbes, and plant growth hormones. This review analyzes
how vermicompost regulates plant growth and its role in mitigating abiotic stresses such as soil
salinity and drought, as well as biotic stresses such as diseases and insect pests attack. The beneficial
effects of hormones and humic substances present in vermicompost are also discussed in this review.
In fact, due to its properties, vermicompost can be a good substitute for chemical fertilizers and
pesticides and its usage could contribute to producing healthy, contaminant-free food for the growing
population without negatively affecting the environment.

Keywords: vermicompost; plant disease; drought; pest control; plant hormones; soil microbes

1. Introduction

Since the “Green Revolution” in the 1960s, intensive use of chemical fertilizers signif-
icantly increased food production to meet the demands of the growing population. The
food requirements of 50% of the population are met using chemical fertilizers for crop
production [1]. However, this has led to environmental pollution and health issues due to
agrochemical residues in food commodities [2–4]. The harmful effects of chemical fertilizers
have moved scientists’ focus toward “green substitutes” with low environmental impact [5].
Among these, vermicompost is an appealing alternative to conventional chemical fertilizers.
Vermicomposting is a non-thermophilic process that transforms organic waste materials
into valuable fertilizer through the combined action of worms and mesophilic microbes [6].
This method is more effective for organic waste degradation than composting because
waste material passes through the earthworm’s gut, excreting casts at temperatures be-
tween 10–32 ◦C. Vermicomposting involves physical processes such as fragmentation,
aeration, and the turning over of wastes, as well as biochemical processes such as enzyme
digestion, waste material transformation, and enrichment. Earthworms (EWs) modify the
physicochemical and biological status of organic matter (OM), reducing the C/N ratio,
increasing surface area, exposing more sites for microbial action, and enhancing decompo-
sition [7]. Vermicomposting is considered a sustainable approach to waste management
and agricultural production. As a result, it minimizes chemical fertilizers’ application to
soil, reducing their harmful effects and the amount of waste directed to landfills [8].
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Vermicompost (VC) is a peat-like organic fertilizer with high nutritional contents,
aeration, porosity, and water-holding capacity, prepared by the joint action of earthworms
and microbes. In addition to organic waste management, VC is recognized as an effec-
tive plant growth promoter [9]. Nitrogen (N), phosphorus (P), Potassium (K), and other
micronutrients become more available due to microbial activities in VC [10]. Chemical
analysis of VC reveals higher levels of N (5 times), K (7 times), and Ca (1.5 times) than the
topsoil at a depth of 15 cm in which plants grow [11,12]. The average nutrient contents
in VC include N (1.5–2%), P (1.8–2.2%), K (1–1.5%), and organic carbon (0.15–17.98%),
along with other micronutrients required for plant growth such as zinc (Zn), magnesium
(Mg), and iron (Fe) [13]. Vermicompost is considered a long-term supplier of these macro
and micronutrients in a readily available form to plants [14]. Furthermore, vermicompost
is enriched with soil microbiota such as nitrogen-fixing and phosphorus-solubilizing or-
ganisms [15]. Derivatives of vermicompost, such as VC leachates, humic substances, and
phytohormones, are the key stimulators of plant growth promotion. VC leachate is an
organic fertilizer consisting of liquid nutrients collected after the water passes through a
heap of VC [16]. Vermi-tea (VT) is a water extract of solid VC from which microbes, soluble
nutrients, and other beneficial elements are transformed into liquid form [17]. Humic
substances (HS) are effective plant biostimulants and can be used on plants to enhance
growth and yield by increasing nutrient uptake [18]. HS comprise humic acid, fulvic
acid, and humin. HS stimulate lateral roots development and extension, alleviate stress,
and improve soil properties and microbial structure [19]. Phytohormones such as auxin,
gibberellic acid, and cytokinin have been observed in compost processed by EWs, which
promote crop growth [6,20,21].

Vermicompost has been shown to have a broad range of effects on abiotic and bi-
otic stresses, including ameliorating soil salinity [22], mitigating drought stress [23], and
controlling insect pests and diseases [24]. Soil amendment with vermicompost has been
found to suppress the attacks from Aproaerema modicella (a leaf miner) in the groundnut
field [13]. Applying vermicompost tea (VT) has been shown to suppress Fusarium monili-
forme, thereby controlling foot rot disease in rice [25]. VT also contains phenolic substances
that make plant tissues unpalatable to insect pests [26]. Numerous studies have examined
vermitechnology as waste management, vermicompost production, and vermicompost’s
nutrient characteristics [27]. However, further investigation is needed to understand its
role as a plant growth regulator and biostimulator for plants under stress conditions. This
review aims to explain the potential of vermicompost as an outstanding plant growth
regulator, and also addresses the questions that how vermicompost combats plant stresses
such as water scarcity, soil salinity, insect pests, and disease, highlighting its function an
eco-friendly organic fertilizer and biopesticide in comparison to other commonly used
agrochemicals (Figure 1).
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Figure 1. Vermicompost serves as a plant growth regulator and biocontrol agent, enhancing the
physical, biochemical, and fertility properties of soil while suppressing pest attacks.

2. Earthworm Impact

Due to their priming effects, earthworms serve as ecological mediators influencing soil
structures and microbial activities [28]. They are considered among the largest soil species
in tropical and temperate regions, accounting for 40–90% of soil macro-fauna [29]. EWs
are classified into three main niche groups: epigeic, endogeic, and anecic. Anecic species
inhabit deep mineral layers, endogeic species are active in the uppermost mineral layers,
and epigeic species feed on surface litter. They promote organic matter decomposition
by enhancing microbial activity and population in the soil [30]. EWs such as Eisenia fetida
and Eudrilus sp. have been found to increase bacterial diversity during the early stages
of vermicomposting [31,32]. EWs play a vital role in breaking down OM and converting
macro and micronutrients [33]. The comprehensive roles of EWs in OM decomposition,
microorganisms’ activity, soil structure, and nutrient availability are discussed here.

2.1. Soil Structure

Among different soil characteristics, its structure is the most important parameter
determining fertility. For example, an ideal soil structure improves water-holding capacity,
reducing water and soil loss [34]. EWs improve soil structure through humus production,
mineral weathering, and the mixing of OM to form soil aggregates. Although it has been
demonstrated that E. fetida increases the weathering of kaolinite, biotite, smectite, and
anorthite [35], the effect of EWs on mineral weathering still needs to be fully understood.
Further studies are required to determine whether the EWs, the microbes in their gut, or
both induce an increase in mineral weathering.

A recent study on soil aggregate formation by Al-Maliki and Scullion [36] focused on
the relationship between kaolinite and organic material in the presence of EWs. Researchers
found that EWs regulate soil structure by improving aggregate stability and stabilizing
aliphatic carbon in kaolinite. The burrowing activities of EWs influence the mechanical and
hydraulic properties of soil, creating macropores for water percolation in soil profiles and
reducing surface runoff [37]. In tropical and temperate soils, the casting and burrowing
practices of the anecic EWs control erosion by increasing soil structural stability and
porosity [38]. The effect of EWs on soil compaction and loss depends on species type and
their interaction with the soil. The long-term interaction with the Eudrilidae family (de-
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compacting EWs) and Reginaldia omodeoi (compacting EWs) helps maintain soil structure in
tropical regions [28]. The cast production in horizontal and vertical burrows by endogeic
and anecic EWs influences soil bulk density and porosity. For instance, Rhyacodrilus omodeoi,
an anecic earthworm, increased the bulk density from 1.12 to 1.23 g cm−3, and Pontoscolex
corethrurus, an endogeic earthworm, reduced the soil porosity from 58% to 53% [39,40].

2.2. Organic Matter Decomposition

Decomposition is a crucial process that regulates nutrient cycling in terrestrial envi-
ronments through decomposers such as nematodes, protozoa, microbes, and EWs. EWs
are efficient members of the decomposers’ community and play a significant role in plant
residue decomposition and the turnover of other organic materials [41,42]. EWs consider-
ably impact decomposition by modifying OM and microbes that pass through their gut
and are released in the cast [43,44]. During the gut passage, mucus is added, accelerating
microbial and enzymatic activities, thereby increasing OM mineralization [45,46]. Through
the vertical distribution of grounded material in the soil profile, EWs’ activity increases
surface area for microbial colonization and faster decomposition [47]. Organic matter
breakdown by EWs is closely related to the material’s chemical properties. The palatability
of material for EWs increases with a reduction in the C/N ratio. Ernst et al. confirmed
that residue decomposition by EWs was highest in maize litter (C/N: 34.8) compared to
Miscanthus litter (C/N: 134.4) [41]. Epigeic EWs inhabit litter, ingest, and transform OM
from various habitats such as forest litter and livestock dung. They interact with microbes
and other organisms within the habitat, affecting decomposition processes [43,48]. EWs
contribute to decomposition processes through fragmentation, incorporation, and mixing
organic material into the soil.

2.3. Soil Fertility

Various species of EWs can produce different soil biological profiles and fertility levels.
The combined activity of these species ensures the maintenance of soil fertility throughout
the soil profile [49,50]. EWs play a vital role in producing soil aggregates and biostruc-
tures such as pores for better movement of nutrients and water. They also increase N
mineralization by encouraging the microbial population both directly and indirectly [51,52].
EWs effectively contribute to nitrogen recycling and enhance the availability of essential
plant nutrients. They consume an abundance of substrate but retain only a tiny portion
of it (5–10%); the remaining substrate is excreted as vermicompost, which is enriched in
N, P, K, and other micronutrients and beneficial microbes. These microbes increase the
nitrogen fixation process, providing more nitrogen in worm casts [38,53]. A meta-analysis
of casts reveals higher nutrient contents in casts than soil [54]. EWs are also well-known for
increasing phosphorus availability in their casts and burrows [55]. P is an essential nutrient
for plants, helping to accumulate and transform energy in the metabolic activities of living
organisms. It also promotes seedling growth and crop maturity. Earthworm casts contain
more P than the soil without them, so EWs have a positive association with P acquisition in
soil [56].

Van Groenigen et al. [54] focused on the increase in soil fertility properties in earth-
worm casts and coined a new term, “relative cast fertility (RCF)” [54]. RCF explains the
relative difference in fertility and soil properties, such as nutrient availability and pH,
between the EWs casts and the soil. This difference can result from two key processes:
concentration and transformation. Firstly, EWs can enhance the RCF by concentrating
existing soil fertility towards earthworm-influenced pools of soil fertility (Figure 2). EWs
are selective in choosing their food, and this food selection varies among species [57]. The
choice of EWs’ diet centers around the size, age, biochemical properties, and microbial
population in the feeding mixture [58–61]. Secondly, RCF can be increased by the transfor-
mation process in the gut or casts, as illustrated in Figure 2. The earthworm gut is home to
various microbes effectively involved in several biochemical processes [62,63], which affect
soil fertility properties. Due to the transformation process, nutrient availability and pH are
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usually higher in worm casts than in the soil. For instance, N and P contents are higher in
the gut or casts [64,65], and the availability of other nutrients such as Ca, Mg, and K may
also increase during gut transit [35].
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Figure 2. A theoretical representation of the processes by which the fertility of EWs casts is increased
through (i) the concentration of existing fertility pools in the soil and (ii) the transformation processes
during gut transit, leading to new pools of fertility. Reprinted from ref. [54], with permission
from Elsevier.

2.4. Soil Microorganisms

EWs positively or negatively impact microbial populations and their ecological diver-
sity. They influence the functions of microbial decomposers by feeding on microorganisms
and making adjacent areas more susceptible to microbial attack after organic matter is
broken down. Microorganisms such as bacteria, fungi, and protozoa are essential food
sources for the EWs. The combined action of EWs and microorganisms accelerates the
decomposition of organic matter [66]. The function of microorganisms and organic matter
decomposition is affected by gut-associated processes. The composition of gut-associated
microbes (GAM) is related to the ingested material. In addition, the number and behavior
of the microbes in EWs’ gut differ from those in uninterrupted material. Hong et al. [67]
analyzed the community structure of GAM and explained the impact of enzyme-producing
microbes on EWs biomass. They detected 57 bacterial clones in EWs gut using PCR-DGGE
analysis. Aeromonas hydrophila, Paenibacillus motobuensis, and Photobacterium ganghwense
were active in enzyme production. The mixture inoculated with Aeromonas hydrophila and
Paenibacillus motobuensis showed the highest survival rate (100%) and increased the EWs’
growth and cast production, demonstrating a symbiotic relationship between EWs and
microorganisms. Specific microorganisms respond differently to the gut environment, and
the selective impact on microorganisms during the passage through the EWs’ gut has
been analyzed [68]. For example, some bacteria became activated during passage to EWs’
gut, while others remain unchanged or are digested, thus reducing their number [62,69].
Monroy et al. [70] observed a 98% decline in coliforms density after pig slurry passed
through the gut of Eisenia fetida. Earthworms can modify microbial physiology and stimu-
late enzymatic activity during the vermicomposting of pig slurry [31,32,50]. Studies on soil
and six species of earthworms and fungi showed that EWs process the soil efficiently by
increasing the fungal species involved in faster decomposition processes [71,72].

3. Vermicompost and Its Derivatives as a Plant Growth Promoter

Vermicompost enhances crop growth, yield, and quality due to its plant growth-
promoting characteristics. Vermicompost stimulates plant emergence because of the avail-
ability of essential plant nutrients. The effects of vermicompost and its derivatives on
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plant growth and yield are summarized in Table 1. Loera-Muro et al. [73] studied the
morphology of Rosmarinus officinalis and Mentha spicata plants, as well as microbial count,
using vermicompost leachates (VCL) and inorganic fertilizer. Plants treated with VCL
showed an increased root length for M. spicata (74 cm) compared to those treated with
inorganic fertilizer (38 cm). Bidabadi et al. [74] examined the effect of foliar-applied VCL on
pomegranate and observed a significant increase in leaf area, root, and shoot biomass, along
with the induction of salt tolerance in pomegranate. VCL also boosts antioxidant enzyme
activity and reduces oxidative stress. This liquid partially originates from EWs bodies and
is enriched with nutrients, vitamins, amino acids, and various growth hormones such as
auxins and cytokines [75]. Seeds soaked in VCL and joint application of VC + VCL led to
significant improvement in biochemical parameters (photosynthetic rate, total chlorophyll,
transpiration rate) of Withania somnifera [76]. Aslam et al. [77] analyzed the impact of VC,
VT, and chemical fertilizer on tomato (Solanum lycopersicum) growth. The results showed
that foliar application of 5% VT in tomatoes increased the physiological and morphological
parameters. Plants treated with 10% VT reached the flowering stage three weeks earlier
than the control and improved protein and soluble sugar contents and the growth of
faba beans.

Table 1. Impact of vermicompost and its derivatives on plant growth and yield.

Type of
Fertilizer Source Biochemical and Nutritional

Characteristics Test Plant Effect on Plant Growth
and Yield References

VC Green wastes

pH: 7.43,
EC: 1.77 dsm−1,

CEC:117.44 c mol kg−1, N:
21.47 g/kg, P: 4.82 g/kg, K:
7.87 g/kg, Ca: 179.15 g/kg,

Mg: 12.58 g/kg, Zn:
189.12 mg/kg

Pelargonium zonale L.
and Calendula

officinalis L.

Growth and flowering of
both plants were higher in

all vermicompost-
based media.

[78]

VC Cow dung, food
industry sludge

EC: 1.8 dS/m,
pH: 6.6, C/N ratio:11.9,

TKN: 26 g/kg, TAP: 9.75
g/kg, TK: 7.6 g/kg,

Cicer arietinum L. Total chlorophyll contents
and yield increased. [79]

VC Cattle dung, leaf
litter, straw - Capsicum annum (L.)

Vermicompost treatment
(50%) revealed excellent
increase in chilly growth

and soil quality
improvement.

[80]

VT Food wastes

EC: 6.36 mS/cm,
pH: 6.5 and HA: 485.12 mg/L,
N: 1.3, P: 204, K: 45.4, Ca: 449

and Mg: 40.1 mg/L

Lactuca sativa,
Solanum lycopersicum

Increased the yield of both
test plants even at reduced
concentration (25%, 50%),

respectively.

[81]

VC
skin coffee +

green waste +
biochar

pH: 5.60
N: 2.76%, K: 3.84%, Coffea

Physiological and
morphological parameters
of coffee plant increased.

[82]

VW Cow dung - Solanum melongena
Plant height and number of

fruits increased
significantly.

[83]

VC Animal fleshing,
Tannery waste

pH: 6.56, EC: 1.08 dS/m,
TKN: 20 g/kg, Total P:

39 g/kg, Total K: 4.4 g/kg

Lycopersicom
esculentum L.

Vermicompost resulted in
higher plant height (10%),
stem girth (8.9%), and leaf

numbers (14%).

[84]

VC -

Total N: 1.54%, Total P: 0.64%,
Total K: 6.31%, total Mg:

0.58%, total Ca: 1.39%, total
Zn: 0.01%, total S: 0.34%

Ananas comosus (L.)
Merr.

Fruits contained higher
total soluble solids,

titratable acidity, ascorbic
acid, and total

chlorophyll content.

[85]
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Table 1. Cont.

Type of
Fertilizer Source Biochemical and Nutritional

Characteristics Test Plant Effect on Plant Growth
and Yield References

VC Cow manure and
grass biomass

pH: 8.03, N: 20 mg/L, P:
1997 mg/L, K: 8300 mg/L,
Mg: 3600 mg/L, Ca: 7850

mg/L

Dracocephalum
moldavica L.

Increased the plant’s
biomass (148%) in

peat-amended
vermicompost and (68%) in

soil amended with
vermicompost.

[86]

VC C. erectus
leaves + FYM

pH: 6.69, nitrogen: 1.86%,
P: 0.15%, K: 0.41%, Zn:

39.4 ppm, Ca: 4085.80 ppm,
Fe: 1572 ppm

Vigna radiata L.

The economical and
biological yield of mung
beans were boosted up to

59% and 34%, respectively.

[87]

VC -
EC: 2.15 mS/cm,

pH: 8.74, OM: 74%, TOC:
43.02%, Porosity: 62.5%

Solanum lycopersicum

Plants
cultivated on VC substrate
indicated enhanced growth

and better resistance to
salinity stress.

[88]

VC: Vermicompost; VW: Vermiwash; VT: Vermi-tea; EC: Electrical conductivity; CEC: Cation exchange capacity;
TKN: Total Kjeldahl nitrogen; TAP: Total available phosphorus; N: Nitrogen; P: Phosphorus; K: Potassium;
Ca: Calcium; Mg: Magnesium; Zn: Zinc; S: Sulfur; Fe: Iron; OM: Organic matter; TOC: Total organic carbon;
HA: Humic acid.

3.1. Humic Substances

Humic substances (HS) can influence nutrient uptake by modifying root anatomy for
better nutrient interception, enhancing root exudates, supporting plant–microbe interac-
tions, and altering the expression of transporters involved in nutrient acquisition [89,90].
Direct impacts of HS on plant growth are due to improvements in nutrient uptake, while
indirect effects include alterations of physiochemical and biological changes in amended
soil [89,91]. Fulvic and humic acids in VC dissolve insoluble minerals in organic matter
(OM), making them more accessible to plants, aiding stress tolerance, and promoting
growth [92]. HS improved the soil aggregate stability and reduced N leaching and soil
erosion. They have a high affinity for organic and inorganic ions in the soil and can form
complexes with cations and inorganic phosphorus, preventing leaching and promoting
bioavailability for plant uptake. These complexes are formed due to the presence of O-,
N-, and S-containing functional groups in the HS structure and are important because
nutrient deficiency is linked to the low availability of these metallic cations [93,94]. Humic
substances are produced during the humification process of organic matter. Mature VC
primarily consists of humified substances produced by the action of EWs, which accelerate
the humification process [95]. Dobbs and coworkers [96] evaluated the bioactivity of HS by
modifying the root architecture and proton pump activation of maize and tomato. All the
VC-derived HS showed more significant bioactivity than the original HS and Potassium
permanganate (KMnO4) oxidized, being highly efficient in modifying root architecture
and proton pump activation for both test plants. However, no consistent relationship was
observed between the molecular sizes of HS and bioactivity. The hydrophobicity index
was significantly correlated with the stimulation of the proton pump. It is also proposed
that the hydrophobic domain can stabilize bioactive molecules, such as auxins, in HS. The
hydrophobic forces can be disrupted by contact with organic acids produced by roots,
releasing bioactive compounds from humic material. The application of vermicompost and
VC-derived humic acids and fulvic acids improved Cannabis sativa L. growth when applied
at 5%, 0.05 mg/mL, and 1%, respectively [97]. Humic acid fertilizers are widely used in soil
remediation, crop production, and environmental safety. Humic acid improves soil struc-
ture, fertilizer use efficiency, and crop growth and yield, increasing farmers’ income. Gomes
et al. [98] evaluated the effect of humic acid derived from vermicompost of sugarcane filter
cake on Garcinia mangostana L. seedlings. Results showed increased N, P, K, Mg, Ca, S,
Mn, and Zn uptake by shoots and roots of the plant, enhanced chlorophyll (a, b) contents,
and decreased carotenoid contents. Similarly, the results of El-Hameid et al. [99] described
that VCL with humic acid increased total chlorophyll content, leaf mineral contents, fruit
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retention, fruit weight, number of fruits, total sugar contents, ascorbic acid, and total acidity
in mangoes. The foliar application of humic substances on plants significantly increases
their growth and fruit production. This stimulating effect of HS is attributed to humic acids
and fulvic acid molecules [100]. Balmori et al. [101] studied the effect of foliar application
of humic acid extract from vermicompost on fruit production and the quality of garlic
(Allium sativum L.). Results demonstrated the stimulating effect of vermicompost-derived
HS on Allium sativum metabolism, increasing bulb caliber, the number of garlic cloves, and
fruit quality indices compared to control. The nutrient uptake (N, P, K, Ca, Mg) by plants
increased with the use of humic acid derived from VC. Baldotto et al. [102] reported a
beneficial effect of humic acids from vermicompost on Ca and Mg accumulation in pineap-
ple seedlings. Correspondingly, Nikbakht et al. [103] also described the positive effect
of humic acids on the uptake of Ca and Mg in gerbera seedlings. Hernandez et al. [104]
assessed humic substances derived from vermicompost and applied them to lettuce leaves.
They concluded that humates applied at 15 mg C L−1 shortened the production cycle and
allowed for early harvesting without affecting the lettuce quality and yield. The application
of humates enhances protein content and nutrient uptake and stimulates phenylalanine
ammonia-lyase and nitrate reductase in lettuce leaves.

3.2. Phytohormones

The increase in plant growth due to vermicompost application is primarily attributed
to the continuous availability of macro and micronutrients, along with biological effects
related to enzymatic activities and plant hormones [105]. The combined activities of EWs
and microbes secrete phytohormones such as auxins, gibberellins, and cytokinin during the
vermicomposting process [106]. The presence of cytokinins in VC tea and indole-3-acetic
acid (auxins) in VC-derived humic acids was detected by GC-MS [107]. As a result, the
highest concentrations of indole-3-acetic acid, gibberellic acid, and cytokinins were 7.37,
5.7, and 2.8 mg kg−1, respectively, in vermicompost (cow manure + leaf litter + tannery
waste) [6]. Various phytohormones in garden waste VCL were analyzed using HPLC-
MS [108]. The primary hormonal constituents included cytokinins (60% of N6-isopentenyl
adenine), indole-3-acetic acid, gibberellins, and brassinosteroids. Brassinosteroids are
a group of essential steroid hormones vital for plant growth and development. Their
signaling roles promote cell division and expansion and are crucial in reproduction and
etiolation [109]. It was reviewed that various biofertilizers could provide plant hormones
and hormone-like elements beneficial for organic and conventional plant cultivation [110].
The physiological functions of phytohormones are described in Figure 3.
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The application of vermicompost as an alternative to synthetic fertilizers stimulates
plant production. Steffen et al. [111] studied the efficiency of VC in flowering and pro-
ductivity of tomatoes by partially replacing synthetic fertilizers with VC, considering five
treatments consisting of 0, 10, 20, 40, and 50% vermicompost substitution with synthetic
fertilizer. Vermicompost at application rates of 40 and 50% resulted in early flowering
and fruit development in tomatoes, higher fruit mass, and production. Arancon and
coworkers [81] investigated the impact of VT on lettuce and tomato growth in a hydroponic
system. VT significantly increased lettuce yield at nutrient concentrations of 25% and
50% of the recommended rate and improved tomato yield at 50% of the recommended
rate of VC tea. The presence of trace concentrations of auxins, gibberellins, cytokinins, and
humic acids in VT are responsible factors that enhance tomato and lettuce yield in a hydro-
ponic system. Other experiments were performed by Sardoei et al. [112], who determined
the efficacy of VC on the growth and flowering of marigolds (Calendula officinalis) under
glasshouse conditions. The seeds were germinated and grown in 10, 20, 30, 40, 50, and
60% of vermicompost media. VC had optimistic effects on the total parameters compared
to control and amended media. The maximum root volume and fresh petal weight were
achieved in 30% VC treatment. However, plant performance was most remarkable in
60% VC amended medium. Similarly, Suthar et al. [75] examined the effect of vermiwash
on seed the germination, sapling growth, and biochemistry of Trigonella foenumgraecum
and Cyamopsis tertagonoloba in a laboratory environment. Four trial solutions—vermiwash
(100%), vermiwash (50%), urea (5% solution), and distilled water—were used in the study.
The highest germination rate was observed with 50% vermiwash, while maximum plant
growth parameters, chlorophyll content, total soluble sugars, total proteins, and starch
were detected in plant tissues treated with 100% vermiwash.

3.3. Microbial Activity

Vermicompost possesses various properties, including the ability to increase soil mi-
crobial activity by enhancing oxygen availability, regulating soil temperature, improving
porosity, infiltration, and nutrient content, and boosting crop yield and quality [113]. VC
promotes beneficial microbes and their diversity in the soil. It enhances soil biodiversity by
supporting valuable microbes, which, in turn, increase plant growth by producing plant
enzymes and hormones and controlling plant pathogens and nematodes. EW burrows
coated with VC provide an excellent medium for harboring nitrogen-fixing bacteria in the
soil. The growth of gram-negative bacteria was significantly improved after vermicompost
treatment [114]. Vermicompost (VC) stimulates microbes to fix nitrogen into mucopro-
tein, which prevents nitrogen leaching into the soil and reduces the C/N ratio [115]. A
study investigating the combined effect of vermicompost and plant growth-promoting
rhizobacteria (PGPR) on tomato and spinach quality was conducted by Song et al. [116].
The results showed that VC enhanced the beneficial effects of PGPR on the soil and crops.
The synergistic effect of VC and PGPR increased soluble protein in spinach and vitamin
C in tomatoes. Karnwal et al. [117] cultured zinc-solubilizing bacteria (ZSB) from VC
for numerous plant growth-promoting traits in tomatoes. Thirty isolates from VC were
screened for Zn solubilization activity. Significant Zn solubilization (26.8 mg L−1) and
Zn contents (2.87 mg/100 g) in fruit were obtained by applying bacterial isolates from
VC. Thus, the use of these bacteria may provide adequate Zn availability, which results in
better plant growth in a sustainable way. The efficiency of cellulolytic microbes-enriched
wheat straw VC on physiological and biochemical aspects of wheat under various soil
moisture conditions was investigated by Ahmad et al. [118]. Their results revealed that
wheat growth was affected by moisture scarcity conditions, but the use of VC boosted the
growth performance. Under drought, VC at 6-ton ha−1 treatment augmented the root and
shoot biomass, photosynthetic rate, relative water contents, and antioxidant enzymes in
wheat cultivars over the control. Concisely, the use of cellulolytic microbe-enriched VC at
6-ton ha−1 was useful in lessening the harmful impacts of drought on wheat. Vermicompost
amendment is reported to boost the total dry matter of tomato plants (24.0%), chickpea



Agronomy 2023, 13, 1134 10 of 25

plants (65.2%), and onion nuts (12.5%) [119,120]. The application of microbial-enriched VC
has an imperative influence on okra (Abelmoschus esculentus L.) growth [121]. The growth
parameters were considerably higher in the plants mixed with vermicompost. However, the
growth characteristics were more responsive to VC enriched with Azospirillum. Biochemical
parameters such as carotenoid, total chlorophyll, and protein contents of okra showed
a positive impact by adding enriched VC. Parastesh et al. [122] studied the residual and
direct impacts of phosphate solubilizing bacteria (PSB)-enriched VC on the enhancement
of phosphorus uptake by wheat and tomato plant. The PSB-enriched VC significantly
enhanced the phosphorus concentration in wheat shoots (20–39%) and tomatoes (26–53%)
treated with vermicompost. These findings highlight the significance of vermicompost
enriched with beneficial microbes as organic fertilizer for cereals and vegetable cultivation.

4. Effects of Vermicompost as Bio-Alleviator of Abiotic and Biotic Stress

Plant stress is categorized into abiotic and biotic stress. Abiotic stress on plants can
be either physical or chemical, such as drought and salinity, whereas biotic stress is plant
exposure to biological agents such as insects and diseases [123]. Recent findings have
revealed that EWs’ cast can tolerate, decrease, and ameliorate the salinity [22]. Various
EWs species, such as Eutyphoeus incommodus, demonstrated high survival in the saline
environment and can be used to reclaim soil salinity [124]. This is due to the humic
substances in VC, which react with plant roots and soil organic substances, thus enhancing
salinity tolerance.

4.1. Soil Salinity

Salinity is the most important growth limiting factor and a threat to crop production.
Saline soil contains higher concentrations of soluble salts, affecting the plant by lowering
the nutrient uptake and plant water relations. Plant growth is hindered by salinity, resulting
in extreme decline in its yield, which relates to a decline in photosynthetic efficiency [125].
Photosynthetic elements, involving chlorophylls and carotenoids, are also influenced
by salinity. In an experiment conducted by Alamer et al. [126], total carotenoid and
chlorophyll a, b were significantly reduced under saline conditions. Decreased water
absorption caused by plants due to the osmotic effect of salinity harms their development.
Further plant exposure to salinity leads to the absorption and accumulation of Na+ and
Cl− and causes ion toxicity in plant tissues. Similarly, higher Na+ and Cl− contents in
soil solution reduced the absorption of essential minerals such as K+, Ca2+, and Mg2+,
causing nutritional imbalance [127]. However, the use of VC assisted the maize seedlings to
cope with the toxic effects of salinity, which led to an increase in photosynthetic pigments.
Several studies showed that VC reduces the adverse effects of salt stress on many crop
plants [128,129]. VC improved plant tolerance by stimulating enzymatic activities, protein
synthesis, and boosting the physiological functions of plants [130]. The growth of maize,
barley, rice, wheat, and soybean improved by developing tolerance against NaCl stress
using vermicompost-inhibited microorganisms such as Azotobacter chroococcum and Bacillus
subtilis [131]. VC and its derivatives reduced the impact of salinity and improved plant
performance in Table 2.
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Table 2. Impact of vermicompost and its derivatives on soil properties and plant performance under
saline conditions.

Amendment Physiochemical and
Nutritional Characteristics Plant Impact References

VCL

pH: 8.32, total organic matter:
7.5%, total P: 1.2%, K: 1.5%, and
N: 2.2%, and total humic + fulvic

acid: 6%

Sedum album
VCL reduced effects of salinity

and improved growth and
quality traits of S. album.

[132]

VC + BC

VC had an OM content: 42%,
pH: 7.4, EC: 3.8 dS/m, total N:

2.1%, total P: 7.8%, total K: 0.5%,
BC had pH: 7.90, EC: 2.05 dS/m,
total N: 1.9%, total P: 2.2%, total

K: 2.9%,

Triticum aestivum L.

VC + BC reduced oxidative
stress, proline and leaf Na+

content with increase in nutrient
uptake and grain yield. Soil pH,

EC, and ESP decreased.

[133]

VC
Organic carbon: 20.7%, EC:
5 dS/m, P: 0.7 mg/kg, K:

0.9 mg/kg, Na: 473 mg/kg
Borago officinalis

VC increased antioxidant
enzymes and photosynthetic

pigments activities and reduced
the salinity.

[134]

VC
OM content: 74%, pH: 8.74, EC:
2.15 mS/cm, Salinity: 1.5 g/L,

Porosity: 62.5%
Solanum lycopersicum L. VC improved growth and better

resistance to salinity stress. [88]

VCH
C: 53.4%, pH: 8.7, N: 3.05%, S:

0.72%, humic acid: 4.82%, fulvic
acid: 7.17%

Ocimum basilicum L.

VCH biostimulated and
improved the growth and

salinity tolerance of the sensitive
variety.

[135]

VCL - Solanum lycopersicum L. VCL lowers the impact of
salinity on leaf senescence. [136]

VW + VC

Vermicompost:
pH: 7.2, EC: 2.69 mS/cm, N:

0.98%, P: 121 ppm, K: 46 ppm.
Vermiwash:

pH: 7.5, EC: 2.82 mS/cm, N:
0.45%, P: 41 ppm, K: 21 pmm

Sorghum bicolor L.

Vermi-amendments increased
the nutritional status of soil,
reduced the salt damage to

plants, and improved growth.

[124]

VC
pH: 7.17, EC: 1.05 dS/m, TN:
4.13 g/kg, TP: 1.24 g/kg, TK:

1.70 g/kg, C:N = 15.04
Zea mays L.

VC decreased exchangeable Na+
and improved soil microbial
activities and maize growth.

[137]

VC

pH: 7.1, EC: 6.5 dS/m, OM:
65.5%, TN: 2.2%, TP: 7.3 mg/kg,
TK: 12.8 mg/kg, Ca: 25.1 mg/kg,

Zn: 216 mg/kg

VC decreased EC, bulk density,
and exchangeable Na, and

increased aggregate stability and
total porosity,

[138]

VC - Foeniculum vulgare

VC can limit the adverse effects
of salinity stress on fennel by

affecting photosynthetic
pigments, membrane integrity

and antioxidants activity.

[139]

VC + SWE
pH: 7.98, EC: 2.98 mS/cm, N:
0.07%, AP: 6.34 mg/kg, AK:
127 mg/kg, Zn: 0.97 mg/kg

Zea mays L.

VC + SWE decreased Na+

concentration, H2O2, and
malondialdehyde contents at

higher salinity.

[140]

VC

pH: 6.34, EC: 8.92 mS/cm, TN:
24.4 g/kg, TP: 15.9 g/kg,

Alkaline N: 2467 mg/kg, AP:
869 mg/kg, Zn: 805 mg/kg

Hordeum vulgare L.

VC application decreased bulk
density, EC, and pH

of saline soil, whereas the yield
of grain increased up to 512% as

quantity of VC increased.

[141]

VC + AA
pH: 6.90, EC: 2.0 dS/m, OM:
50.3%, N: 1.20%, P: 0.50%, K:

0.80%

Lycopersicum esculentum
L. cv Kasel rock

VC and ascorbic acid application
decreased Na contents in leaves
and increased tomato yield and

quality.

[142]

ESP: Exchangeable sodium percentage; SWE: Sorghum water extracts; VC: Vermicompost; BC: biochar; VCL:
Vermicompost leachate; VCH: Vermicompost humates; VW: Vermiwash; AA: Ascorbic acid; EC: Electrical
conductivity; OM: Organic matter; TN: Total nitrogen; TP: Total phosphorus; TK: Total potassium; AP: Available
phosphorus; AK: Available potassium.

4.2. Drought Stress

Drought stress is deemed the most damaging abiotic stress to plants as it affects food
security. It negatively influences plant–water relations at cell and systemic levels, affecting
the farming community with economic losses. It reduces the leaves’ turgor pressure, thus
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resulting in a reduction in cell volume, elongation, and division [143]. Additionally, the
unavailability of water lowers CO2 absorption and impedes glucose synthesis, decreasing
the photosynthetic efficiency and crop yield [144]. Drought stress reduced the number of
tillers, spikes, grains, and grains weight in wheat and barley [145,146]. In the case of millet
(Pennisetum glaucum L.), drought stress affected silk development and increased the anthesis
to the silking gap, thus reducing the millet yield [147]. Drought stress produces reactive
oxygen species (ROS) and intensifies chlorophyll degradation. VC contains Fe (iron), the
prosthetic group of ROS-consuming enzymes such as catalase, peroxidase, and superoxide
dismutase [148]. VC also contains other macro and micronutrients such as N, P, K, Ca,
Mg, and Zn. The reduction in chlorophyll contents due to drought stress may increase the
nitrogen metabolism for proline synthesis during osmotic regulation [149]. VC amendment
at 10 and 20% considerably increased the chlorophyll contents, intracellular CO2 concentra-
tion, net photosynthetic rate, and quantum yield of PSII photochemistry [150]. Dehmordy
et al. [151] set up an experiment to study the impact of VC on growth performance and
drought tolerance of Olive (Olea europaea L.). Their findings showed that drought stress
was reduced, and the addition of VC boosted the vegetative growth as compared to plants
grown in unamended soil. VC significantly decreased the ion leakage and increased proline
and chlorophyll contents and antioxidant enzyme activity. The interaction of VC (30%)
and water stress on CO2 assimilation showed a positive response under severe water
stress conditions [152]. VC with higher water holding capacity and porosity reduced the
destructive effects of water stress, such as stomatal closure and low CO2 assimilation [153].
Such a decrease in stomatal closure and an increase in CO2 supply is required for the
RuBisCO enzyme, which ultimately increases CO2 assimilation. Moreover, humic acid is a
structural part of VC and negatively charged groups are responsible for positively charged
mineral elements. Some of these elements have a significant role in the stimulation of an-
tioxidant enzymes and photosynthetic enzymes [154]. During drought stress, transpiration
is also reduced to prevent water loss, but it also hinders the active transport in phloem and
passive transport in xylem vessels. Reduction in transpiration resulted in the blocking of
water and nutrients uptake from roots. Mycorrhizal fungi in VC improve the roots’ water
uptake [155]. The combined application of mycorrhiza and VC encouraged plant growth
by triggering the photosynthesis machinery and nutrient absorption, leading to improve
proteins, total soluble sugars, and antioxidant enzyme activities in the leaf and root of
quinoa [156]. The availability of nutrients such as phosphorus in the rhizosphere can im-
prove protein synthesis, photosynthesis, membrane transport, cell division, and elongation,
which increases plant biomass. VC application to rapeseed cultivars increased linoleic acid
and palmitic acid concentrations; however, it decreased linolenic acid contents [157]. Due
to the high potential in improving soil properties and nutrient availability for plants, VC
would be recommended to compensate for the decrease in plant yield imposed by water
stress. The performance of different plants grown in VC-amended soil under drought stress
is explained in Table 3.
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Table 3. Effects of vermicompost alone and in combination with other soil amendments on plant
growth performance under drought stress.

Type of
Fertilizer

Characteristics
of Fertilizer

Application
Rate Drought Conditions Test Plant Impact References

Wheat
Straw VC

pH: 7.55, EC:
2.26 dS/m,

N: 0.85%, P: 0.45%,
K: 0.83%, Ca: 2.91%,

S: 0.23%

0, 4, 6,
8 t ha−1 30, 45, 70% FC Triticum

aestivum L.

VC application at 8 t ha−1

increased SOD activity
(14.28%), POD (27.28%), and
CAT (50%). Photosynthesis

and transpiration rate
increased by 27.65 and
49.25%, respectively.

[158]

VC
pH: 8.1, EC: 6.5 dS/m,
OM: 65.5%, N: 2.2%,

P: 1.7%, K: 1.5%
0, 2.5 and 5%

No stress, moderate
drought, and severe

drought at 100, 50 and
25% of FC

Lactuca sativa
var. crispa

VC increased SOD and CAT
enzyme activities and
lowered MDA content
under drought stress.

Chlorophyll a, chlorophyll b,
and carotenoid contents

increased in lettuce.

[159]

VC

pH: 7.1, EC: 1.5 dS/m,
C/N: 15.5, N: 0.9–3%,

P: 0.9–2.5%,
K: 0.6–2.5%,
Ca: 4.85–8%,

VC to soil
ratio i.e.,

0:100, 10:90,
20:80,

and 30:70

No stress, moderate
drought (MS), and

severe drought (SS) at
100, 75, and 25% of

FC, respectively

Cicer
arietinum L.

VC addition of 10 and 20%
significantly enhanced the
chlorophyll contents and

Fv/Fm under MS and
Fv/Fm, Ci, and PN under
SS at the flowering stage.

[150]

C
+ VC + AMF

VC:
pH: 7.4, EC: 2.2 dS/m,
C/N: 25.8, TN: 1.32%,
TP: 0.4%, TK: 0.4%, Fe:
1100 ppm, Zn: 50 ppm

C:
pH: 7.5, EC: 2 dS/m,
C/N: 21.4, TN: 1.9%,

TP: 0.8%, TK: 0.8%, Fe:
1000 ppm, Zn: 46 ppm

VC (4% w/w)
and

inoculation
with and

without AMF

Drought stress at
three levels, i.e.,

well-watered: D0 (no
drought), moderate

stress: D1 and severe
stress: D2

Pistachio
seedlings

VC and C increased plant
growth (232% and 29%) and

nutrient uptake (30% and
52% P uptake and 35% and

1% Zn uptake) under severe
drought stress conditions.

[160]

VC
+ humic

acid
-

VC (0, 25, and
50%) and

humic acid (0,
50, and

100 mg/L)

50 and 100% FC Catharanthus
roseous

VC and humic acid reduced
the drought stress,

improved vegetative
indices, cell membrane

stability index, and plant
pigment content, and

decreased proline content.

[161]

VC

pH: 7.1, EC: 1.5 dS/m,
C/N: 17.5, N: 3.0%,

P: 0.9%, K: 1.2%,
Ca: 4.5%, Mg: 0.50%

0, 10, 20, 30%
vermicom-
post to soil

ratio

75, 50, and 25% FC
Cicer

arietinum L.
cv. Pirouz

VC at 30% increased the
photosynthetic pigments,

CO2 assimilation rate,
transpiration, Fv/Fm, Ca,

and K in root and leaf
tissues, and proline and

soluble protein contents in
root tissues.

[152]

C + CV -

C:
20 and 30%

VC:
20 and 30%

80, 60 and 40% AWC

Calendula
officinalis L. cv.

Candyman
Orange

Total dry mass and water
use efficiency was about
3-fold higher in plants

grown in 30%
VC or 30% manure

compost/

[162]

VC: Vermicompost; C: compost; FC: field capacity; SOD: superoxide dismutase; POD: peroxidase; CAT: cata-
lase; MDA: malondialdehyde; Fv/Fm: maximal quantum yield of PSII photochemistry; Ci: intercellular CO2
concentration; PN: net photosynthetic rate; AWC: available water content.

4.3. Insect Pests

Organic amendments have been proposed as an efficient alternative practice to im-
prove soil and plant health by suppressing phytopathogens such as plant-parasitic ne-
matodes [163]. Now, more data have explained VC as a superior organic amendment to
compost in terms of soil properties and plant health [164]. VC could boost plant growth
and tolerance against soil-borne and above-ground pests [165]. Further findings indicated
that the humic substances and phytohormones in VC could control pest infestation. Ros-
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tami et al. [166] studied the effect of vermicompost extract (VE) and vermiwash (VW) on
root-knot nematode in the cucumber plant. The VE and VW at 10% and 100% concentration
increased the inhibition rate of egg hatching and Meloidogyne javanica larvae mortality
examined after 24, 48, and 72 h. The phytopathogens-suppressing potential of vermicom-
post and its derivatives are elaborated in Table 4. The mechanisms by which VC and its
derivatives suppress pest attacks are various but anticipated simultaneously. Based on re-
search outcomes, four suppression pest suppression mechanisms can be found liable; these
are (I) release of phenolic substances; (II) predatory nematodes; (III) release of antibiotics;
and (IV) increase in nutrient availability. Phenols are biomolecules produced with phenol
oxidase enzymes. VC boosts the plant’s uptake of soluble phenolic substances for pest re-
sistance [167]. Due to their toxicity to nematodes, phenolic substances act as repellents and
deterrents. The presence of phenolic substances in plants reduces the palatability of plants,
thus shifting the pest [168]. The chlorogenic acid and gallic acid in Thymus vulgaris are
considered to suppress Phytophthora infestans and Fusarium oxysporum [21]. The presence of
flavonoids and humic acid has been described as controlling Bemisia tabaci and Xanthomonas
campestris in Cyamopsis tetragonoloba [169]. VC and its derivatives’ application increased the
population and diversity of predatory nematodes in soil [170]. These predators adversely
affect the pest population by attacking them directly. Renčo et al. [171] described a signif-
icant decrease in eggs and juveniles of Globodera pallida and G. rostochiensis (potato cyst
nematodes) with VT application. Similar findings were reported by Sivasabari et al. [172]
for Rotylenchulus reniformis and Meloidogyne incognita due to the presence of beneficial
microbes in VT. Huang et al. [173] and Poveda et al. [174] studied the effect of VW, liquid
VC, and coelomic fluid from E. fetida to control root-knot disease in vitro and greenhouse.
The results revealed that the three treatments (VW, liquid VC, and coelomic fluid) inhibited
egg hatching. The coelomic fluid contains bioactive molecules that negatively influence
the physiological functions of Meloidogyne javanica larva. VC is enriched with microbes
(Bacillus and Pseudomonas sp.) and fungi (Trichoderma sp.) which releases cuticle degrading
proteases to inhibit nematode multiplication. The microbes in the rhizosphere compete
with pathogens for nutrients and stimulate the plant to produce secondary metabolites
under stress conditions, thus inducing systemic resistance in plants [175]. Soil amendment
with an organic fertilizer such as VC has good buffering capacity and nutrient stability,
establishing an unfavorable environment for pests [176]. Macro and micronutrients present
in VC increase the potential of plants to defend themselves from pest attacks.

Table 4. Phytopathogen-suppressing potential of vermicompost and its derivatives produced from
various waste materials.

Type of
Fertilizer

Parental
Wastes Earthworm Phytopathogens Plants Pest Control References

VC CD E. fetida Meloidogyne incognita Solanum
lycopersicum L. Root-knot nematode [177]

VC, N, P, M, S CD, VR Lumbricus rubellus Plutella xylostella Brassica oleracea L. Diamondback moth [178]

VC, VL CD E. fetida Meloidogyne incognita Withania somnifera Root
parasitic nematode [179]

VC CD, TL, SD
E. fetida,

Lumbricus rubellus,
Perionyx ecavatus

Meloidogyne incognita Solanum
lycopersicum L.

Root
parasitic nematode [180]

VE FW -
Myzus persicae,

Planococcus citri,
etranychus urticae

Solanum lycopersicum
L. and Cucumis sativa

Green peach aphid,
citrus mealybug, two
spotted spider mites

[181]

VC Ipomoea
leaves E. fetida Earias vittella Abelmoschus esculentus Fruit borer [182]

VE CD E. fetida Meloidogyne incognita
Capsicum annuum L.

and Solanum
lycopersicum L.

Root-knot nematode [183]



Agronomy 2023, 13, 1134 15 of 25

Table 4. Cont.

Type of
Fertilizer

Parental
Wastes Earthworm Phytopathogens Plants Pest Control References

VC, VE GW -
Globodera rostochiensis

and
Globodera pallida

Solanum tuberosum Potato-cyst
nematodes [171]

VC CD - Aphis gossypii Glover Cucumis sativus L. Melon aphid [184]

VC BL, CD Pheretima
posthuma Phyllocnistis citrella C. reticulata Citrus leaf miner [185]

VC FW -
Myzus persicae,

Pseudococcus sp. and
Pieris brassicae L.

Capsicum annuum L.,
Lycopersicon

esculentum and
Brassica oleracea L.

Aphids, mealy bugs,
and cabbage

white caterpillars
[186]

4.4. Plant Diseases

Bacteria, viruses, and fungi are the primary causes of plant diseases, with fungi
being the most common causal organism. Among the various secondary effects of VC
on plants, disease suppression is the most significant. This is mainly associated with
the release of coelomic fluid from EWs, which kills pathogens in waste material during
the vermicomposting process. Consequently, VC possesses insecticidal and antifungal
properties due to coelomic fluid and other bioactive compounds released by EWs, making
it effective in suppressing insects and diseases. Bioactive compounds are produced from
numerous amino acid chains to combat specific soil pathogens [187]. CF is secreted from
dorsal pores of EWs and functions as a defense mechanism due to its anti-microbial
properties [188].

Streptomycin is an antibiotic used to control crop diseases, while salicylic acid ef-
fectively induces phytopathogens’ resistance mechanism. In recent years, the use of VC
and VT as bio-control agents has increased considerably. Hakim et al. [189] investigated
the effect of compost, VC, and tea on bacterial vascular wilt in tomato seedlings. VC at
concentrations of 30% and 40% by volume reduced bacterial vascular wilt at 60% and
66.67%, respectively. The treatment containing 30% VC tea by volume decreased disease
severity by 53.33%. In addition to suppressing bacterial diseases, VC can also suppress
fungal diseases by reducing sporulation, retarding the growth of pathogenic fungi, and
thus reducing infection. Fungal diseases are commonly associated with acute injury and
plant mortality. The extensive use of fungicides has led to environmental pollution and the
development of resistance against antifungal chemicals [190]. EWs’ secretions (Lumbricin-
PG with antifungal properties) are attached to the vermicompost surface and protect plants
against fungal attack. This is also confirmed by You et al. [191], where a bioactive metabo-
lite (ergosterol peroxide) with antifungal activity against R. solani AG1-IB was secreted
by microbes during vermicomposting of bamboo. Amooaghaie et al. [192] reported that
VC is an efficient biocontrol agent against Phytophthora infestans and Fusarium oxysporum.
The application of VC to Brassica juncea crops inhibited the fungal mycelium of Alternaria
brassicae at the highest rate of 47.43%. Mu et al. [193] isolated Bacillus subtilis M29 (an
antifungal bacterial strain) from vermicompost. These bacterial strains produced several
volatile compounds that inhibited Botrytis cinerea growth (grey mold). A study conducted
by Tian et al. [194] investigated the effectiveness of vermicompost, biochar, and their com-
bination on the occurrence of Fusarium root rot. The combined application of VC, biochar,
and Fusarium (VBF) reduced the disease index by up to 80.96%, compared to the control,
and a higher concentration of vanillin (a phenolic acid from root exudates) was observed in
VBF treatment. The vanillin concentration showed a negative correlation with the disease
index. Vermicompost contains several Rhizobacteria species that effectively suppress fun-
gal growth on beans by 50–60% [195]. Various mechanisms have been identified as being
responsible for disease suppression, as shown in Figure 4, including nutrient competition,
antibiosis, hyperparasitism, and induced systemic resistance [196].
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Figure 4. Mechanisms of disease suppression in plants using vermicompost and its derivative (vermi-
tea). Vermicompost boosts microbial diversity and activity in the rhizosphere. These microbes protect
plants by inducing systemic resistance against phytopathogens, increasing nutrient competition,
releasing specific metabolites against pathogens, and directly parasitizing phytopathogens through
various mechanisms.

Competition is the primary factor in disease suppression mechanisms, and its ef-
fectiveness is typically associated with microbial population and activity in the soil. A
higher population of microbes reduces the availability of nutrients, space, and energy
for pathogens. Under Fe deficiency conditions, some microbes, such as Pythium species,
produce siderophores, which reduce disease occurrence by decreasing Fe availability to
phytopathogens [197]. Antibiosis is an interaction where one organism affects others by
secreting specific antibiotics or metabolites [198]. Pseudomonas in vermicompost produces
several metabolites such as phenazines and C-acelyphloroglucinols with broad-spectrum
action against fungal pathogens, [199]. Hyperparasitism is a phenomenon in which phylo-
genetically unrelated microorganisms colonize pathogens, leading to their death. During
the composting process, available cellulose and glucose activate Trichoderma sp., which
secretes chitinase enzyme to parasitize Rhizoctonia solani [200]. Induced systemic resistance
is a state of increased defensive capacity that plants develop when stimulated by any
phytopathogen. The application of compost reduces disease severity and induces systemic
resistance against pathogens [201]. Sang et al. [202] reported that compost tea protects cu-
cumber and pepper plants from anthracnose disease due to the induced systemic resistance
mechanism. Reactive oxygen species (ROS), callose deposition, and Ca2+ play significant
roles in activating this mechanism. Callose is a β-1, 3 glucan polymer that accumulates in
vulnerable parts of plant cell walls during pathogen attack. Pseudomonas fluorescens strain
63–28 enhances tomato plant resistance to Fusarium oxysporum by immediately accumu-
latingcallose and chitinases [203]. Pyocyanin produced by Pseudomonas aeruginosa 7NSK2
increases H2O2 (a reactive oxygen species) in leaves and induces resistance to blast disease
(Magnaporthe grisea) [204]. The beneficial root-fungus Mortierella hyalina stimulates the
Ca2+-dependent signaling pathway to develop resistance against Alternaria brassicae [205].

5. Conclusions

This review elaborates various mechanisms involved in plant growth promotion and
the mitigation of biotic and abiotic stresses using vermicompost and its derivatives. The
application of vermicompost enhances soil health and crop productivity due to improved
nutrient uptake, the presence of humic substances, phytohormones, and enhanced micro-
bial activities in VC. The current review also addresses questions related to the mitigation
of drought, salinity, insect pests, and plant diseases using vermicompost. With higher
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water-holding capacity and porosity, VC reduces the detrimental effects of water stress. It
aids in improving plant tolerance against salinity stress by stimulating enzymatic activities.
VC suppresses plant pests and diseases by various mechanisms, such as competition, pre-
dation, releasing metabolites, and inducing systemic resistance against foliar pathogens.
However, the possibility of using VC for the reduction of toxic elements needs to be ad-
dressed. The role of EWs in improving organic matter decomposition, soil structure, soil
fertility, microbial population, and diversity is also discussed. VC and its derivatives are
environmentally safe products and should be used to mitigate phytopathogens. This review
gives an updated perspective on the possible use of vermicompost to mitigate biotic and
abiotic stresses such as drought, salinity, insect pests, and diseases on plants.
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