
Linear Algebra and its Applications 660 (2023) 47–65
Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

On the subalgebra lattice of a restricted Lie algebra

Pilar Páez-Guillán a, Salvatore Siciliano b, David A. Towers c,∗

a Institut für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, Wien, 
1090, Austria
b Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 
Via Provinciale Lecce–Arnesano, Lecce, 73100, Italy
c Department of Mathematics and Statistics, Lancaster University, Bailrigg, 
Lancaster, LA1 4YF, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 June 2022
Accepted 5 December 2022
Available online 9 December 2022
Submitted by P. Semrl

MSC:
17B50
17B05
17B30
17B60
06D05

Keywords:
Restricted Lie algebra
Restricted subalgebra
Frattini p-ideal
Dually atomistic
Restricted quasi-ideal
Lower semimodular
Upper semimodular
J-algebra
Supersolvable

In this paper we study the lattice of restricted subalgebras 
of a restricted Lie algebra. In particular, we consider those 
algebras in which this lattice is dually atomistic, lower or 
upper semimodular, or in which every restricted subalgebra 
is a quasi-ideal. The fact that there are one-dimensional 
subalgebras which are not restricted results in some of these 
conditions being weaker than for the corresponding conditions 
in the non-restricted case.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail addresses: maria.pilar.paez.guillan@univie.ac.at (P. Páez-Guillán), 

salvatore.siciliano@unisalento.it (S. Siciliano), d.towers@lancaster.ac.uk (D.A. Towers).
https://doi.org/10.1016/j.laa.2022.12.004
0024-3795/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.laa.2022.12.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2022.12.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:maria.pilar.paez.guillan@univie.ac.at
mailto:salvatore.siciliano@unisalento.it
mailto:d.towers@lancaster.ac.uk
https://doi.org/10.1016/j.laa.2022.12.004
http://creativecommons.org/licenses/by/4.0/


48 P. Páez-Guillán et al. / Linear Algebra and its Applications 660 (2023) 47–65
1. Introduction

The relationship between the structure of a group and that of its lattice of subgroups is 
highly developed and has attracted the attention of many leading algebraists. According 
to Schmidt ([18]), the origin of the subject can be traced back to Dedekind, who studied 
the lattice of ideals in a ring of algebraic integers; he discovered and used the modular 
identity, which is also called the Dedekind law, in his calculation of ideals. Since then 
modularity and lattice conditions related to it have been studied in a number of contexts. 
The lattice of submodules of a module over a ring is modular, and hence so is the lattice 
of subgroups of an abelian group. The lattice of normal subgroups of a group is also 
modular, but the lattice of all subgroups is not in general.

A lattice L is modular if A ∪ (B ∩ C) = (A ∪B) ∩ C for all A, B, C ∈ L with A ⊆ C. 
Groups whose subgroup lattice is modular are called M-groups. These are known modulo 
the Tarski monster groups (infinite groups in which every proper non-trivial subgroup 
has prime order). Locally finite M-groups and those with elements of infinite order were 
investigated in 1941 and 1943 by Iwasawa. The classification was completed by Schmidt 
who, in 1986, characterised the periodic M-groups.

A lattice L is upper semimodular if A is maximal in A ∪B whenever A ∩B is maximal 
in B for A, B ∈ L. It is lower semimodular if A ∩ B is maximal in B whenever A is 
maximal in A ∪ B for A, B ∈ L. In 1951, Ito showed that the subgroup lattice of a 
finite group G is lower semimodular if and only if G is supersoluble and induces an 
automorphism group of at most prime power order in every chief factor of G. Groups 
with an upper semimodular subgroup lattice were studied by Sato in 1949 but, according 
to Schmidt, are not considered as important as there is no related class of groups which 
is significant from a group-theoretic point of view. All of the above references, together 
with a comprehensive discussion of the state of questions concerning the subgroup lattice 
in 1994 can be found in Schmidt ([18]).

The study of the subalgebra lattice of a finite-dimensional Lie algebra was popular 
in the 1980’s and in the 90’s (see, for example, [3,7–11,13,14,25–30]), but interest then 
waned. The likely reason is that most of the conditions under investigation were too 
strong and so few algebras satisfied them. However, the lattice of restricted subalgebras 
of a restricted Lie algebra is fundamentally different; for example, not every element 
spans a one-dimensional restricted subalgebra. Thus, one could expect more interesting 
results to hold for restricted algebras and, as we shall see, this is indeed the case.

In Section 2 we fix some notation and terminology and introduce some results that 
are needed later. We also prove a result which is a slightly weaker version of a result of 
Scheiderer for fields of characteristic zero, but which is valid over any field. This concerns 
dually atomistic Lie algebras; that is, ones in which every subalgebra is an intersection of 
maximal subalgebras. In Section 3 we first study restricted Lie algebras that are dually 
atomistic in the sense that every restricted subalgebra is an intersection of maximal 
restricted subalgebras. We show that such algebras over an algebraically closed field 
of positive characteristic are solvable or semisimple, and then characterise the solvable 
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ones more precisely. It turns out that they are more abundant than in the non-restricted 
case. We then investigate those restricted Lie algebras all of whose subalgebras (not 
necessarily restricted) are intersections of maximals. It is shown that if the ground field 
is algebraically closed then there are no such algebras that are perfect.

The objective in Section 4 is to study restricted Lie algebras L in which every re-
stricted subalgebra is a restricted quasi-ideal; that is, such that [S, H] ⊆ S + H for all 
restricted subalgebras S, H of L. These are characterised over an algebraically closed 
field of characteristic different from 2, and the nilpotent ones more generally over a per-
fect field of characteristic different from 2. In this regard, we also mention that restricted 
Lie algebras over perfect fields all of whose restricted subalgebras are ideals were char-
acterised by the second author in [19]. Section 5 then goes on to consider J-algebras and 
lower semimodular restricted Lie algebras. The main result here is the same as for the 
corresponding situation in the non-restricted case if the underlying field is algebraically 
closed, but it is pointed out that the assumption of algebraic closure cannot be omitted.

The final section is devoted to studying upper semimodular restricted Lie algebras. It 
is shown that, over an algebraically closed field, such an algebra is either almost abelian 
or nilpotent of class at most 2. This is proved by considering first upper semimodular 
restricted Lie algebras that are generated by their one-dimensional restricted subalgebras. 
It is also shown that over such fields the conditions that L is modular, L is upper 
semimodular and every restricted subalgebra of L is a quasi-ideal are equivalent.

2. Preliminaries

Here we fix some notation and terminology and introduce some results that will be 
needed later. Unless otherwise stated, throughout the paper all algebras are supposed 
finite-dimensional. Let L be a Lie algebra over a field F . As usual, the derived series for 
L is defined inductively by L(0) = L, L(k+1) = [L(k), L(k)] for k ≥ 0, L(∞) = ∩k≥0L

(k); 
L is solvable if L(∞) = 0. Similarly, the lower central series is defined inductively by 
L1 = L, Lk+1 = [Lk, L] for k ≥ 1; L is nilpotent if Lk = 0 for some k ≥ 1. Also, L is 
said to be supersolvable if it admits a complete flag made up of ideals of L, that is, there 
exists a chain

0 = L0 � L1 � · · · � Ln = L

of ideals of L such that dimLj = j for every 0 ≤ j ≤ n. The centre of L is denoted 
by Z(L), and CB(A) = {x ∈ B : [x, A] = 0} denotes the centraliser in a subalgebra 
B of another subalgebra A. Also, the ascending central series is defined inductively by 
C1(L) = Z(L), Cn+1(L) = {x ∈ L : [x, L] ⊆ Cn(L)}. The nilradical N(L) is defined to 
be the maximal nilpotent ideal, and the solvable radical, denoted by R(L), is defined 
to be the maximal solvable ideal. For every x ∈ L, the adjoint map of x is defined by 
ad(x) : L → L, a 	→ [x, a]. If S is a subalgebra of L, then the largest ideal of L contained 
in S is called the core of L and is denoted by SL. The Frattini subalgebra F (L) of L is 
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the intersection of all maximal subalgebras of L; the Frattini ideal of L is φ(L) = F (L)L. 
The abelian socle, Asoc(L), is the sum of the minimal abelian ideals of L. We will denote 
algebra direct sums by ⊕, whereas direct sums of the vector space structure alone will 
be written as +̇.

We say that L is dually atomistic if every subalgebra of L is an intersection of maximal 
subalgebras of L. The Lie algebra L is said to be almost abelian if L = Fx+̇A, where A
is an abelian ideal of L and ad(x) acts as the identity map on A. Scheiderer proved in 
[17] that, over a field of characteristic zero, every dually atomistic Lie algebra is abelian, 
almost abelian or simple. Here we establish a slightly weaker version of this which is 
valid over any field.

Proposition 2.1. If L is a dually atomistic Lie algebra over any field then L is either 
abelian, almost abelian or semisimple.

Proof. Let L be dually atomistic and suppose that L is not semisimple. Then Asoc(L) �=
0 and L splits over Asoc(L), by [24, Theorem 7.3]. Furthermore, the minimal abelian 
ideals of L are one-dimensional, by [17, Lemma 1], so we can write L = (Fa1 ⊕ · · · ⊕
Fan)+̇B, where Fai is a minimal ideal of L for each 1 ≤ i ≤ n, B is a subalgebra of L, 
and n ≥ 1.

Let M be a maximal subalgebra of L with a1 /∈ M . We shall show that L(∞) ⊆ M . 
Now L = Fa1 +M , so M has codimension one in L. It follows that L/ML is as described 
in [2, Theorems 3.1 and 3.2]. Also, [Fa1, ML] ⊆ Fa1 ∩ M = 0. We consider the three 
cases given in [2, Theorem 3.1] separately.

Case (a): Here L/ML is one-dimensional, so M = ML and L2 ⊆ M .
Case (b): Here L/ML is two-dimensional, so L = Fa1 +Fm +ML where m ∈ M \ML. 

Now L2 ⊆ Fa1 + ML and L(2) ⊆ ML ⊆ M .
Case (c): Here L/ML � Lm(Γ). If m is odd then Lm(Γ) is simple. But (Fa1+ML)/ML

is a one-dimensional ideal of L/ML, which is a contradiction. Hence m is even, in which 
case Lm(Γ) = Fx + Lm(Γ)2, where Lm(Γ)2 is simple. Put L/ML = L̄, and so on. Then 
L̄ = F ā1 ⊕ L̄2 and [L̄, ā1] = 0̄; that is, [L, a1] ⊆ ML, whence L2 ⊆ M .

In any case we have established that, for any maximal subalgebra M of L, either 
a1 ∈ M or L(∞) ⊆ M . Suppose that L(∞) �= 0. Then L(∞) �= Fa1 (since (Fa1)2 = 0), so 
there is an element x ∈ L(∞) \ Fa1. Let M be a maximal subalgebra containing x + a1. 
Then either a1 ∈ M or L(∞) ⊆ M . In each case, Fx +Fa1 ⊆ M . It follows that F(x +a1)
cannot be an intersection of maximal subalgebras of L, a contradiction. Hence, L(∞) = 0
and L is solvable. The result now follows from [17, Lemma 1]. �

We shall need the following result which is due to Grunewald, Kunyavskii, Nikolova 
and Plotkin for p > 5. However, the same proof works for p > 3 by using the Corollary 
in page 180 of [20]. A. Premet has pointed out that the result is also valid for p = 3, but 
that it relies on results that have not yet been published, so we omit this case.
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Lemma 2.2. Every simple Lie algebra L over an algebraically closed field F of character-
istic p > 3 contains a subalgebra S containing an ideal T of S such that S/T ∼= sl(2, F).

Proof. The proof is the same as for [12, Lemma 3.2] with the reference to [31, Part II, 
Corollary 1.4] replaced by [20, page 180, Corollary]. �

In what follows we shall be studying the lattice of restricted subalgebras of a restricted 
Lie algebra. Let L be a restricted Lie algebra over a field of characteristic p > 0. For a 
subset S of L, we denote by 〈S〉p the restricted subalgebra generated by S. We say that 
L is cyclic if L = 〈x〉p for some x ∈ L. An element x ∈ L is said to be semisimple if 
x ∈ 〈x[p]〉p and toral if x[p] = x. An abelian restricted Lie algebra consisting of semisimple 
elements is called a torus. An element x ∈ L is said to be p-nilpotent if x[p]n = 0 for 
some n > 0 (in this case, the minimal n with such a property is called the order of x), 
and L is said to be p-nilpotent if there exists n > 0 such that x[p]n = 0 for every x ∈ L. 
A restricted ideal I of L is said to be strongly abelian if I is abelian and x[p] = 0 for 
all x ∈ L. We also introduce as “restricted analogues” of earlier concepts, Fp(L), the 
Frattini p-subalgebra of L, to be the intersection of the maximal restricted subalgebras 
of L, and φp(L), the Frattini p-ideal of L, to be the largest restricted ideal of L which is 
contained in Fp(L). We say that L is φp-free if φp(L) = 0. The abelian p-socle, Apsoc(L), 
is the sum of the minimal abelian restricted ideals of L. To avoid tedious repetition we 
shall therefore often omit the word ‘restricted’.

3. Dually atomistic Lie algebras

We say that a restricted Lie algebra L is dually atomistic if every restricted subalgebra 
of L is an intersection of maximal restricted subalgebras of L. It is easy to see that if L
is dually atomistic then so is every factor algebra of L, and if L is dually atomistic then 
it is φp-free.

Lemma 3.1. Let L be a dually atomistic restricted Lie algebra. Then:

(i) N(L) is abelian;
(ii) M ∩N(L) is a restricted ideal of L for every maximal restricted subalgebra M of L; 

and
(iii) for every subspace S of N(L), 〈S〉p is a restricted ideal of L.

Proof. (i) N(L)2 ⊆ φp(L) = 0 by [24, Theorem 6.5] and [15, Theorem 3.5].
(ii) The result is clear if N(L) ⊆ M , so suppose that N(L) � M . Then L = N(L) +M

and

[L,N(L) ∩M ] = [N(L) + M,N(L) ∩M ]

⊆ N(L)2 + N(L) ∩M2 ⊆ N(L) ∩M,
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using (i).
(iii) By (i), every subspace of N(L) is a subalgebra of L. Let S be any subspace of 

N(L). Then

〈S〉p = 〈S〉p ∩N(L) =
( ⋂

M∈M
M

)
∩N(L) =

⋂
M∈M

(M ∩N(L)),

where M is the set consisting of all maximal restricted subalgebras of L containing 
〈S〉p. Therefore, 〈S〉p is an intersection of restricted ideals of L, by (ii), and so is itself a 
restricted ideal of L. �
Proposition 3.2. Let L be a dually atomistic restricted Lie algebra over an algebraically 
closed field F . Then L is solvable or semisimple.

Proof. Suppose that L is not semisimple. Then L = N(L)+̇B = A1⊕· · ·⊕An+̇B, where 
B is a restricted subalgebra of L and A1 ⊕ · · · ⊕ An = Apsoc(L) �= 0, by [15, Theorems 
3.4 and 4.2]. If B = 0, then L is nilpotent and we are done. Assume therefore that B �= 0.

Suppose first that N(L) = Z(L). Then, L = Z(L) ⊕ B and L2 ⊆ B. Then we must 
have that N(L) = R(L). For, otherwise, there is a minimal ideal A/N(L) of L/N(L)
with A ⊆ R(L). But A is nilpotent, which is a contradiction. Thus, B is semisimple and 
Z(L) �= 0. Let M be a maximal restricted subalgebra of L. If Z(L) is not contained in M
then M +Z(L) is a restricted subalgebra properly containing M , so L = M +Z(L) and 
〈B2〉p = 〈L2〉p ⊆ M , since L2 ⊆ M and M is restricted. Hence, either Z(L) or 〈B2〉p is 
inside M .

Let z ∈ Z(L) and b ∈ 〈B2〉p, and let M be a maximal restricted subalgebra con-
taining 〈z + b〉p. Then z, b ∈ M , so we must have 〈z〉p + 〈b〉p = 〈z + b〉p. But then 
b =

∑n
i=0 λi(b[p]

i +z[p]i), so b =
∑n

i=0 λib
[p]i and 

∑n
i=0 λiz

[p]i = 0. If b is not semisimple, 
then λ0 = 1 which implies that z is semisimple, from the second sum. This must hold for 
every choice of z ∈ Z(L), so Z(L) is a torus of L, by [23, Chapter 2, Theorem 3.10]. A sim-
ilar argument shows that if z is not semisimple then every b must be, in which case 〈B2〉p
is a torus of L. Hence, either Z(L) or 〈B2〉p is a torus. In the latter case, 〈B2〉p is abelian, 
contradicting the fact that B is semisimple. In the former case, both Z(L) and 〈B2〉p
have a toral element: z and b, say. But then 〈z〉p + 〈b〉p = Fz+Fb �= F(z+ b) = 〈z+ b〉p, 
a contradiction.

Therefore suppose that N(L) �= Z(L). Then there is a minimal restricted ideal A with 
A ⊆ N(L) and A ∩ Z(L) = 0. Moreover, if a ∈ A, we have that a[p] ∈ A ∩ Z(L), so 
A = Fa with a[p] = 0, by Lemma 3.1(iii). Let M be a maximal restricted subalgebra of 
L such that a /∈ M . We have L = M+̇A, by [15, Lemma 2.1], so M has codimension 
one in L, and, as in Proposition 2.1, 〈L(∞)〉p ⊆ M . It follows that 〈L(∞)〉p ∩ A = 0. 
Choose x ∈ 〈L(∞)〉p. Then [x, a] ∈ L(∞) ∩ A = 0. If 〈x + a〉p = 〈x〉p + 〈a〉p, then we 
have a =

∑n
i=0 λi(x + a)[p]i = λ0a +

∑n
i=0 λix

[p]i . Hence λ0 = 1 and x is semisimple. It 
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follows from [23, Chapter 2, Theorem 3.10] that 〈L(∞)〉p is abelian. But this means that 
L is solvable. �

For a field F of characteristic p > 0, we will denote by F [t, σ] the skew polynomial 
ring over F in the indeterminate t with respect to the Frobenius endomorphism σ of F . 
We recall that F [t, σ] is the ring consisting of all polynomials f =

∑
i≥0 αit

i with respect 
to the usual sum and multiplication defined by the condition t ·α = αpt for every α ∈ F .

Proposition 3.3. Let L be a solvable restricted Lie algebra over any field F . If L is dually 
atomistic then L = (Z(L) ⊕ I)+̇Fb, where b is toral, I is a strongly abelian restricted 
ideal of L, ad(b) acts as the identity map on I, and

Z(L) � L/〈f̄1〉p ⊕ · · · L/〈f̄r〉p,

where L = 〈x〉p is a free cyclic restricted Lie algebra and f̄i =
∑s

k=0 αkx
[p]k is an element 

of L such that fi =
∑s

k=0 αkt
k is an irreducible element of the ring F [t, σ].

Proof. Suppose first that L is dually atomistic. The nilradical N(L) of L is non-zero and 
abelian by Lemma 3.1(i). As L is φp-free, L = N(L)+̇B for some restricted subalgebra B
of L, and N(L) = Apsoc(L) := A, by [15, Theorems 3.4 and 4.2]. Now, if L is abelian then 
L = A and the desired conclusion follows from [16, Proposition 3.1]. Suppose then that 
L is non-abelian. Let a ∈ A. Then CB(A) is a restricted ideal of L and CB(A) ∩A = 0, 
so CB(A) = 0 and B acts faithfully on A. Also ad2(a) = 0 and so ad(a[p]) = 0, whence 
a[p] ∈ Z(L) for all a ∈ A.

We can write A = A1⊕· · ·⊕An, where Ai is a minimal abelian restricted ideal of L for 
1 ≤ i ≤ n. Moreover, Ai � L/〈f̄i〉p, where f̄i =

∑
k≥0 αkx

[p]k is an element of L such that 
fi =

∑
k≥0 αkt

k is an irreducible element of the ring F [t, σ], by Lemma 3.1(iii) and [16, 
Proposition 3.1]. Let A1⊕· · ·⊕Ar = Z(L), where we allow that r could be 0. Since B acts 
faithfully on A we cannot have r = n. Then [B, A] = Ar+1⊕· · ·⊕An = Fxr+1⊕· · ·⊕Fxn. 
We have x[p]

i = αxi for some α ∈ F and so, as xi is not central, we deduce that x[p] = 0. 
As a consequence, [B, A] := I is a strongly abelian restricted ideal of L. Moreover, CB(xi)
is a restricted ideal of L, so CB(xi) = 0 for each r + 1 ≤ i ≤ n. Let b1, b2 ∈ B. Then 
[bi, xn] = λixn for some 0 �= λi ∈ F , i = 1, 2. But then [λ2b1 − λ1b2, xn] = 0, whence 
b1 and b2 are linearly dependent and B is one-dimensional. Choose B = Fb such that 
[b, xn] = xn. Let b[p] = μb. Then

xn = [b[p], xn] = μ[b, xn] = μxn,

so μ = 1 and b is toral. Finally, it follows from Lemma 3.1(iii) that ad(b) acts the identity 
on I, completing the proof. �

The following example shows that the converse of Proposition 3.3 is not true in general.
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Example 3.4. Let L = Fz ⊕ Fx ⊕ Fb be the restricted Lie algebra over a field F of 
characteristic p > 0 with [b, x] = b, [x, z] = [b, z] = 0, b[p] = b, and x[p] = y[p] = 0. Then 
〈x + z〉p ⊆ N(L) = Fz ⊕ Fx, but 〈x + z〉p is not a restricted ideal of L. Therefore L is 
not dually atomistic by Lemma 3.1(iii).

We introduce another piece of notation before presenting the following results. We say 
that a Lie algebra is restricted dually atomistic if it is restricted and every subalgebra is 
an intersection of maximal subalgebras.

Proposition 3.5. Let L be a perfect restricted dually atomistic Lie algebra over any field 
F of characteristic p > 0. Then every subalgebra of L is restricted.

Proof. Arguing as in [15, Lemma 3.7], it is immediate to prove that every maximal 
subalgebra of L is self-idealising. It follows from [15, Lemma 3.9] that every maximal 
subalgebra of L is restricted. The result now follows from the fact that L is dually 
atomistic. �
Theorem 3.6. There are no perfect restricted dually atomistic Lie algebras over an alge-
braically closed field.

Proof. Suppose that L is a counterexample of minimal dimension. By Proposition 3.5, 
L is simple as a Lie algebra, and hence its absolute toral rank is just the dimension of 
a maximal torus T (cf. [22, §1.2]). Given two linearly independent elements x, y ∈ T , 
Proposition 3.5 forces 0 �= (x + λy)[p] ∈ F(x + λy) for all λ ∈ F , but this cannot happen 
since F is algebraically closed. Hence, L has absolute toral rank 1.

Now, if F has characteristic p = 2, 3, then [21, Theorem 6.5] yields that L is solvable 
or isomorphic to sl(2, F) or to psl(3, F). Otherwise, L has a restricted subalgebra with 
a quotient isomorphic to sl(2, F), by Lemma 2.2 and Proposition 3.5. But both sl(2, F)
and psl(3, F) have elements which are neither semisimple nor p-nilpotent, which clearly 
contradicts Proposition 3.5. �

As well as the three-dimensional non-split simple Lie algebra, which is dually atomistic 
in the characteristic zero case, there exist other perfect dually atomistic simple restricted 
Lie algebras over a perfect field which is not algebraically closed. For example, let L be the 
seven-dimensional simple Lie algebra over a perfect field of characteristic 3 constructed 
by Gein in [8, Example 2]. This algebra L can be endowed with a p-mapping such that 
every element is semisimple. Any two linearly independent elements of L generate a three-
dimensional non-split restricted subalgebra which is maximal in L. Any second-maximal 
restricted subalgebra is then one-dimensional, and every one-dimensional restricted sub-
algebra S is inside more than one maximal restricted subalgebra whose intersection is 
S.

We finish this section by studying the so-called atomistic restricted Lie algebras, those 
in which every restricted subalgebra is generated by minimal restricted subalgebras.
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Proposition 3.7. Let F be an algebraically closed field of characteristic p > 0. A re-
stricted Lie algebra L over F is atomistic if and only if every p-nilpotent cyclic restricted 
subalgebra is one-dimensional.

Proof. Note that L is atomistic if and only if all its cyclic restricted subalgebras are 
atomistic. Consider the cyclic restricted subalgebra C, whose semisimple elements form 
a torus T , and whose p-nilpotent elements form a p-nilpotent restricted subalgebra P . 
By [23, Chapter 2, Theorem 3.6], T is atomistic. From [23, Chapter 2, Theorem 3.5], 
it follows that C = T ⊕ P , so C is atomistic if and only if P is atomistic. But this is 
equivalent to requiring that dimP = 1 ([16, Theorem 3.8]). The result follows. �
4. Restricted quasi-ideals

A restricted subalgebra S of L is called a restricted quasi-ideal of L if [S, H] ⊆ S +H

for all restricted subalgebras H of L. Clearly, every restricted subalgebra that is a quasi-
ideal is also a restricted quasi-ideal.

Denote by L[p] the restricted subalgebra generated by all the elements x[p], with x ∈ L.

Lemma 4.1. If S is a restricted subalgebra of L, then SL is a restricted ideal of L

Proof. Simply note that (SL)[p] is an ideal of L inside S. �
Proposition 4.2. If F is perfect then L[p] is a restricted quasi-ideal if and only if it is an 
ideal of L.

Proof. Suppose that L[p] is a restricted quasi-ideal of L. Then, for all x ∈ L

[L[p], x] ⊆ L[p] + 〈x〉p = L[p] + Fx,

so L[p] is a quasi-ideal. Suppose that L[p] is not an ideal of L, and factor out (L[p])L, so we 
can assume that L[p] is core-free. Then, by [1, Theorem 3.6], there are three possibilities 
which we will consider in turn.

Suppose first that L[p] has codimension 1 in L. Define (L[p])i as in [2, (5)]. Then every 
element x ∈ L can be written as x = xs+xn, where xs is semisimple and xn is p-nilpotent, 
by [23, Theorem 3.5]. Moreover, all semisimple elements belong to L[p], so L = L[p] +Fx

for some p-nilpotent element x. Suppose that x[p]k = 0. Now (L[p])i = {y ∈ L[p] | [y,i x] ∈
L[p]} for i ≥ 0, by [2, Lemma 2.1(b)]. Hence [y,ph x] = [y, x[p]h ] = 0 for h ≥ k. Also, 
(L[p])0 = L[p] and (L[p])i+1 ⊆ (L[p])i for i ≥ 0, so (L[p])L = ∩∞

i=0(L[p])i = L[p], by [2, 
Lemma 2.1], contradicting the fact that L[p] is not an ideal of L.

On the other hand, [1, Theorem 3.6(c)] cannot hold, as the three-dimensional simple 
Lie algebra W (1, 2)2 over a field of characteristic 2 is not restrictable. To see this simply 
note that the derivation ad2(x) is not inner.
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Finally, suppose that [1, Theorem 3.6(d)] holds. Then L = L2 + Fy where ad(y)
acts as the identity map on L2 and L[p] = Fy. Let x ∈ L2. We have adp(y) = ad(y)
and adp(x) = 0 for every x ∈ L2. Therefore, as L is centerless, the p-mapping of L
is determined by the conditions y[p] = y and x[p] = 0. This implies that L[p] = L, a 
contradiction.

The converse is straightforward. �
Proposition 4.3. Let L be a restricted Lie algebra such that every restricted subalgebra of 
L is a restricted quasi-ideal. Then L2 ⊆ L[p]. It follows that L3 = Lp+1; in particular, if 
L is nilpotent, then L has nilpotency class at most 2.

Proof. By Proposition 4.2, L[p] is a restricted ideal. Put L = L/L[p]. Then L[p] = 0 and 
every subalgebra of L is a quasi-ideal. If L is not abelian then it is almost abelian, by 
[1, Theorem 3.8], so L = L2 + Fy, where ad(y) acts as the identity map on L2. But 
then, if 0 �= x ∈ L2, then 0 = [y[p], x] = x, a contradiction. It follows that L2 = 0, so 
L2 ⊆ L[p]. Now, if p �= 2, then we are done. Assume then that p = 2, and suppose, 
by contradiction, that L has nilpotency class n > 2. Set H = L/Cn−3(L), which has 
nilpotency class 3. By [4, Chapter 16, Proposition 1.1], H does not satisfy the second 
Engel condition, and therefore there exist x, y ∈ H such that [x, y[2]] = [[x, y], y] �= 0. 
Set x̃, ỹ to be preimages of x, y in L, and note that x̃[2]2 , ỹ[2]2 , [x̃[2], ỹ[2]] ∈ Cn−3(L). 
Then, by hypothesis we can write [x, y[2]] = λ1x + λ2x

[2] + λ3y
[2] for some λi ∈ F , 

i = 1, 2, 3. Also, we have that [[x, y[2]], z] = 0 for any z ∈ H. For z = y[2] we obtain 
that λ1 = 0, for z = x we have λ3 = 0 and, finally, for z = y we get [x[2], y] = 0. 
Now, write [x, y] = λ4x + λ5x

[2] + λ6y + λ7y
[2], for some λi ∈ F , i = 4, . . . , 7. But then 

[x, y[2]] = [[x, y], y] = λ4[x, y], and 0 = [[x, y], y[2]] = λ4[x, y[2]]. Consequently, λ4 = 0
and [x, y[2]] = 0, a contradiction. �
Lemma 4.4. Let L be a restricted Lie algebra over an algebraically closed field of char-
acteristic p > 0 in which every restricted subalgebra is a restricted quasi-ideal. If H is a 
Cartan subalgebra of L, then L has root space decomposition

L = H+̇(⊕α∈Φ(Lα+̇L−α) ⊕β∈Ψ Lβ),

where Φ is the set of roots α for which −α is also a root, and Ψ is the remaining set of 
roots.

Proof. Let T be a maximal torus, H = CL(T ) and let L = H+̇α∈ΠLα be the corre-
sponding root space decomposition. Then

[xα, xβ ] = λxα + μxβ + h for some h ∈ H,
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since L[p]
α ⊆ H for all α ∈ Π, by [23, Corollary 4.3]. But [Lα, Lβ ] ⊆ Lα+β , so, either 

[Lα, Lβ ] = 0 or [Lα, Lβ ] ⊆ H and α+β = 0. If [Lα, Lβ ] = 0 for α �= β then [L−α, Lβ ] = 0
also, giving the root space decomposition claimed. �

Suppose that every restricted subalgebra of L is a restricted quasi-ideal. Let S be the 
subspace spanned by the semisimple elements of L and let P be the subspace spanned 
by the p-nilpotent elements of L. Then S and P are subalgebras of L, since [x, y] ∈
〈x〉p + 〈y〉p, and, if F is perfect, L = S + P . Moreover, both are restricted, since

(λx + μy)[p] = λpx[p] + μpy[p] +
p−1∑
i=1

si(x, y),

and x[p], y[p] are semisimple (respectively, p-nilpotent) if so are x, y, and si(x, y) ∈ 〈x, y〉p.

Proposition 4.5. Let L be a nilpotent restricted Lie algebra over a perfect field of charac-
teristic different from 2. Then every restricted subalgebra of L is a restricted quasi-ideal 
of L if and only if L = S ⊕ P , where S is a toral ideal and P is a p-nilpotent ideal in 
which every restricted subalgebra is a restricted quasi-ideal.

Proof. Suppose that every restricted subalgebra of L is a restricted quasi-ideal of L. By 
Proposition 4.3, L3 = 0 and L[p] ⊆ Z(L). Then, for all x, y ∈ L, (x + y)[p] = x[p] + y[p], 
so S, P are just the sets of semisimple and p-nilpotent elements of L respectively. Then 
S ∩ P = 0 and S ⊆ Z(L). It follows that L = S ⊕ P and that S is toral.

The converse is straightforward. �
Corollary 4.6. Let L be a restricted Lie algebra over an algebraically closed field of charac-
teristic different from 2 in which every restricted subalgebra of L is a restricted quasi-ideal 
of L. Then L has a Cartan subalgebra H such that H = S ⊕ P where S is a torus and 
P is the set of p-nilpotent elements in H, and L = S+̇N where N is an ideal, N3 = 0
and N [p] ⊆ Z(H).

Proof. We have that L has the form given in Lemma 4.4 and H = S ⊕ P , by Proposi-
tion 4.5. Now L2

α = L2
−α = L2

β = 0 since 2α, −2α and 2β are not roots. For every h ∈ H, 
α ∈ Π = Φ ∪Ψ, we have that [h, xα] ∈ (〈h〉p+〈xα〉p) ∩Lα, so [h, xα] = λxα for some λ ∈ F ; 
that is, h acts semisimply on Lα. Also α(x[p]

α ) = 0, by [23, Chapter 2, Corollary 4.3 (4)]. 
It follows that [x[p]

α , x−α] = 0. Similarly, [x[p]
−α, xα] = 0. Now [xα, x−α] ∈ 〈x[p]

α 〉p + 〈x[p]
−α〉p, 

so, if N = P +
∑

α∈Φ(Lα + L−α) +
∑

β∈Ψ Lβ we have N3 = 0 and N [p] ⊆ Z(H). �
5. J -algebras and lower semimodular restricted Lie algebras

For this section, it will be useful to have the following result.
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Lemma 5.1. Let L be a restricted Lie algebra over an algebraically closed field of charac-
teristic p > 0. If L is supersolvable, then L admits a complete flag made up of restricted 
ideals of L.

Proof. Plainly, it is enough to show that L has a one-dimensional restricted ideal, from 
which the conclusion will follow by induction. Suppose dimL > 1, the claim being trivial 
otherwise. Consider a complete flag

0 = L0 � L1 � · · · � Ln = L

of ideals of L. If the ideal L1 is restricted, then we are done. Thus we can suppose that 
there exists x ∈ L1 such that x[p] /∈ L1. As L1 is an abelian ideal, the restricted subalgebra 
H generated by x[p] is contained in the centre of L. Since the ground field is algebraically 
closed, by [23, Chapter 2, Theorem 3.6] we see that H contains a toral element t. We 
conclude that I = Ft is a one-dimensional restricted ideal of L, as desired. �

Note that the assumption that the ground field is algebraically closed is essential for 
the validity of Lemma 5.1. In fact, over arbitrary fields of positive characteristic, there 
can be cyclic restricted Lie algebras of arbitrary dimension with no non-zero proper 
restricted subalgebras (cf. [16, Proposition 3.1]).

Let L be a restricted Lie algebra. A restricted subalgebra U of L is called lower 
semimodular in L if U ∩B is maximal in B for every restricted subalgebra B of L such 
that U is maximal in 〈U, B〉p. We say that L is lower semimodular if every restricted 
subalgebra of L is lower semimodular in L.

If U , V are restricted subalgebras of L with U ⊆ V , a J-series (or Jordan-Dedekind 
series) for (U, V ) is a series

U = U0 � U1 � . . . � Ur = V

of restricted subalgebras such that Ui is a maximal subalgebra of Ui+1 for 0 ≤ i ≤ r− 1. 
This series has length equal to r. We shall call L a J-algebra if, whenever U and V
are restricted subalgebras of L with U ⊆ V , all J-series for (U, V ) have the same finite 
length, d(U, V ). Put d(L) = d(0, L).

Proposition 5.2. For a solvable restricted Lie algebra L over an algebraically closed field 
of characteristic p > 0 the following are equivalent:

(i) L is lower semimodular;
(ii) L is a J-algebra; and
(iii) L is supersolvable.

Proof. (i)⇒(ii): This is just a lattice theoretic result (see [6, Theorem V3]).
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(ii)⇒(iii): We first show by induction on dimL that there exists a series of restricted 
subalgebras from 0 to L having length dimL. Suppose L �= 0. As L is solvable, it holds 
that 〈L(1)〉p �= L; otherwise, L(1) = 〈L(1)〉(1)p = L(2) �= 0, a contradiction. Then the 
inductive hypothesis ensures the existence of a series of restricted subalgebras

U = U0 � U1 � . . . � Ur = 〈L′〉p

with dimUi = i for all 0 ≤ i ≤ r. Moreover, as L/〈L′〉p is abelian, Lemma 5.1 yields the 
claim.

Now, by hypothesis, all J-series of restricted subalgebras from 0 to L have length 
dimL, and consequently all maximal restricted subalgebras have codimension one in L. 
On the other hand, if H is a maximal subalgebra of L which is not restricted, then pick 
an element x of H such that x[p] /∈ H. Then H + Fx[p] is a subalgebra of L properly 
containing H, so H + Fx[p] = L by the maximality of H. Therefore, every maximal 
subalgebra has codimension one in L, which allows to conclude that L is supersolvable, 
by [5, Theorem 7].

(iii)⇒(i): Let U, B be restricted subalgebras of L such that U is maximal in 〈U, B〉p. 
By Lemma 5.1, U has codimension 1 in 〈U, B〉p, which forces 〈U, B〉p = U +B. It follows 
that dim(B/(U ∩B)) = dim((U+B)/U) = 1, whence U ∩B is maximal in B, completing 
the proof. �

Note that the assumption of solvability is actually needed in the previous result. In 
fact, consider the restricted Lie algebra L = sl(2, F) over an algebraically closed field F
of characteristic p > 2. Then all J-series of restricted subalgebras of L have length 3, 
despite the fact that L is simple.

6. Upper semimodular restricted Lie algebras

Let L be a restricted Lie algebra. We say that a restricted subalgebra S of L is upper 
semimodular in L if S is maximal in 〈S, T 〉p for every restricted subalgebra T of L such 
that S ∩ T is maximal in T . The restricted Lie algebra L is called upper semimodular if 
all of its restricted subalgebras are upper semimodular in L.

This section is devoted to studying the structure of upper semimodular restricted Lie 
algebras over algebraically closed fields. In particular, our main aim of this section is to 
prove the following result:

Theorem 6.1. Let L be a restricted Lie algebra over an algebraically closed field. The 
following conditions are equivalent:

(i) L is upper semimodular;
(ii) L is modular;
(iii) every restricted subalgebra of L is a restricted quasi-ideal.
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Moreover, if one of the previous statements holds, then L is either almost abelian or 
nilpotent of class at most 2.

We start with some preliminary results.
Let L be an almost abelian Lie algebra over a field F of characteristic p > 0. Then 

L = Fx+̇A, where A is an abelian ideal and ad(x) acts as the identity map on A. It is 
immediate to check that L is restrictable and also centerless, so it admits a unique p-
mapping by [23, Chapter 2, Corollary 2.2]. Explicitly, this p-mapping is given by a[p] = 0
for all a ∈ A and x[p] = x.

Lemma 6.2. Let L be an upper semimodular restricted Lie algebra over an algebraically 
closed field of characteristic p > 0. If L is generated by two distinct one-dimensional 
restricted subalgebras X and Y , then L is two-dimensional.

Proof. Let Z be a non-zero proper restricted subalgebra of L. Assume first that X ⊆
Z, Y � Z. As X ∩ Y = 0 is maximal in Y , X must be maximal in L, yielding Z = X. 
Assume now that X, Y � Z and take a one-dimensional restricted subalgebra Z ′ of Z. 
By the previous case, 〈X, Z ′〉p = L. Since X ∩Z ′ = 0 is maximal in X, Z ′ is maximal in 
L and Z = Z ′. Thus, all non-zero proper restricted subalgebras of L are one-dimensional, 
and it follows from [32, Lemma 1.6] that L is two-dimensional. �
Lemma 6.3. Let F be an algebraically closed field of characteristic p > 0. Let L be a 
non-abelian upper semimodular restricted Lie algebra over F generated by three one-
dimensional restricted subalgebras. Then, L is centerless.

Proof. Let Fx, Fy, Fz be three distinct one-dimensional restricted subalgebras gener-
ating L and suppose, by contradiction, that Z(L) �= 0. Note that we can take x to be 
either toral or such that x[p] = 0. By Lemma 6.2 and without loss of generality, we may 
also assume x ∈ Z(L) and that 〈y, z〉p is almost abelian, with [y, z] = z, y[p] = y and 
z[p] = 0. If x[p] = 0, then 〈x +z〉p∩Fy = 0 is maximal in 〈x +z〉p, but Fy is not maximal 
in 〈x + z, y〉p = L, a contradiction. On the other hand, if x is toral, then

x ∈ 〈x− z〉p ⊆ 〈x + y, y + z〉p,

so 〈x + y, y + z〉p = L. Now 〈x + y〉p ∩ 〈y + z〉p = 0 is maximal in 〈x + y〉p, but 〈y + z〉p
is not maximal in L, a contradiction. �
Proposition 6.4. Let F be an algebraically closed field of characteristic p > 0. Any upper 
semimodular restricted Lie algebra L over F generated by its one-dimensional restricted 
subalgebras is either abelian or almost abelian.

Proof. By Lemma 6.2, all the restricted subalgebras of L generated by two one-
dimensional restricted subalgebras are abelian or almost abelian. Suppose that 〈y, x1〉p is 
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almost abelian, where Fy, Fx1 are restricted subalgebras of L with [y, x1] = x1, y[p] = y

and x[p]
1 = 0. Write L = 〈y, x1, . . . , xs〉p, where y, x1, . . . , xs are linearly independent. We 

claim that 〈y, xi〉p is almost abelian for i = 2, . . . , s. Suppose otherwise that [y, xi] = 0
for some i �= 1. By Lemma 6.3, we must have [x1, xi] �= 0. Then 〈x1, xi〉p would be almost 
abelian and [x1, xi] = λx1 for some λ ∈ F , λ �= 0. But then y+λ−1xi ∈ Z(〈y, x1, xi〉p) = 0
by Lemma 6.3, a contradiction. Note also that [y, xi] /∈ Fy, as otherwise y[p] = 0. There-
fore, we can clearly assume that [y, xi] = xi. For i �= j write [xi, xj ] = αijxi + βijxj . We 
have

0 = [[y, xi], xj ] + [[xi, xj ], y] + [[xj , y], xi]

= αijxi + βijxj − αijxi − βijxj + αijxi + βijxj

= αijxi + βijxj ,

hence αij = βij = 0.
Therefore, L = 〈x1, . . . , xs〉p+̇Fy is an almost abelian restricted Lie algebra of dimen-

sion s + 1, as desired. �
Note that the hypothesis of F being algebraically closed is essential for our results. 

Indeed, the Lie algebra L over a perfect field of characteristic 3 given by Gein in [8, 
Example 2], with the p-mapping indicated in Section 3, is upper semimodular, generated 
by its minimal restricted subalgebras and semisimple. The reader could ask if, ruling 
out the hypothesis of F being algebraically closed, any upper semimodular restricted 
Lie algebra generated by its minimal restricted subalgebras would be abelian, almost 
abelian or semisimple, in a way somehow similar to the situation in the ordinary Lie 
algebra setting (see [10]). However, this is not the case either: the restricted Lie algebra 
Fx ⊕L, with x[p] = 0, is generated by its minimal restricted subalgebras and it is upper 
semimodular, but it is neither abelian, nor almost abelian, nor semisimple. Furthermore, 
it is even possible to pick a modular restricted subalgebra of Fx ⊕ L which does not lie 
in any of these three cases.

Proposition 6.5. Let F be an algebraically closed field of characteristic p > 0, and let L
be an upper semimodular restricted Lie algebra over F . Let B be the restricted subalgebra 
generated by the one-dimensional restricted subalgebras of L. If B is almost abelian, then 
L = B.

Proof. Assume L �= B. By Proposition 3.7, there exists a p-nilpotent element x ∈ L

of order 2. Write B = A+̇Fy, where A is a strongly abelian restricted ideal of B, and 
y is a toral element which acts as the identity map on A. Since x[p] ∈ A, we have 
adp(x)(y) = [x[p], y] = −x[p]. Set w = adp−1(x)(y), and note that [x, w] = −x[p] and 
[x[p], w] = [x, w[p]] = 0.

As 〈x〉p ∩ 〈x[p], y〉p = Fx[p] is maximal in 〈x[p], y〉p = Fx[p] + Fy, one has that 〈x〉p
must be maximal in 〈x, x[p], y〉p = 〈x, y〉p. We have



62 P. Páez-Guillán et al. / Linear Algebra and its Applications 660 (2023) 47–65
〈x〉p � 〈x,w〉p ⊆ 〈x, y〉p.

It follows that y ∈ 〈x, w〉p = 〈x〉p + 〈w〉p, from which [x, y] = λ[x, w] = −λx[p], for some 
λ ∈ F . But then

−x[p] = adp(x)(y) = −λadp−1(x)(x[p]) = 0,

a contradiction. Therefore, L = B and L is almost abelian. �
Theorem 6.6. Let F be an algebraically closed field of characteristic p > 0. Any upper 
semimodular restricted Lie algebra L over F is either abelian, almost abelian or of the 
form

L = 〈x1, . . . , xr, B〉p,

where xi is p-nilpotent of order ni > 1 for all i = 1, . . . , r, B is an abelian restricted 
subalgebra and [L, L] ⊆ 〈x1, . . . , xr〉p.

Proof. Let B be the restricted subalgebra generated by the one-dimensional restricted 
subalgebras of L. By Proposition 6.4, B is either abelian or almost abelian. If L �= B, 
then B is abelian by Proposition 6.5, and every xi /∈ B is p-nilpotent of order ni > 1 by 
Proposition 3.7.

To prove that [L, L] ⊆ 〈x1, . . . , xr〉p, it suffices to see that [xi, b] ∈ 〈xi〉p, for i = 1, . . . , r
and b ∈ B such that 〈b〉p is one-dimensional. Take such a b ∈ B. If b ∈ 〈xi〉p, then we 
are done. Otherwise, 〈xi〉p ∩ 〈b〉p = 0 is maximal in 〈b〉p = Fb, and then 〈xi〉p must be 
maximal in 〈xi, b〉p. Write w = adr−1(xi)(b) �= 0, where r is such that adr(xi)(b) = 0. 
We have the following chain of inclusions

〈xi〉p ⊆ 〈xi, w〉p � 〈xi, b〉p.

Then, w ∈ 〈xi〉p. Assume now that adr−k(xi)(b) ∈ 〈xi〉p for some k > 1, and set 
w′ = adr−k−1(xi)(b). Again, it is clear that

〈xi〉p ⊆ 〈xi, w
′〉p ⊆ 〈xi, b〉p,

where one inclusion has to be an equality. By assumption, if b ∈ 〈xi, w′〉p = 〈xi〉p +
〈w′〉p, then [xi, b] ∈ 〈xi〉p. Therefore w′ ∈ 〈xi〉p, and by induction we have that [xi, b] ∈
〈xi〉p. �

Note that, although any abelian or almost abelian restricted Lie algebra is upper 
semimodular, the converse of Theorem 6.6 does not hold, as the following example shows.

Example 6.7. Let L = 〈x, y, z〉p with x[p]2 = y[p] = z[p] = 0 and [x, y] = z as the only non-
zero product. Then the restricted subalgebra B = Fx[p] ⊕ Fy ⊕ Fz generated by all the 
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one-dimensional restricted subalgebras is abelian. However, L is not upper semimodular, 
as 〈x〉p ∩ Fy = 0 is maximal in Fy, but 〈x〉p is not maximal in 〈x, y〉p = L.

Proposition 6.8. Let F be an algebraically closed field of characteristic p > 0, and let 
L be an upper semimodular restricted Lie algebra over F . Then, L is almost abelian or 
nilpotent.

Proof. Assume that L is not almost abelian. Let T be a torus of L. By [23, Chapter 2, 
Theorem 3.6], T has a basis consisting of toral elements and therefore T ⊆ B, in the 
notation of Theorem 6.6. Consequently, every semisimple element of L belongs to B, and 
the restricted subalgebra T formed by the semisimple elements of L is the unique maximal 
torus of L. Suppose, by contradiction, that L is not nilpotent. Consider the Cartan 
subalgebra H = CL(T) and the associated root space decomposition L = H+̇(

∑
α∈Φ Lα). 

Then there exists α ∈ Φ and a toral element t ∈ T such that α(t) �= 0. Let x ∈ Lα, 
x �= 0. By [23, Chapter 2, Corollary 4.3(1)], we have [t, x] = α(t)x and α(t) ∈ GF(p). 
Thus one has

(t + x)[p] = t + x[p] + α(t)p−1x = t + x[p] + x.

Moreover, by [23, Chapter 2, Corollary 4.3(3)] we have that x[p] ∈ H and so [t, x[p]] = 0. 
By induction, it follows that

(t + x)[p]
n

= t +
n∑

i=0
x[p]n (1)

for every n > 0. Now, by [23, Chapter 2, Theorem 3.4] we see that (t + x)[p]n ∈ T for 
some sufficiently large n, and so we deduce from (1) that x ∈ H, a contradiction. �
Corollary 6.9. Let F be an algebraically closed field of characteristic p > 0, and let L be 
an upper semimodular restricted Lie algebra over F . Then, L is also lower semimodular 
and a J-algebra.

Proof. It follows from Proposition 6.8 and Proposition 5.2. �
Proposition 6.10. Let F be an algebraically closed field of characteristic p > 0, and let L
be an upper semimodular restricted Lie algebra over F . Then, every restricted subalgebra 
of L is a restricted quasi-ideal.

Proof. By Proposition 6.8, L is either almost abelian or nilpotent. If L is almost abelian, 
then we are done, so suppose that it is nilpotent. Let x, y ∈ L. If x, y are semisimple, then 
we have that x, y ∈ B and [x, y] = 0. If x is semisimple and y is p-nilpotent, then x ∈ B

and we get that [x, y] ∈ 〈y〉p as in the proof of Theorem 6.6. If x, y are p-nilpotent, we 
claim that [x, y] ∈ 〈x〉p+〈y〉p. Indeed, let s be the sum of their orders of p-nilpotency. We 
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will proceed by induction on s. If s = 2, then x, y ∈ B and therefore 〈x, y〉p ⊆ 〈x〉p+〈y〉p. 
Fix now s > 2, and assume that x[p] �= 0. If x ∈ 〈x[p], y〉p, it holds that 〈x, y〉p = 〈x[p], y〉p
is contained in 〈x[p]〉p+〈y〉p by induction. Otherwise, 〈x[p]〉p = 〈x〉p∩〈x[p], y〉p is maximal 
in 〈x〉p, so 〈x[p], y〉p is maximal in 〈x, y〉p. Then 〈x[p], y〉p has codimension one in 〈x, y〉p
and 〈x, y〉p = 〈x〉p + 〈x[p], y〉p. But by induction, 〈x[p], y〉p ⊆ 〈x[p]〉p + 〈y〉p.

Now take x, y two arbitrary elements in L and consider their Jordan-Chevalley 
decompositions, x = xs + xn and y = ys + yn. The above arguments show that 
[x, y] ∈ 〈xn〉p + 〈yn〉p. Since x[p]r

s ∈ 〈x〉p and y[p]t
s ∈ 〈y〉p for r and t large enough 

and xs, ys are semisimple, we get that xn ∈ 〈x〉p and yn ∈ 〈y〉p. It follows that 
[x, y] ∈ 〈x〉p + 〈y〉p. �

The following simple lemma is all that is left to prove Theorem 6.1. We need an easy 
consideration first.

Let X be a restricted quasi-ideal of a restricted Lie algebra L. Then, for every re-
stricted subalgebra Y of L, it holds that X + Y = 〈X, Y 〉p is a restricted subalgebra of 
L.

Lemma 6.11. Let L be a restricted Lie algebra in which every restricted subalgebra is 
a restricted quasi-ideal. Then, L is modular, and consequently, upper semimodular and 
lower semimodular.

Proof. Let X, Y and Z be restricted subalgebras of L such that X ⊆ Z. Take z ∈
〈X, Y 〉p ∩ Z = (X + Y ) ∩ Z, and write z = x + y for some x ∈ X, y ∈ Y . Then 
x ∈ Z, yielding that y ∈ Y ∩ Z. Therefore, z ∈ X + (Y ∩ Z) = 〈X, Y ∩ Z〉p. Then, L is 
modular. �

It is now a simple matter to prove the main result of this section:
Proof of Theorem 6.1. It follows from the combination of Proposition 6.8, Proposi-

tion 6.10, Proposition 4.3 and Lemma 6.11. �
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