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ABSTRACT This paper proposes an optimal sensor formation strategy for range-based underwater
localization of a team of vehicles. The problem is addressed by considering sensor deployment area
constraints typical of realistic and complex scenarios so that a mission-compliant optimal sensor formation is
derived. Communication constraints, safety requirements, maximal platform speed limitations, and physical
constraints imposed by the mission are explicitly incorporated into the estimation framework. The resulting
problem is formulated as an unconstrained optimization problem that allows the use of global optimization
tools that can numerically construct optimal placements. The approach is also extended to a more realistic
scenario, in which the positions of the targets are known with some degree of uncertainty. Extensive
simulations corroborate the effectiveness of the proposed strategy for different configurations involving an
arbitrary number of sensors and targets. This confirmed its potential use as a pre-planning tool for realistic
and practical mission scenarios.

INDEX TERMS Optimal sensor placement, range-based localization, sensor network, target tracking.

I. INTRODUCTION
During the last few decades, there has been impressive thrust
for the development of autonomous marine devices such
as Unmanned Surface vessels (USVs), Autonomous Surface
Vehicles (ASVs), and Autonomous Underwater Vehicles
(AUVs). Motivated by their impact on an increasing number
of applications, relatively low costs, and the replacement of
human operators in hazardous conditions, both underwater
and surface vehicles have become key elements for the
exploration and exploitation of marine resources.

Typical missions include, but are not limited to, ocean
exploration, bathymetric data collection, geophysical and
geotechnical surveying, ocean cable inspection, earthquake
prediction, and harbor patrolling. Moreover, it is becoming
increasingly common to design missions by exploiting a team
of autonomous underwater vehicles working cooperatively
[1]. This choice allows us to reach mission goals that are not
possible when using a single vehicle [2], [3].
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Regardless of the specific application, mission success
is strongly based on the capability of a vehicle to localize
itself and navigate with the required accuracy. In the
harsh operating conditions of the underwater environment,
navigation is a challenging research field because of the
impossibility of relying on radio-based communications and
radio-based localization (GPS - Global Positioning System).

Conventional methods for localization and navigation
of AUVs rely on high-resolution (and expensive) Inertial
Navigation Systems (INS) integrated with Doppler Velocity
Log (DVL) sensors and/or with frequent surfacing of AUVs
for GPS fix [4].

Alternative approaches make use of acoustic devices that,
through the measurement of the time-of-flight of acoustic
signals, allow for estimating the ranges from AUVs to
receiving nodes positioned at known locations. Typical
underwater acoustic positioning systems include three main
categories, long baseline (LBL), short baseline (SBL),
and ultra-short baseline (USBL), based on the distance
between the hydrophones that receive the signals emitted
by the AUV. Though effective, all these approaches have
the drawback of high costs, the necessity to stop AUV
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operations to go for GPS feed, or the limitation of the area of
interest.

Recently, a novel approach to underwater localization
has emerged: cooperative localization [5]. In this setup,
a few autonomous (surface or underwater) vehicles, called
sensors (or buoy vehicles/beacon vehicles), lie on the water
surface or resurface frequently for GPS signals so that their
exact positions are assumed to be known. Other underwater
vehicles, called targets, accurately localize themselves by
exploiting the relative range and/or bearing measurements
from referenced sensors. Range and/or bearing information
can be retrieved from data of different natures, such as the
Received Signal Strength (RSS), Time Difference of Arrival
(TDOA), Time of Arrival (TOA), or Angle of Arrival (AOA)
of signals sent between targets and sensors [6], [7].

Regardless of the nature of the information, the geometry
between the sensors and targets strongly affects the per-
formance of the localization system. Indeed, on one hand,
acoustic positioning systems require accurate knowledge of
sensor locations, since errors in these positions induce errors
in the estimation of the target positions. On the other hand,
an appropriate positioning of the sensors allows accurate
localization of the targets. Hence, the sensor formation plays
a crucial role in the performance of such localization systems.
Therefore, special attention has been devoted to the optimal
positioning of the sensors to improve the accuracy of the
target positioning system, and in recent years, it has become
a significant research field.

In this paper, we focus on a cooperative localization
system based on range-only measurements between sensors
and targets. The objective is to determine the optimal
geometric configuration of a sensor network that maximizes
the range-related information available for underwater target
positioning in real and more complex mission scenarios.

A. RELATED WORKS
Here we describe the most significant literature related to
sensor placement for cooperative localization. One of the
first results goes back to the work in [8], where the authors
addressed the problem of finding sensor arrangements to
estimate a source position more accurately from the received
sensor signals. A simple method, based on the minimization
of the Cramer-Rao lower bound (CRLB) variance, was
developed for optimally placing sensors subject to the
constraint of aligned sensors.

An interesting methodological study in the area of optimal
sensor placement for ground robots has been presented by
Martinez and Bullo in [9]. The work focused on optimal
sensor placement for mobile sensor networks in single
target-tracking applications. They show that in an optimal
configuration, the sensors are uniformly placed in a circular
fashion around the target, and propose a motion coordination
strategy to steer the mobile sensor network to the optimal
deployment. This result for range-based localization was also
analytically demonstrated in [10]. The authors show that for
a number of sensors greater than three, the best solution is

obtained by arranging the sensors uniformly with respect
to the target, that is, with neighboring sensors separated by
equal angle increments. If the number of sensors is two,
the optimal sensor-target geometry is unique and occurs
when the angle subtended at the target is equal to ninety
degrees. The optimal sensor-target geometries for time-of-
arrival-based and bearing-only localization are also identified
and studied in this work.

More recently, the problem of optimal sensor positioning
for cooperative range-based localization has been explicitly
addressed in underwater environments. A milestone contri-
bution is represented by the works in [11], [12], and [13] by
Moreno-Salinas et al.

In [11] the problem of optimal sensor placement for
multiple target positioning with range-only measurements in
an unconstrained 2-D scenario is studied. First, the authors
addressed the problem of single-target positioning. They
derived the same optimal solutions for sensor placement
given in the above-mentioned references [9], [10] using a
different methodology. They also defined, in a rigorous man-
ner, the optimality conditions that the sensor formation must
satisfy to minimize the error in the estimation of the target
position. The problem is then extended to a multiple-target
positioning scenario. The two-target positioning problem
is solved analytically and numerically, using the tools of
estimation theory, by minimizing a properly defined object
function based on the Fisher Information Matrices associated
with each of the targets. The problem of localizing an
arbitrary number of targets is complex and cannot always be
solved analytically. For the cases where the objective function
exhibits convexity in the search domain, convex optimization
tools are used to determine the optimal sensor configurations.

In [12] the problem of single-target positioning is
addressed in a 3-D scenario. The special case of an
underwater target localized by an (ocean) surface sensor
network is studied, leading to a 3-D scenario where the
sensor array is placed on a plane (2-D). A solution is also
provided for the particular case in which the target depth
is known, avoiding the need to estimate it through the
sensor array. In [13] the analysis of the 3-D scenario is
extended to the multi-target positioning case. It is shown
that for a scenario with three sensors and two targets, the
objective function based on the Fisher Information Matrices
is convex, and thus, it is possible to define an optimal
sensor configuration that yields high positioning accuracy for
both targets simultaneously, using convex optimization tools.
However, if the problem becomes too complex, for example,
for more than two targets and three sensors, it is no longer
possible to prove the convexity of the objective function in the
domain space. Moreover, it may be necessary to trade-off the
localization accuracy of each target. As a result, non-convex
optimization techniques are required. The authors present a
potential solution based on a global numerical optimization
procedure known as ‘‘Simulated Annealing’’.

Given the relevance and challenging issues related to
the optimal sensor formation for cooperative localization of
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AUVs, in 2019, a review article [5] presented a comparative
survey of existing techniques. This work may be a reference
material for those who wish to deepen the topic at hand. The
main challenges identified in this review are related to the fact
that, in real applications, sensors cannot be placed anywhere,
but the sensor deployment area is subject to constraints
such as geographic limitations, communication problems
between sensor pairs, and safety concerns. Moreover, the
rangemeasurements between sensors and targets are acquired
using acoustic devices; therefore, they are affected by
measurement noise, which depends on multiple factors.
In realistic scenarios, it is (at least) distance-dependent.
Nevertheless, there are only a few works that consider a
distance-dependent measurement noise, most of the research,
for example, [9], [11] still assume a zeromeanGaussian noise
with constant covariance. Furthermore, computational effort
is another crucial issue. Indeed, in the complex scenario of
multi-target positioning, the optimal sensor formation must
be computed simultaneously for all targets, leading to an
increase in computational complexity and time.

Finally, one of the most important challenges is that
none of the proposed methods have been experimentally
validated in a real environment. Thus, there is a strong need
for experimental verification to improve the methodological
methods by addressing the shortcomings that emerge during
experiments. Actually, the most recent research activi-
ties [14], [15], [16], [17] are moving in these directions. The
work in [14] deals with the problem of optimal positioning
of sensors on the sea surface for the localization of multiple
underwater targets that operate at a constant and known
depth; thus, it is similar to that addressed in [13]. The
major difference with respect to [13] is related to the
characteristics of the measurement noise, which is assumed
to be distance-dependent rather than zero-mean Gaussian
noise with constant covariance. Given the complexity of the
scenario, the problem is solved using a numerical global
optimization algorithm based on the annealing idea.

In [15], the authors consider the problem of optimal sensor
positioning under deployment area constraints. First, they
analyzed the case in which there are two sensors that can
only be arranged within a circular area. Then, the results are
extended to a larger number of sensors in a region of arbitrary
shape.

Also in the work [16], the authors consider the problem
of optimal sensor placement (based on the time difference
of the arrival measurement) with some communication
constraints. They assumed that sensors can communicate
with a reference sensor only when the distance between the
sensor and reference is less than a given constant value.
They theoretically analyze the optimal sensor-source (target)
geometry with an arbitrary number of sensors in two cases:
when the source (target) is inside and outside the sensor
placement area.

The paper [17] analyzes the optimal positioning of
sensors for the simultaneous localization of two targets on
the two-dimensional plane exploiting time-of-arrival (TOA)

measurements. The scenario under investigation has a total of
n + 2m sensors, where each target has m sensors associated
with only that target, while n sensors, or shared sensors,
collect data from both targets. Performances are evaluated
through the CRLB trace. The authors [17] show that optimal
sensor placement can occur when the shared sensors are
located in the midline between the two targets.

Some communication and safety constraints are consid-
ered in [18] for a similar single-target localization problem
based on the Angle Of Arrival. The considered scenario
takes into account two constraints: 1) the sensors and the
target placed within a circular constrained region; 2) the
relative distance between the sensors and the target is
greater than the minimum safe distance. The optimal sensor
formation problem is tackled as a constrained optimization
problem. Tomake it mathematically solvable and to reduce its
complexity, equivalent and easier constraints are established
using the introduced maximum feasible angle and optimal
separation angle. The solution is analyzed explicitly for only
two and three sensors. However, as the number of sensors
increases, the problem becomes analytically complex and
difficult to be solved.

The work in [19] represents the first contribution that
considers a relatively complex scenario by employing a
range-dependent model of measurement noise and by taking
into account the performance metrics (to evaluate the
localization performance) of the entire planned trajectory
of the target. Indeed, the authors explicitly addressed the
problem of optimum sensor placement in a plane for the
localization of an underwater vehicle moving in 3D along
a preplanned trajectory. To solve the problem a genetic
algorithm is employed to maximize a proper objective
function. This objective function is based on the arithmetic
mean along the vehicle’s trajectory of the largest eigenvalue
of the inverse of the Fisher information matrix. In addition,
a multi-objective problem is considered, in which pairs of
metrics based on the Fisher information matrix are analyzed.

At this point, it is worth highlighting that while there is a
quite extensive literature on the subject, there is still work
to be done to bridge such theoretical approaches and rec-
ommendations with practical implementation for real-world
applications. Indeed, there has not been any experimental
verification of any of the proposed methods yet. Integrating
mission-specific considerations into the formulation of the
problem represents a step towards facilitating experimental
verification of proposed methods. The existing methods do
not take simultaneously into account mission-specific con-
siderations such as the limit on the maximal feasible velocity
of the vehicles along the planned trajectory, the limits on the
safety distance between vehicles, or the measuring distance.
Such aspects represent a key point that makes the problem
more complex and are essential for experimental verification.

B. SCOPE AND CONTRIBUTIONS
Motivated by the challenging issues raised in this field,
the present work addresses the problem of optimal sensor
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formation by considering several constraints involved in real
multiple-vehicle scenarios of practical interest.

The contributions are twofold:
i) We modified the existing methods by explicitly inte-

grating mission constraints in the problem formulation.
Mission-related considerations such as vehicles max-
imal velocity constraints, safety constraints, or the
measuring distance, make the problem complex when
the constraints are considered simultaneously, especially
when the number of vehicles (sensors and targets)
increases. Our main contribution is on adapting the
existing optimal sensor placement solutions to practical
scenarios in real-world applications with the aim of
facilitating an experimental validation of proposed
methods.

ii) Our ultimate contribution aims at incorporating these
mission constraints into the general optimal sensor
formation problem in a simple way, leaving the problem
(numerically) tractable and maintaining the ability to
compute solutions efficiently. Indeed, the resulting
constrained optimization problem is recast into an
unconstrained optimization problem, simplifying the
structure and allowing the use of global optimization
tools for the solution.

The above framework represents a challenging and essential
scenario for direct experimental verification. This analysis
represents a preliminary step towards experimental valida-
tions of optimal sensor formation algorithms for range-based
underwater localization of AUVs in a realistic and complex
mission environment.

C. ORGANIZATION OF THE ARTICLE
The rest of the paper is organized as follows. Section II
presents the sensor formation problem and the addressed
scenario (common to most marine missions). In Section III,
the optimal sensor formation problem is formulated and
the FIM for a generic network with n sensors and m
targets is presented in the assumptions under investigation.
Section IV is dedicated to the modeling of the considered
constraints imposed by the mission. The objective function to
be maximized to solve the optimal sensor formation problem
under the considered constraints is presented in Section V.
The numerical solution of this optimization problem is
discussed in Section VI. Section VII describes and analyzes
the numerical simulations of the proposed algorithm. The
more realistic scenario where the positions of the targets are
known with some uncertainty is addressed in Section VIII.
Finally, concluding remarks are summarized in Section IX.

II. MOTIVATING SCENARIO
The problem at hand is addressed with the goal of offering a
solution that may be used as a pre-planning tool in realistic
and practical mission scenarios.

Consider an arbitrary number of sensors, referenced
‘‘buoys vehicles’’ in the following, namely vehicles placed on
the sea surface that have access to a georeferenced system,

FIGURE 1. Types of formation: a) ‘‘alongside’’, b) ‘‘single line’’, c) ‘‘double
line’’, d) ‘‘double alongside’’ and e) ‘‘triangular’’.

FIGURE 2. Counterclockwise and clockwise directions along a racecourse
path with targets in alongside formation.

and an arbitrary number of targets, namely autonomous
underwater vehicles typically operating at a certain depth in
formation and occasionally resurfacing for mission purposes.

For example, common formations of practical interest are
‘‘alongside’’, ‘‘single line’’, ‘‘double alongside’’, ‘‘double
line’’ and ‘‘triangular’’(as illustrated in Fig. 1).

We assume that the target vehicles move in formation
following preassigned paths, such as circular path, or race-
course path, with a specific direction, i.e. counterclockwise
or clockwise (see for example figure 2) as in most marine
applications.

Indeed, we are interested in finding the optimal feasible
position of the sensors with respect to the specific formation
of the targets so that, if all vehicles, sensors and targets,
maintain the formation, the localization system achieves the
best performance (figure 3).

In realistic applications, sensors cannot be placed any-
where over the area of interest. The feasible sensor
deployment is subjected to restrictions due to communication
or measuring constraints, safety requirements, maximal
platform speed limitation, or physical constraints imposed by
the mission. Hence, the optimal positioning of the sensors
must be carried out considering a proper constraints set.

A minimum distance for safety must be maintained
between the vehicles to avoid accidents or possible collisions.
Even if the vehicles are immersed in the sea, they may need
to rise to the surface and, if there is no minimum distance
between targets and sensors, a collision can occur.

In addition, sensors cannot be positioned too far from
the target vehicles because range measurements are effective
only within a certain distance in the water.
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FIGURE 3. Example of optimal sensors configuration with targets moving
in single line formation along a racecourse path.

Finally, during the mission both the targets and the sensors
are in motion. Hence, it is important to verify that the
formation during the mission is compatible with the physical
limits of the vehicles (sensors and targets), i.e. with their
maximum speeds.

III. PROBLEM FORMULATION
In this Section, we state the optimal sensor placement
problem for range-based multiple target positioning in a 3D
scenario. Consider an inertial reference system {I } with axes
{xI }, {yI } and {zI }, and the general case with m targets and n
sensors. Consider a Cartesian coordinate space centered in the
center Cm of the nominal target formation and with x−y axes
along the horizontal and vertical direction of the formation.
We denote this moving local reference frame as {O} in the
following. The depth of the target vehicles is assumed to
be known; indeed, in many practical applications, the target
depth can be measured directly with a depth sensor, usually
characterized by small error and low cost; we also assume
that the sensors at the surface have access to this information.

The position for the j− th target in {O} is denoted by qj =
[qjx , qjy, qjz] with j = 1, 2, . . . ,m and the position for the
i − th sensor in {O} is denoted by pi = [pix , piy, piz] with
i = 1, 2, . . . , n. Denote by q ∈ Rm×3 the matrix of targets
positions and by p ∈ Rn×3 the matrix of sensors positions as
follows:

q =


q1x q1y q1z
q2x q2y q2z
. . . . . . . . . . . . . . . .

qmx qmy qmz

 (1)

p =


p1x p1y p1z
p2x p2y p2z
. . . . . . . . . . . . . . .

pnx pny pnz

 . (2)

An example of the scenario under investigation is sketched
in figure 4.

FIGURE 4. Multi-targets cooperative localization model in 3D with m=3
targets and n=3 sensors.

Let rij denote the euclidean distance between the i − th
sensor and the j− th target, namely:

rij =
√
(pix − qjx)2 + (piy − qjy)2 + (piz − qjz)2, (3)

and the related distance matrix r ∈ Rn×m defined as:

r =


r11 r12 r13 . . . r1m
r21 r22 r23 . . . r2m
. . . . . . . . . . . . . . . . . . . . . . . . . .

rn1 rn2 rn3 . . . rnm

 . (4)

In the following, vector rj denotes the vector of the actual
distance between the j − th target and each of the n sensors
(Eq. 4):

rj =


r1j
r2j
. .

rnj

 with j = 1, 2, . . . ,m. (5)

We assume that range measurements rij are affected by
additive noise wij. The measurement error vector wj =
[w1j,w2j, . . . ,wnj]T j = 1, 2, . . . ,m is made by the j −
th target and all sensors. All noise sources are assumed
to be independent and are zero mean Gaussian processes,
N (0n, 6), with 6 = diag(σ1, . . . , σn). For the sake of
simplicity, all sensors are assumed to have the same variance
σ 2
i = σ 2 for i = 1, 2, . . . , n, so that6 = σ 2

·In. The measure
captured by the i− th sensor from the j− th target is:

zij = rij + wij (6)

with i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Therefore,
we define the matrix of measurements z ∈ Rn×m

z =


z11 z12 z13 . . . z1m
z21 z22 z23 . . . z2m
. . . . . . . . . . . . . . . . .

zn1 zn2 zn3 . . . znm

 . (7)

The cooperative localization measurement equation for the
j− th target is given as follows:

zj =


z1j
z2j
. .

znj

 ∼ N (rj, 6) with j = 1, 2, . . . ,m. (8)

83232 VOLUME 12, 2024



D. De Palma et al.: Mission-Compliant Optimal Sensor Formation Positioning

Since the noise is assumed to be a Gaussian random variable,
also the measurement is assumed to be a Gaussian random
variable with mean rj and variance 6.
Following what is commonly reported in the literatures [9]

and [20], the optimal sensor formation is evaluated by
examining the so-called Fisher Information Matrix (FIM).
The FIM provides a measure of the amount of information
provided by the measurements about an estimation pro-
cess [21]. The FIM related to the problem of range-based
positioning of the target qj can be computed from the
likelihood function L(qj) given by:

L(qj) =
1

(2π )
n
2 |6|

1
2

e−
1
2 (zj−rj)

T6−1(zj−rj), (9)

so that, as shown in [13], the Fisher’s information matrix of
the j− th target results in:

FIM (qj) =
1
σ 2

·

n∑
i=1

 (pix−qjx )2

r2ij

(pix−qjx )(piy−qjy)
r2ij

(pix−qjx )(piy−qjy)
r2ij

(piy−qjy)2

r2ij

 , (10)

where the depth qjz of the target vehicles is assumed to be
known for j = 1, . . . ,m, and the plane containing the sensors
is with the sea surface, thus:

piz = 0 for i = 1, . . . , n.

For ease of presentation, we denote the contribution
associated with the i− th sensor and the j− th target as:

FIMij =

 (pix−qjx )2

r2ij

(pix−qjx )(piy−qjy)
r2ij

(pix−qjx )(piy−qjy)
r2ij

(piy−qjy)2

r2ij

 , (11)

so, eq. (10) can be rewritten in compact form as:

FIM (qj) =
1
σ 2 ·

n∑
i=1

FIMij. (12)

The determinant of the FIM can be used as an indicator of the
performance that is achievable with a given sensor formation,
known as ‘‘D-optimality’’ criterion. It varies inversely with
the volume of the uncertainty ellipsoid for the target estimate,
so we are interested in maximizing the FIM determinant.
Most of the previous research in the literatures [11], [13],
and [14] addresses this optimal sensor placement problem
by maximizing (by proper choice of the sensor positions)
a combination of the logarithms of the determinants of the
Fisher Information Matrices corresponding to each of the
targets, namely FIM (qj) in eq. (12). Therefore, the ‘‘objective
function’’ F to be maximized is defined as:

F =
m∑
j=1

ln(|FIM (qj)|) (13)

IV. CONSTRAINTS SETUP
In real application, the sensors area is subjected to restrictions
due to several constraints imposed by the mission. The most
common and often unavoidable constraints can be grouped
in:
• ‘‘communication or measuring constraints’’: they are
determined by the sensors’ maximum sensing range.
Each sensor is characterized by a maximum distance
dmax in which it is able to capture the acoustic signal
from a target. This constraint corresponds to the distance
that enables communication between vehicles, and
consequently allows to retrieve range measurements
from the exchanged acoustic signals.

• ‘‘safety distance’’: a minimum safety distance dmin
should be maintained between targets and sensors to
prevent collisions or accidents;

• ‘‘maximal speed limitation’’: the motion of the tar-
get/sensor in formation along the assigned path should
not require a speed larger than the maximal vehicles
limit. The value of this limit depends also on the type of
targets’ formation, the direction of travel and the radius
of curvature of the specific path (circular/racecourse) to
follow.

Summarizing, we consider the following constraints set:{
rij ≤ dmax
rij ≥ dmin{
vi ≤ vsmax
vj ≤ vvmax

, (14)

being vi and vj the speed of the sensors and targets vehicles.
The search for the optimal formation of the sensors

is carried out under these constraints. Thus, the resulting
problem is a constrained optimization problem that aims
at maximizing the determinant of the FIM of each target
within the above constraints. This optimization problem is
not convex due to the non-convexity of the determinant of
the FIM for an arbitrary number of sensors and targets and
the non-convexity of the constraints set. Therefore finding the
global maximum is a challenging task.

Note that global optimizers, such as, simulated annealing
or genetic algorithms, are mostly suited to unconstrained
optimization problems. In order to fit our problem into the
framework of global optimizers, we recast the problem into
an unconstrained optimization problem, where all constraints
are incorporated into a properly shaped objective function.

The proposed strategy consists of introducing one term for
each constraint into the FIMij expression in Eq. (11) that,
in the case of constraint violation, cancels that sensor/target
contribution. In the following, we treat each constraint
separetely.

A. COMMUNICATION OR MEASURING CONSTRAINT
The constraint related to the communication or measuring
condition implies that the distance rij between a sensor and
a target must not exceed the maximum distance dmax which
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FIGURE 5. Example of sigmoid term sdmax (rij ) associated to the
communication/measuring constraint for dmax = 1000 m.

is assumed to be constant and known a priori, namely:

rij ≤ dmax . (15)

This constraint is managed by adding a sigmoid-shaped
multiplicative term sdmax (rij) in the FIM in Eq.(12):

FIMc(qj) =
1
σ 2

n∑
i=1

sdmax (rij)FIMij. (16)

The rationale behind this term sdmax (rij) is to neglect the
contribution to the FIM of each pair sensor/target if the
relative distance rij exceeds a maximum threshold dmax .
Indeed, if rij > dmax the corresponding FIM contribution
vanishes due to the impossibility to acquire the range
measurement.

The sigmoid function is a continuous, monotonically
increasing function with a characteristic ‘S’-like curve, and
possesses several interesting properties that make it a suitable
choice in several contexts, e.g. the ‘activation function’ for
nodes in artificial neural networks [22]. An interesting feature
is that it is differentiable (a required feature in optimization
algorithms), and its derivative is simple and easy to compute.

The sigmoid term introduced in the FIM to incorporate the
constraint has the following expression:

sdmax (rij) =
1

1+ ea(rij−b)
, (17)

with i = 1, 2, . . . , n and j = 1, 2, . . . ,m, where parameters
a, b ∈ R+ are function of the value dmax and determine the
steepness, starting and ending point of the ‘S’-like curve.
Its output has a smooth transition from values just below
1 to values above 0. In Figure 5 there is an example of
sigmoid term for dmax = 1000 m. It shows how the output
of the sigmoid function, that in this specific case represents
the sensor/target communication probability, decreases as
rij increases. In the example, it is assumed that a sensor
is able to capture the acoustic signal within a distance of
1000 m, and that the decrease of the sigmoid function begins
at rij = 980 m, and reaches the null value at rij = 999 m.
So, it is assumed that when rij = 980 m, the communication
probability is 0.99 while, when rij = 999 m, the probability
of communication is 0.01. The corresponding parameters a
and b are: b = 989.5, a = 0.484.

FIGURE 6. Sigmoid term sdmin
(rij ) associated to the safety constraint.

B. SAFETY CONSTRAINT
The safety constraint requires that the distance between a
sensor and a target must be larger than a given value dmin to
prevent any collision:

rij ≥ dmin. (18)

Also in this case, this constraint is managed by inserting a
multiplicative term sdmin(rij) in the FIM in eq. (12) based on
a sigmoid function:

FIMc′ (qj) =
1
σ 2

n∑
i=1

sdmin(rij)FIMij (19)

The sigmoid term introduced in the FIM to incorporate the
constraint has the following expression:

sdmin(rij) =
1

1+ e−f (rij−g)
(20)

with i = 1, 2, . . . , n and j = 1, 2, . . . ,m, where parameters
f , g ∈ R+ are function of the value dmin and determine the
steepness, starting and ending point of the transition from
values near to 0 to those near to 1. Fig. 6 shows the graph
of the sigmoid function sdmin(rij) for different values of the
parameter f .

C. MAXIMAL SPEED CONSTRAINT
The last class of constraint is related to the maximal
speed limitation of the vehicles. It is instrumental to keep
the vehicles speed within their maximum limit along the
pre-planned path. To this effect, it is worth noting that,
as highlighted in Section II, the sensors and target vehicles
are assumed to travel in formation along pre-planned circular
or racecourse paths with a specific direction (clockwise or
counterclockwise). Fig. 7 shows a view from the top of a
scenario withm = 4 vehicles in horizontal formation moving
along a racecourse path with a counterclockwise direction.
Each target follows a circular path with center atCc in a plane
parallel to the sea surface but at a given depth dz. The sensor
formation follows analogous paths in the plane z = 0 with
center at C ′c. Let Cm be the center of the target formation,
and let Rc be its radius of curvature in the circular sections.
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FIGURE 7. Sketch of m = 4 vehicles in horizontal formation moving along a racecourse path with a counterclockwise direction.
Feasible sensor deployment area along the path is highlighted in orange.

FIGURE 8. Feasible region on a straight path section with a clockwise
direction of travel with an alongside formation.

Denoting by Omax the distance between Cm and the position
of the outermost vehicle in formation, the radius of curvature
of the outermost vehicle is given by:

Rvmax = Rc + Omax (21)

Consider now that vehicles following the circular section
with a larger radius of curvature move with a higher linear
velocity. Indeed, in order to maintain the formation, the
angular velocity ωN along the circular section of a path must
be the same for both target vehicles and sensors, and given
the maximal speed limitation for both targets and sensors,
we can derive the maximum radius of curvature (called Rsmax

FIGURE 9. Feasible region on a straight section of a path and clockwise
direction with single line formation.

in the following) that a sensor can have without exceeding
such a limit. In the most common case, the targets are high-
performance vehicles, while the sensors are low-performance
vehicles, so the maximum speed of the targets is expected
to be higher than that of the sensors (vvmax ≥ vsmax ). Let be
vvmax the speed of the outermost vehicle, the maximum ωN
admissible for the formation is:

ωNmax =
vvmax
Rvmax

, (22)
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and the maximum radius of curvature for the sensor
compatible with its speed limit is given by:

Rsmax =
vsmax
vvmax

· Rvmax (23)

Hence, sensors positioned outside the orange region in
Fig. 7, would follow a path with a radius of curvature greater
than Rsmax , thus violating its speed limit. As a consequence,
in the case of a counterclockwise direction of motion, sensors
are constrained to lie on the left side of the formation.

Moreover, should the vehicles also have a maximal
curvature limit due to physical constraints (ωs ≤ ωsmax ) of
the platform, this results in a minimum radius of curvature
Rmin = 1/ωsmax so as to avoid, for example, the vehicle
rotating on the spot.

The analysis for finding the optimal position of the sensors
is carried out considering the nominal system of targets and
sensors at a generic time instant when the path is straight
(figure 8). In order to derive the region of the feasible
positions of the sensors, it is necessary to take also into
account the paths of the targets and the sensors in the
circular sections (figure 7). In particular, in light of the above
considerations, we note how the feasible region for sensor
positions has a width equal to Dw = Rsmax − Rmin.

In the case of column formation (figure 9), all the
considerations made so far are still valid. In this case all target
vehicles travel on the same path and with the same speed.

In order to incorporate this constraint in the objective
function, we adopt a solution similar to the one used for
the communication constraint. We introduce a term in the
FIM expression having the form of an appropriate sigmoid
function.

Consider, without loss of generality, the sketch in figure 9.
LetDm be themidpoint of the two external pointsDx1 andDx2
of the feasible region represented in the figure. Let p′ix denote
the projection of the position of the generic i− th sensor pi on
the x − axis, and let Dmax be the maximum distance between
Dm and for i = 1, . . . , n, such that:

D2
max = (Dw/2)2.

Finally, define:

D2
i = (p′ix − Dm)

2, (24)

so that the maximal speed constraint can be written as:

D2
i ≤ D

2
max (25)

This allows translating the speed constraint into a geometric
constraint on the sensor position. Again, the constraint is
managed by adding amultiplicative term sD2

max
(Di) in the FIM

in eq. (12) having the form of a sigmoid function:

FIMc′′ (qj) =
1
σ 2

n∑
i=1

sD2
max

(Di)FIMij (26)

The parametric sigmoid term that allows to incorporate this
latter constraint can be written as follows:

sD2
max

(Di) =
1

1+ eh(D
2
i −l)

(27)

with i = 1, 2, . . . , n, where the parameters h, l ∈
R+ are function of D2

max and determine the steep-
ness, starting and ending point of the curve, and they
can be tuned as previously described for the other
constraints.

V. OBJECTIVE FUNCTION IN PRESENCE OF CONSTRAINTS
In this Section, we are now ready to define the objective
function to solve the optimal sensor formation problem for
multiple target positioning under the constraints discussed in
the previous section.

As a first step, considering the j − th target, we introduce
in Eq. (12) the sigmoid terms associated to the addressed
constraints, so as to obtain a properly weighted version of the
FIM of j− th target:

FIM (qj) =
1
σ 2

n∑
i=1

sdmax (rij) · sdmin (rij) · sD2
max

(Di)

·

 (pix−qjx )2

r2ij

(pix−qjx )(piy−qjy)
r2ij

(pix−qjx )(piy−qjy)
r2ij

(piy−qjy)2

r2ij

 , (28)

with i = 1, 2, . . . , n and j = 1, 2, . . . ,m. For the ease of
presentation, we use the following notations:

Aij =
(pix − qjx)

rij
, (29)

Bij =
(piy − qjy)

rij
, (30)

ςij = sdmax (rij) · sdmin(rij) · sD2
max

(Di), (31)

with i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Thus, eq. (28) is
rewritten in compact form as:

FIM (qj) =
1
σ 2

n∑
i=1

ςij ·

[
(Aij)2 (AijBij)
(AijBij) (Bij)2

]
. (32)

The next step is to calculate the determinant of the matrix:

|FIM (qj)| =
1
σ 4

[(
n∑
i=1

ςij · A2ij

)
·

(
n∑
i=1

ςij · B2ij

)
−

−

(
n∑
i=1

ςij · Aij · Bij

)2
 . (33)

Finally, we define the final objective function F as:

F =
m∑
j=1

ln(|FIM (qj)|). (34)
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so that, to obtain the optimal sensor configuration p for
multiple target positioning in presence of all the constraints,
we maximize the cost function in eq. (34):

p∗ = argmax
p

(ln(|FIM (q1)|)+ . . .+ ln(|FIM (qm)|))

= argmax
p
F . (35)

Thus, the original problem is now recast into an uncon-
strained optimization problem, that it is now suited to
be solved by resorting to the tools of numerical global
optimization.

Before moving forward, we thoroughly analyze the
objective function in order to identify the maximum accuracy
that can be obtained in the localization of a single target.

In a general case, the solution of Eq. (35) may not be
computable, however it is a trade-off among the maximum
theoretical values obtained when each target is taken into
account separately. Thus, in the following, we derive the
maximum theoretical determinant of the FIM for the j − th
target, denoted as |FIMMAX (qj)|, which has the role of a
helpful metric to evaluate the performance of the obtained
trade-off solutions.

Let djz and dmax be, resp., the value of the depth of the
j − th target, and the maximum possible distance between
target and sensor, and consider the circumference centered
on the projection of the target on the plane where the sensors
are located (z = 0) having radius:

rmax =
√
d2max − d

2
jz. (36)

Exploiting the results in [12], it can be shown that the
maximum theoretical determinant of the FIM for the j − th
target is obtained when:

FIMMAX (qj) =
1
σ 2


n
2 ·

(
1−

d2jz
r2max

)
0

0 n
2 ·

(
1−

d2jz
r2max

)
 .

(37)

Therefore, the determinant of the FIMMAX (qj) is:

|FIMMAX (qj)| =
1
σ 4 ·

n2

4
·

(
1−

d2jz
r2max

)2

. (38)

The maximum theoretical value that the objective function in
eq. (13) could reach is:

FMAX =
m∑
j=1

ln(|FIMMAX (qj)|). (39)

If all targets move on the same plane (djz = dz):

|FIMMAX | =
1
σ 4 ·

n2

4
·

(
1−

d2z
r2max

)2

, (40)

FMAX = m · ln(|FIMMAX |). (41)

The values of the results expressed by the eq. (38 - 39)
are used in the following as a benchmark to evaluate the
performance of the results obtained in the presence of
constraints, since FMAX in eq. (39) takes into account only
the communication constraint.

VI. SOLUTION OF THE UNCONSTRAINED OPTIMIZATION
PROBLEM
In general, the objective function is non-convex and, for this
reason, we adopt the Simulated Annealing algorithm [23],
[24]. The advantage of this algorithm relies on the fact that
it avoids being trapped in possible local minima, and it is
able to reach the global optimal in a reduced computation
time. Additionally, once that a solution is found using the
Simulated Annealing algorithm, we refine the solution with
the execution of a gradient-based optimization algorithm.
In this way, we try to get as close as possible to the peak of
the objective function. The steps of the overall algorithm are
the following:

1) The positions of sensors pi are initialized randomly;
2) The global optimization algorithmSimulated annealing

is executed to obtain a first estimation of the optimal
position p;

3) A Gradient Descent algorithm is carried out to refine
the results obtained at point 2;

4) The feasibility of the sensors position obtained through
the Gradient Descent algorithm is finally directly
verified.

A first preliminary step is to define a reasonable range for
the initial sensor positions. Figure 10 shows the domain of
interest (denotedDOMAIN in the following). It is a rectangle
with base Dw and height DH , the base being equal to:

Dw = Rsmax − Rmin,

while the height depends on the mission and the path type.
In the case under examination, we choose a value equal to:

DH = 2 · Rsmax .

Defining the rectangular domain by the intervals along x and
y, namely:

DOMAINx(x-axis) : [Dx1,Dx2],

DOMAINy(y-axis) : [−Dy,Dy].

For x-axis, if the direction of travel is clockwise we have:{
Dx1 = Rmax − Rsmax − Omax
Dx2 = Rc − Rmin

, (42)

and, if the direction of travel is counterclockwise we have:{
Dx1 = −(Rc − Rmin)
Dx2 = −(Rmax − Rsmax − Omax)

(43)

In both cases, for the y-axis, we have:

Dy = Rs_max (44)
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FIGURE 10. Domain in the straight section of a path and clockwise
direction with vertical formation.

The pseudo-code of the first step is shown in the
Algorithm 1, where the procedure GenerateRandom gener-
ates random numbers in the specified range with uniform
distribution.

Algorithm 1 GenerateRandomGuess
Require: n, Rc, Rs_max , Omax , Rmin, direction
Ensure: p, DOMAIN
Dx1← Rmax − Rs_max − Omax
Dx2← Rc − Rmin
Dy← Rs_max
if direction is clockwise then

DOMAINx ← [Dx1,Dx2]
else

DOMAINx ← [−Dx2,−Dx1]
end if
DOMAINy← [−Dy,Dy]
for i← 1, 2, . . . , n do

pix ← GenerateRandom(DOMAINx)
piy← GenerateRandom(DOMAINy)
piz← 0

end for

A. SIMULATION ANNEALING
The second step is the execution of the global optimization
algorithm Simulated Annealing (SA) to obtain a rough
estimation of the optimal position p. It uses randomness as
part of the search process, and this makes the algorithm
appropriate for nonlinear objective functions, especially
when a desired global extremum is hidden among local

extrema [25]. The core of the method of simulated annealing
is an analogy with thermodynamics, specifically with the way
that liquids freeze and crystallize, or metals cool and anneal.
At high temperatures, the molecules of a liquid move freely
with respect to one another. If the liquid is cooled slowly,
thermal mobility is lost [26]. The essence of the Simulated
Annealing is the following. Let be x a variable of interest and
f (x) an objective function. Start with an initial guess x, and
compute the current f (x). Then, x is perturbed randomly to
xc = x + 1x and the objective function at the new point is
calculated f (xc). If it is less/greater than the old value, the
point is updated x = xc. If, on the other hand, it is worse, it is
accepted with a certain probability P using the ‘‘Metropolis’’
criterion:

P = e−
∇f (x)
T , (45)

where

∇f (x) = f (xc)− f (x)

is the difference between the current and the previous cost
values, and the control parameter T represents the temper-
ature, starting with an initial value and updating according
to a cooling schedule, typically reducing it gradually over
time. The above acceptance probability allows the algorithm
to escape from local minima when the temperature is high.
The effect is that poor solutions have more chances of
being accepted early in the search and fewer chances of
being accepted later in the search. The intent is that high
temperatures in the early search help the algorithm locate
the basin for the global optimum, while low temperatures in
the late search help the algorithm refine the global optimum.
However, it is important to note that the performance of
simulated annealing heavily depends on the choice of the
cooling schedule, perturbation operator, and other parameters
specific to the problem domain.

There are several contributions where the multi-objective
target problem is resolved through Simulated Annealing,
some of them use Matlab optimization toolkit [13], and some
others [14] use a different implementation. Nevertheless, the
tools for SA used in literature, have some issues:
i. The Matlab’s toolkit used in [13] is generic and it is not

specialized for the particular problem at hand.
ii. The objective function proposed in [14] is similar to

eq. (34) that is the sum of the logarithms of the
FIM determinants. From a numerical point of view,
this cost function could not significantly account for
improvement or worsening since non-trivial worsening
produces a very small difference. Therefore, there could
be many poor updates, even if the temperature is very
low.

iii. In [14], the chosen new points depend on the temperature
because this allows us to consider an increasingly
smaller search region. However, some solutions may not
be evaluated as only certain areas of the domain are
inspected. This causes the invalidation of the random
component the Simulated Annealing is based on.
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For these reasons, we implemented a properly tuned
version of Simulated Annealing. To address the issue at
point ii), the algorithm was executed considering a more
numerically suitable objective function., as follows:

F ′ =
m∑
j=1

|FIM (qj)|. (46)

It is the sum of the determinants of the FIM of the various
targets and it produces more meaningful information when
calculating the ‘Metropolis’ criterion.
Another significant ad-hoc adjustment is that the temperature
is set low and constant for a certain number of initial
iterations to increase the probability of approaching the
optimal positioning. The new points are obtained by adding
to the best point found a certain perturbation generated
randomly, so that the current solution of the sensor i − th
denoted by pci results in:{

pcix = pix +1pix
pciy = piy +1piy

(47)

with 1pix and 1piy obtained as random values within
[lowerx , upperx] and [lowery, uppery], respectively, given by:

lowerx = 0
upperx = abs(Dx2 − Dx1)
lowery = 0
uppery = abs(2 · Dy)

(48)

If the numbers generated fall out of the domain (DOMAIN in
figure 10), they are inserted starting from the opposite side.
This is done by a recursive algorithm (algorithm 2) which
ensures that the sensor position is actually in the correct
region.

Algorithm 2 CheckBound
Require: pi, k , DOMAIN
Ensure: pi

▷ k is 0 if we check axis x, otherwise is 1 for y
▷ If it is out of range, it is reinserted in the opposite side

stop← DOMAINk [1]
start ← DOMAINk [0]
if pi[k] > stop then

diff ← abs(stop− pi[k])
pi[k]← start + diff

end if

Finally, the temperature is decreased by a parameter 1T
chosen to be small enough to ensure that the whole region is
explored. T is initialized multiplying Rsmax by a constant.

T = α · Rsmax .

The pseudo-code in Algorithm 3 makes explicit all the
changes and customization made in the algorithm.

B. GRADIENT DESCENT
The next step is to use the results obtained with the
‘‘Simulated annealing’’ algorithm as initial guess for a
‘‘Gradient descent’’ algorithm. In this case, it is expected to
be close to the optimal solution, and therefore the refinement
is made in small steps to reach the peak of the function as
closely as possible. Thus, the final solution is obtained using
the following iterative gradient optimization algorithm.

1) Start with the SA solution.
2) Calculate the gradient at the current solution of the

cost function F in eq. (34) with respect to the x − y
coordinate of sensors (the z coordinates being set to
z = 0), namely ∂F

∂pix
, ∂F

∂piy
, i = 1, 2, . . . , n.

3) Update the solution by taking a small step in the
direction of the gradient through the rule:

pt+1i = pti + λ ·
∂F(pt )

∂pti
(49)

with i = 1, 2, . . . , n, t = 0, 1, . . . the time step, and λ
the learning rate which controls the size of the updates.

4) Repeat points 2 and 3 until one of the following stop
criteria is met:
• Objective function in t + 1 step is less than the
objective function in the previous step t

• Maximum number of iterations is reached
• Step size is smaller than the tolerance (due to
scaling or a small gradient value).

The learning rate parameterλ is has an important role because
it scales the gradient and it controls the step size. For this
reason, it influences the performance of the algorithm and the
quality of the result obtained. It is not easy to find a good
value of λ a priori, but it is important to note the following
potential drawbacks:
• low learning rates make the gradient converge slowly
because the gradient has small updates.

• high learning rates make the gradient jump around the
local maximum, and therefore never reach the optimal
point.

For the problem at hand, the learning rate λ was set relatively
low in order to carry out small update steps. For the execution
of the gradient descent, the first derivatives of the cost
function F in Eq. (34) must be calculated.

C. FINAL REMARK
The pseudo-code of the whole proposed procedure to
derive the optimal sensor formation is reported in
Algorithm 4. The input parameters are: the position of the
targets q in the local reference frameO, the number of targets
m, the number of sensors n, the direction of travel of the path
direction, the radius of curvature of path Rc, the maximum
speed for the targets and sensors, i.e. vvmax and vsmax . The
output of the algorithm is the position of the sensors p in the
local reference frame O.

As a final remark, in order to evaluate the performance
of the proposed approach, we conducted an ablation study

VOLUME 12, 2024 83239



D. De Palma et al.: Mission-Compliant Optimal Sensor Formation Positioning

Algorithm 3 SimulatedAnnealing
Require: p, q, m, n, Tmin,α, a, b, f , g, h, l, DOMAIN
Ensure: p
T ← α · Rs_max
(lowerx , lowery)← 0
upperx ← abs(DOMAINx[1]− DOMAINx[0])
uppery← abs(DOMAINy[1]− DOMAINy[0])
Dmx ← (DOMAINx[0]+ DOMAINx[1])/2
fim_best ← CalculatedFIM (p, q,m, n,Dmx)

▷ Compute all |FIM (qj)| by applying eq. (33)
TOTAL_FIM ← SumFim(fim_best,m)

▷ Sum of all |FIM (qj)| eq. (46)
while T > Tmin do

for u← 1, 2, . . . ,mc do ▷ mc: number of iteration in
which the T is not decreased
for i← 1, 2, . . . , n do

Compute pcix and pciy using eq.(47)
▷ Perturbation of the best point

CheckBound(pci,DOMAIN , 0)
CheckBound(pci,DOMAIN , 1)
▷ Ensure that the point falls in the DOMAIN

end for
fimc← CalculatedFIM (pc, q,m, n,Dmx)
TOTAL_FIMc← SumFim(fimc,m)
accept ← false
if TOTAL_FIMc > TOTAL_FIM then

accept ← true
else

delta = |TOTAL_FIMc − TOTAL_FIM |
condition = exp(−delta/T )
if condition > rand() then

▷ Generate a random number ∈ [0, 1]
accept ← true

end if
end if
if accept ← true then

TOTAL_FIM ← TOTAL_FIMc
p← pc

end if
end for
T ← T −1T

end while
return p

by systematically removing certain steps to understand the
contribution of each component to the final optimal solution.
In the proposed approach, once that the final objective
function in eq. (34) is defined, the optimal solution is
obtained by resorting to the global optimization algorithm
Simulated annealing (SA) to find a close-to-optimal solution,
followed by a Gradient descent (GD) algorithm to refine the
solution. In particular, we carried out exhaustive experiments
in which we calculated the optimal solution by excluding
one of the two algorithms at a time. From this analysis,

we have confirmed that the optimal solution obtained with
only gradient descent can become trapped in local minima,
leading to solutions that are worse. On the other hand, the use
of the Simulated annealing alone leads to a close-to-optimal
solution that can be further refined. It is worth mentioning
that the computational time increases when both algorithms
are considered, so the choice of themost suitable optimization
strategy depends on the specific application at hand. Indeed,
if a small computational time is required, such as in on-line
applications, the use of the SA alone could be sufficient;
in contrast, when a more accurate solution is required, the
combination of SA and GD might be preferred.

Algorithm 4 FindSensorsPosition
Require: q, m, n, direction, Rc, vvmax , vsmax
Ensure: p

(a, b, h, l, f , g,Rs_max ,Rmin,Omax , ) ←

InitializeSigmoidParameters(q, vvmax , vsmax ,Rc)
(pguess,DOMAIN )← GenerateRandomGuess

(n,Rc,Rs_max ,Omax ,Rmin,
direction)
Initialize Tmin with a low value and αϵ[1, 5]
p← SimulatedAnnealing(pguess, q,m, n,Tmin, α, a, b,
f , g, h, l,DOMAIN )
p← ExecuteGradient(p, q,m, n, a, b, h, l, f , g)
return p

VII. NUMERICAL SIMULATIONS IN A 3D SCENARIO
This Section describes the numerical simulations of the
proposed algorithm. The algorithm is coded using the ‘C++’
programming language and is integrated into the ‘Robot
Operating System’ (ROS) middle-ware. In this section we
focus on the results of numerical simulations. The purpose is
to identify the optimal positioning of the sensors according to
the operating conditions. Tests are performed with an ‘Intel
core i7-10700k @ 3.80GHz CPU’ using ‘Ubuntu 22.10’ as
OS.

A. DEFINITION OF THE MISSION SCENARIO
The algorithm proposed in the previous section is tested
considering a real mission scenario with multiple vehicles.
The mission features are defined through a set of input
parameters that specify the required operating conditions. In a
real scenario, these mission parameters could be defined by
the user. It is assumed that the positions of the targets are
not specified explicitly, but an area of feasibility, in terms
of length and width, is assigned. The center of the formation
Cm is located in the specified area’s center. Targets are then
arranged according to the specified type of formation, thus
the distance between adjacent target vehicles, denoted as
offset in the following, is a function of the formation’s length
and width. The considered input parameters are reported in
Table 1.
The operating depth of the targets is assumed to be a value

known in advance; without loss of generality, in simulation,
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TABLE 1. Input parameters for the definition of mission scenario.

it is set equal to 50 m for each vehicle.

qjz = dz = 50 m with j = 1, 2, . . . ,m.

Other quantities required for the execution of the algorithm
concern the constraints:

• dmax : maximum distance between a sensor and a target.
In simulations, dmax is set to

dmax = 1000 m,

with parameters a = 1.22 and b = 995.25 for the
sigmoid sdmax .

• dmin: minimum distance between the sensor and the
target/sensor. This parameter can be set, for example,
equal to the distance between two adjacent vehicles
(offset).

• dxmax : maximum distance between the projection of the
position of the sensor pi on the x-axis p′ix and Dm. This
parameter allows the constraint on the maximum speed
limit of the sensors to be satisfied. The value of this
parameter is obtained dynamically during the execution
of the algorithm and depends on the value of the input
parameters defined by the mission scenario.

In addition, the other mission parameters are:

• σ : standard deviation of the measurement error.
• T : temperature used in the execution of the simulated
annealing algorithm.

• Tmin: exit condition of the simulated annealing
algorithm. When T becomes equal to or less than the
value of this parameter, the algorithm stops execution.

• 1T : parameter that represents how much the
temperature decreases at each iteration.

• mc: number of iterations to be performed before the
temperature decreases.

TABLE 2. Parameters required for the execution of the algorithm.

• λ: learning rate in the execution of the gradient descent
algorithm.

• maxIte: maximum iteration number of the gradient
descent algorithm.

Table 2 shows the values assumed by each of these parameters
during the tests carried out.

We are now ready to show the simulation results provided
by the proposed optimal sensor formation procedure in differ-
ent operating mission scenarios to evaluate its performance.

1) EXAMPLE 1: m = 6, n = 4, CLOCKWISE
A first numerical example is here reported. The input
parameters for this mission scenario are presented in table 3.
Table 4 shows the nominal target formation in frame F in
accordance with the chosen input parameters, while figure 11
graphically represents the corresponding feasible sensor
deployment area. In order to evaluate the performance of
the solution that we obtain with the proposed algorithm for
optimal sensor formation, we derive the maximum theoretical
performance achievable for the considered scenario. The
maximum theoretical FIM determinant value achievable
from a single target, given by eq. (40), is:

|FIMMAX | = 39799.75 m−4, (50)

while the corresponding maximum value achievable by the
objective function, given by eq. (41), is:

FMAX = 63.55 m−4. (51)

Applying the proposed optimal sensor formation procedure
in Algorithm 4, we obtain the solution given in Table 5 and
illustrated in figure 12.
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TABLE 3. Input parameters for Example 1.

TABLE 4. Nominal target formation in frame F for Example 1.

FIGURE 11. Feasible sensor deployment area for Example 1.

TABLE 5. Mission compliant optimal sensor formation in O for
Example 1.

Table 6, displays some parameters values obtained in
the execution of Algorithm 4: The final objective function
incorporating the presence of constraints has the value:

F = 63.33 m−4.

Table 7 shows the determinants of FIMs with respect to
each target. The smallest value obtained is |FIM (q6)| =
36940.07 m−4. Thus, the degradation with respect to the

FIGURE 12. Mission-compliant optimal sensor formation for Example 1.

TABLE 6. Parameters of interest for the Example 1.

maximum theoretical value obtainable from a single target
is:

ϱmin_|FIM | = 100−
36940.07 · 100

39799.75
= 7.19%,

while the degradation of the value of the final objective
function found with respect to the theoretical one is:

ϱF = 100−
63.33 · 100

63.55
= 0.35%.

We can see how the degradation due to the presence of
constraints and multiple targets is limited, and the results
obtained are close to the maximum theoretical values
achievable.

Furthermore, Figure 13 shows the level curves in 2D and
3D of the objective function incorporating the presence of
constraints for each {x − y} point computed as if there
were a hypothetical target at that point. They show how the
maximum values are over the region containing the targets.

2) EXAMPLE 2: m = 6, n = 3, COUNTERCLOCKWISE
A second example is considered whose mission input
parameters are reported in Table 8. Table 9 shows the
nominal target formation in frame F in accordance with
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FIGURE 13. Level curves in 2D (top) and 3D (bottom) of the objective
function for Example 1.

TABLE 7. Determinant of FIM for each target for Example 1 considering
the presence of mission constraints.

these input parameters, while figure 14 graphically shows the
corresponding feasible sensor deployment area. Opposite to
the previous Example, the left side of the potential sensor
area is considered due to the counterclockwise direction of
motion.

From eq. (40), we can evaluate the maximum theoretical
FIM determinant value achievable from a single target for
the considered scenario, that is:

|FIMMAX | = 22387.36 m−4, (52)

TABLE 8. Input parameters for Example 2.

TABLE 9. Nominal target formation in frame O for Example 2.

while the corresponding maximum value achievable by the
objective function (eq. (41)) is:

FMAX = 60.10 m−4. (53)

Applying the proposed optimal sensor formation procedure
in Algorithm 4, we obtain the solution given in Table 10 and
illustrated in figure 15.
The final objective function incorporating the presence of

constraints has the value:

F = 59.73 m−4.

Table 12 shows the determinants of FIMs with respect to
each target. The smallest value obtained is |FIM (q3)| =
19821.08 m−4. Thus, the degradation with respect to the
maximum theoretical value obtainable is:

ϱmin_|FIM | = 100−
19821.08 · 100

22387.36
= 11.5%,

while the degradation of the value of the objective function
with respect to the theoretical one is:

ϱF = 100−
59.73 · 100

60.10
= 0.6%.

As expected, the performance obtained in this scenario are
slightly lower, compared to the previous example, due to the
presence of a reduced number of sensors. Nevertheless, the
overall degradation with respect to the maximum theoretical
values is still limited, so results are satisfactory.

Table 11 shows the values of some parameters of interest
obtained in the execution the algorithm:

VIII. UNCERTAINTY IN THE TARGET LOCATIONS
In previous Sections we implicitly assumed that the target
positions were exactly known even before positioning the
sensors in their optimal formation. However, in real-world
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FIGURE 14. Feasible sensor deployment area for Example 2.

TABLE 10. Optimal sensor formation for Example 2 considering the
presence of mission constraints.

FIGURE 15. Mission-compliant optimal sensor formation for Example 2.

scenarios, a depth sensor can precisely provide the target’s
depth, but the target’s position in the x − y plane is typically
known with some uncertainty (see figure 16). The approach
that we take to address this practical problem is inspired
by the set-up described in [11] and [20] where each target
is assumed to lie in a well-defined region of uncertainty,
characterized by a proper probability density function (PDF).
The objective is to derive the optimal sensor formation taking
explicitly into account an uncertainty in the target location.
The formulation of the problem discussed in Section III still
holds.

TABLE 11. Parameters of interest for Example 2.

TABLE 12. Determinant of FIM for each target for Example 2 considering
the presence of mission constraints.

A. PROBLEM DESCRIPTION
LetDj be the distribution area of the j−th vehicle and ϕ(qj) its
probability density function. In practical applications, ϕ(qj)
depends on the prior knowledge of the target locations and
on their mission, and different distributions can be taken into
account, as for example the uniform distribution within the
area. Regardless the specific PDF to be considered, we can
define the objective function as follows:

Func
=

m∑
j=1

ln

(∫
Dj
|FIM (qj)|ϕ(qj)dqj

)
(54)

This is equivalent to maximize, by proper sensor formation,
the average value of the FIM determinant in presence of
constraints for the uncertainty region of the target location.
A similar approach, although with a different objective
function that does not take into account any constraints, has
also been proposed in [14]. In this case, we opt for a numerical
computation of the integral in eq. (54) over the uncertainty
region using a Monte Carlo method. The final objective
function exploits the numerical Monte Carlo computation of
integral in Eq. (54)) and it is given by:

Func
≈

m∑
j=1

ln

(
1
k

k∑
v=1

|FIM (qjv)|

)
(55)

where k is the number of hypothetical targets in different
locations in an uncertain area, as shown by the blue dots
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FIGURE 16. Uncertainty in the target locations.

in figure 16. The computation of Func
is made through

Algorithm 5.

Algorithm 5 CalculateUncertaintyFim
Require: q, p, m, n, σ , σq
Ensure: |FIM

unc
TOT |

|FIM
unc
TOT | ← 0

for j← 1, 2, . . . ,m do
|FIM (qj)| ← 0
for v← 1, 2, . . . , k do ▷ k is the number of j− th

target points generated
qj← GenerateRandomPoints(qj, σq) ▷ The

function "GenerateRandomPoints" generates
the position qj with a pseudo random number
generator with uniform orGaussian distribution

|FIM (qj)| ← |FIM (qj)| +

CalculateFIM (qj, p,m, n, σ )
▷ At each iteration v the |FIM (qj)| is calculated
given the generated position qj

end for
|FIM (qj)| ← |FIM (qj)|/k
|FIM

unc
TOT | ← |FIM

unc
TOT | + |FIM (qj)|

end for

B. NUMERICAL SIMULATION
In this Section, we provide a final example of multiple sensor
placement when the positions of the targets are known with
uncertainty.

We assume that the PDF of each j−th target has a Gaussian
distribution, where the mean q̄ and standard deviation σq of
targets q are known. The standard deviation σq is set equal to
3 m for all of them. Parameter k is set to 1000.

1) EXAMPLE: m = 6, n = 2, COUNTERCLOCKWISE
The input parameters of the mission scenario are reported in
table 13, while table 14 shows the mean q̄j of the distributions
of the target positions in frame F .
From equation (40), the maximum theoretical FIM

determinant value achievable from a single target is:

|FIMMAX | = 9949.94 m−4, (56)

TABLE 13. Input parameters.

TABLE 14. Means q̄j of the distributions of the target positions in
frame F .

TABLE 15. Optimal sensor formation.

FIGURE 17. Feasible region of the sensor positions.

while the corresponding maximum value achievable by the
objective function, given by eq. (41) is:

FMAX = 55.23 m−4 (57)

Applying the proposed optimal sensor formation proce-
dure in Algorithm 5 (from algorithm 4), we obtain the
solution given in Table 15 and illustrated in figure 17.

Table 16 shows the values of some parameters of interest
obtained in the execution of the algorithm. The final objective
function has the value:

Func
= 55.16 m−4.
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TABLE 16. Parameters of interest for the example.

TABLE 17. Determinant of FIM for each target for the example.

Table 17 shows the determinants of FIMs with respect to
each target. The smallest value obtained is |FIM

unc
(q4)| =

9778.35 m−4, so the degradation with respect to the
maximum theoretical value obtainable is:

ϱmin_|FIM | = 100−
9778.35 · 100

9949.94
= 1.72%

The degradation of the value of the objective function with
respect to the theoretical one is:

ϱFunc = 100−
55.16 · 100

55.23
= 0.13%.

We can see how the degradation is very limited. The values
obtained inside the uncertainty areas are very close to the
maximum theoretical ones. Figure 17 shows the optimal
positions of the sensors in both cases: when the target
positions are known with uncertainty, and with certainty.
In this specific case, the results obtained are symmetric with
respect to the x-axis, so they havenearly the same distance
from the targets. Nevertheless, the solution obtained using the
objective function in Eq. (55) is, by construction, more robust
with respect to uncertainty in the knowledge of nominal target
locations.

IX. CONCLUSION
This paper addresses the problem of the optimal sensor
formation for range-based underwater localization of a team
of vehicles moving in formation. We propose a solution that
may be used as a pre-planning tool in realistic and practical

mission scenarios. Despite the approaches usually adopted,
we explicitly take into account constraints imposed by the
mission that restrict the feasible sensor deployment area, such
as communication constraints, safety constraints, and maxi-
mal vehicle speed limitations. The problem is formulated by
resorting to estimation theory tools. In particular, we recast
the problem as an unconstrained optimization problem where
all constraints are incorporated into a properly shaped objec-
tive function based on the Fisher Information Matrix. This
allows using a simulated annealing optimization algorithm to
define the optimal sensor formation. Finally, we address the
more realistic scenario where the positions of the targets are
known with some uncertainty. Several numerical simulations
have been performed, considering different configurations
with an arbitrary number of sensors and targets, confirming
the effectiveness of the proposed approach. Future extensions
of this work are currently in progress to adapt the approach
to arbitrary motion trajectories, beyond just circular or
racecourse paths. Furthermore, future work will focus on
an experimental campaign to verify the effectiveness of
the approach in a real-world multiple vehicle mission
scenario.
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