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• The geogenic radon hazard index
(GRHI) map allows evaluating radon
exposure risks.

• The spatial multi-criteria decision anal-
ysis is proposed.

• Fuzzy gamma operator and AHP-TOPSIS
for GRHI mapping.

• The success-rate curve is employed for
the performance assessment.
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A B S T R A C T

The geogenic radon hazard index (GRHI) map plays a crucial role in evaluating radon exposure risks. The
construction of this map requires a comprehensive analysis of radon levels in soil gas and some critical factors,
such as uranium content in bedrock, soil permeability, and geological inhomogeneities. In this context, the
spatial multi-criteria decision analysis is proposed with the aim of combining various key geological parameters
and identifying high-potential radon areas. In particular, the multivariate integration involves the fuzzy gamma
operator method and a hybrid multi-criteria decision-making technique, namely AHP-TOPSIS, which represents
a novel approach in GRHI mapping. Thus, a comparison is provided through the definition of the GRHI maps of
an unexplored study area, that is the Apulia region, located in Southern Italy. In order to evaluate the output
maps, high radon potential areas are identified based on some available indoor radon measurement data. The
success-rate curve, as a valid evaluation metric, is employed for the performance assessment and comparison of
these two methods. The results demonstrate that although both generated GRHI maps are closely correlated with
high-potential radon zones, the hybrid AHP-TOPSIS method is preferable.

* Corresponding author at: Department of Economic Sciences, University of Salento, Lecce, Italy.
E-mail address: sandra.deiaco@unisalento.it (S. De Iaco).

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

https://doi.org/10.1016/j.scitotenv.2024.176419
Received 19 July 2024; Received in revised form 29 August 2024; Accepted 18 September 2024

Science of the Total Environment 956 (2024) 176419 

Available online 19 September 2024 
0048-9697/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:sandra.deiaco@unisalento.it
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2024.176419
https://doi.org/10.1016/j.scitotenv.2024.176419
https://doi.org/10.1016/j.scitotenv.2024.176419
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2024.176419&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Studying radon and mapping the geogenic radon hazard are crucial
due to the significant public health risk posed by indoor radon exposure
(Angell, 2009). Second only to smoking, radon is a significant contrib-
utor to lung cancer, making it imperative to understand its relevant
sources and pathways (UNSCEAR, 1982). In this regard, the GRHI map
plays a significant role by providing a comprehensive view of the sus-
ceptibility of different areas to indoor radon concentration increase. A
GRHI map is created by analyzing geogenic variables, such as geological
maps and uranium content in bedrock and soil, in addition to other
important variables like faults, karst features, and soil properties. This
map helps policymakers and researchers in efficiently allocating re-
sources in order to develop radon mitigation strategies (Cinelli et al.,
2019; Bossew et al., 2020). Thus, it serves as a valuable tool, guiding
efforts to prioritize areas where interventions are urgently needed to
reduce radon exposure and mitigate its associated health risks. The
construction of a GRHI map is also strategic in order to counteract the
loss of biodiversity, which may cause serious consequences for the sus-
tainability of the ecosystem and for human well-being.

Different methods can be applied with the aim to produce a GRHI
map, each offering distinctive insights into radon hazards (Kemski et al.,
2001; Gruber et al., 2013; Friedmann et al., 2017; Bossew et al., 2020;
Petermann and Bossew, 2021). These methods are either data-driven or
knowledge-driven. Advanced data-driven techniques include multivar-
iate linear regression (Kropat et al., 2017), general linear models, and
machine learning algorithms (Kropat et al., 2015; Timkova et al., 2017;
Janik et al., 2018; Petermann et al., 2021; Al-Shboul et al., 2023), where
geogenic quantities, such as geochemical concentration and soil prop-
erties are considered. This geogenic approach entails creating a
weighted average of predictors. The weights can be implicit in cases of
bivariate or multivariate scoring, where categorical predictor levels are
assigned to GRHI levels based on experiential knowledge about their
impact (Bossew et al., 2020). Alternatively, weights can be determined
through correlation coefficients between predictors by utilizing tech-
niques such as principal component analysis (PCA), hierarchical analysis
and spatial multi-criteria decision analysis (SMCDA). These approaches
guarantee a comprehensive assessment of radon hazards by considering
various geological and environmental factors in a scientific context.

Only a few studies have explored the generation of GRHI map by
recalling the SMCDAmethods (Guida et al., 2013; Masoumi et al., 2024).
To our knowledge, there is a noticeable absence of contributions focused
on a combination of the hybrid FGO and multi-criteria decision making
(MCDM) techniques, such as AHP-TOPSIS method, particularly in order
to identify high-potential radon areas. Indeed, fuzzy approach provides
a flexible framework for modeling vague information, hence for allow-
ing the representation of complex relationships between input variables
and results. By employing fuzzy sets and membership functions, this
approach accommodates the inherent ambiguity in spatial data and
expert knowledge, enhancing the robustness of hazard assessments.
SMCDM methodologies offer systematic procedures for evaluating al-
ternatives based on multiple conflicting criteria. In the case of mapping
high-potential radon areas, SMCDM techniques, like AHP and TOPSIS,
enable the integration of diverse factors such as geological, geophysical,
and demographic data and provide a comprehensive assessment of
radon hazard (Al Mohamed et al., 2023; Chakraborty et al., 2023).
Consequently, this research aims at providing some advances in the
construction of a comprehensive integrated model to effectively assess
high-potential radon areas using FGO and hybrid AHP-TOPSIS tech-
niques. For this reason, some available data in the Apulia region (Italy)
have been used and a comparison of the effectiveness of these two
methods in generating a GRHI map of the Apulia region has been
proposed.

It is worth pointing out that generating a GRHI map in a given area is
based on several crucial criteria, whose relevant layers must be com-
bined. Therefore, the procedure can be regarded as an SMCDA method

comprising three main steps: (1) collecting spatial data from multiple
sources, (2) weighting the input layers, and (3) integrating the spatial
dataset with the assigned weight values. Thus, the initial step of this
analysis has involved the preprocessing of the collected layers of data,
which have been transformed into the [0–1] domain through the fuzzy
logic functions. The FGO model has been subsequently generated by
integrating the fuzzified values. The integration has been achieved via
different γ values, and the best value (γ = 0.9) has been chosen based on
the Receiver Operating Characteristic (ROC) curve. Following this, the
Natural Break method has been utilized to discretize the continuous
values of some factors. This method has been regarded as a reliable
classification technique and has been employed to categorize each
evidential layer. By means of pairwise comparisons, meaningful weights
have been subsequently assigned to the discretized classes; thus, this
step has been conducted by recalling the AHP technique, known as one
of the most prevalent methods in MCDM. The final step has been to
compile all determined weights for each sub-criteria into a decision
matrix with the scope of generating the GRHI map through the hybrid
AHP-TOPSIS procedure. The obtained results have been evaluated and
compared using the success-rate curve, which is a validation metric
method (Parsa et al., 2016) based on the known area of high radon
potential in the Apulia region. These areas have been identified using
the method described in Cinelli et al. (2011) for indoor radon data. The
findings indicate that, although the GRHI maps derived from the two
different methods (FGO and AHP-TOPSIS) are in good agreement with
the high-potential radon area in the Apulia region, the hybrid AHP-
TOPSIS method shows a higher level of success in identifying areas
with high radon potential.

It is worth pointing out that the implementation of AHP-TOPSIS
procedure for radon risk mapping as well as the interest in producing
a GRHI map for an unexplored area, such ar the Apulia region in Italy,
represent the elements of novelty of this contribution. Indeed, the aim of
this study is to propose a comprehensive and integrated innovative
approach for constructing a GRHI map specifically for the Apulia region
in Southern Italy. The study seeks to improve the identification of high-
potential radon areas by employing advanced spatial multi-criteria de-
cision-making techniques, particularly the hybrid AHP-TOPSIS method
and FGO model. By comparing the effectiveness of these methods, this
enhanced mapping tool not only deepens the understanding of radon
distribution but also provides policymakers with a powerful resource for
prioritizing radon mitigation efforts, ultimately contributing to the
protection of public health in regions susceptible to elevated radon
levels.

The remainder of the paper is organized as follows. In Section 2, a
brief description of the study area as well as the presentation of the FGO
method and the AHP-TOPSIS technique have been given. In Section 3,
the data and the corresponding layers referred to the geological features
useful to assess the high-potential radon areas have been illustrated. In
Section 4, the GRHI maps for the Apulia region have been produced on
the basis of the FGO and AHP-TOPSIS methods, then a comparative
analysis based on the ROC curves has been proposed. Some conclusions
have been provided in Section 5.

2. Materials and methods

The study process involves four main steps as described in Fig. 1:
defining criteria and sub-criteria (Step 1), calculating significant weights
using the AHP method (Step 2), integrating weighted spatial evidence
layers and depicting target areas through the TOPSIS, while applying the
fuzzy gammamethod separately (Step 3), and comparing and evaluating
the results (Step 4).

All data have been initially processed using the QGIS software within
the geographic information system (GIS) environment and the final
GRHI prospectivity mapping have been carried out in MATLAB
software.
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2.1. Geology of the study area

The area of interest, referred to the Apulia Region in Southern Italy,
is an intriguing area for geological study. Fig. 2 depicts the geographical

location of the domain and the primary lithology, including faults,
caves, dolines, and sinkholes. Shaped by diverse geological phenomena,
it is predominantly composed of Mesozoic carbonates and limestone
rocks, especially in the central part of the region. The Southern and

Fig. 1. Main steps and sub-steps to generate GRHI maps by using FGO and AHP-TOPSIS methods.

Fig. 2. Location of the study areas in Italy and geological map (Viel et al., 1986).
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Northern parts are characterized by calcarenite and clay sandy rocks
from the Cenozoic era, respectively. The limestone rocks in Apulia
display minimal deformation, featuring broad, gentle folds occasionally
interrupted by extensional faults. These limestone formations developed
mainly during the Middle and Lower Jurassic periods, coinciding with
the break-up of the supercontinent Pangaea. This geological activity
resulted in the formation of gulfs and seas in areas that were previously
terrestrial. Notably, this geological feature encompasses the Murge
plateau, Gargano massif, and Salento Peninsula, collectively referred to
as the Apulian Foreland. Extensive outcrops of these carbonates are also
found in this region (De Santis and Caldara, 2015).

The region's tectonic framework is defined by pervasive NW-SE
normal faulting and jointing, with an additional EW system of transi-
tional areas, indicating a complex geological history (Tozzi et al., 1988).
This tectonic diversity is further exemplified by the presence of high-
angle faults, shaping the landscape and influencing the geological for-
mations (Doglioni et al., 1994). Furthermore, Apulia is home to a variety
of geological phenomena, with sinkholes being particularly noteworthy,
as they have significantly influenced the evolution of the region's
topography. These sinkholes result from karst processes whereby car-
bonate rocks are dissolved due to the aggressive interaction between
saltwater from the sea and fresh groundwater (Cigna and Forti, 1986).
Sinkholes often manifest as abrupt collapses, which change the topog-
raphy and contribute to the unique geological identity of Apulia
(Johnson, 1989).

In Section 3, a detailed description of the data and the corresponding
layers is given.

2.2. FGO method

The concept of fuzzy logic, initially introduced by Zadeh (1965),
finds widespread applications in integrating spatial evidence layers with
fuzzy information. This integration involves the definition of weights for
the data, which can be based on expert judgments. To standardize input
values, fuzzy member weights are calculated, and continuous values
ranging from 0 to 1 are assigned to relevant pixels in exploration evi-
dence layers. Fuzzy logic employs five fuzzy operators: gamma, alge-
braic SUM, AND, OR, and algebraic PRODUCT. However, the OR and
AND operators, commonly used with fuzzy membership functions, have
limitations. The OR operator yields the maximum output value, whereas
the AND operator provides the minimum value. Fuzzy algebraic
PRODUCT, fuzzy algebraic SUM, and FGO are employed to combine
data in order to circumvent these limitations (Bonham-Carter, 1994). In
this approach, outputs are determined as follows:

μp(x) =
∏n

i=1
μi(x) (1)

μs(x) = 1 −

(
∏n

i=1
1 − μi(x)

)

(2)

where n denotes the number of membership functions to be merged, and
μi represents the ith membership function. The fuzzy algebraic product
function produces an outcome equal to or smaller than the minimum of
the provided function. In contrast, the fuzzy algebraic sum function
yields results that surpass all inputs but never exceed 1. FGO is calcu-
lated using the equation given below:

μγ(x) = [μs(x) ]
γ
×
[
μp(x)

]1− γ
(3)

where γ-value must be within the [0–1] range to optimize the mem-
bership fusion (Zimmermann and Zysno, 1980). When γ is established at
1, the fusion resembles the fuzzy algebraic SUM. On the other hand, a γ
value of 0 results in fusion akin to the fuzzy algebraic PRODUCT. By
selecting an appropriate γ, output values can balance the effects of the

fuzzy algebraic PRODUCT and the fuzzy algebraic SUM (Ying, 2003).
Thus, the Gamma operator effectively combines the fuzzy algebraic
PRODUCT and fuzzy algebraic SUM operators, resulting in reliable
output values by mitigating the exaggerated impact of the fuzzy alge-
braic SUM while compensating for the diminishing impact of the fuzzy
algebraic PRODUCT (Akbari et al., 2020).

2.3. The hybrid AHP-TOPSIS procedure

The AHP, introduced by Saaty (1977), stands for Analytical Hierar-
chy Process and is a widely used MCDM method applied extensively in
various fields such as engineering, industry and management (Chan and
Kumar, 2007; Lima Junior et al., 2014; Greco et al., 2016; Zhang et al.,
2015; Akbari et al., 2020). AHP addresses complex decision-making
challenges by breaking them down into hierarchies of interconnected
decision elements. It facilitates the prioritization of influential criteria
by evaluating the significance of distinct criteria and their sub-criteria
via pairwise comparisons.

The TOPSIS method, another significant MCDM technique, was
initially introduced by Hwang and Yoon (1981) and later enhanced by
Chen and Hwang (1992). This method aims to ascertain the optimal
option from a limited set of alternatives. TOPSIS is based on the prin-
ciple of finding the option that comes closest to the positive ideal solu-
tion, which maximizes benefit and minimizes cost criteria. Conversely,
the negative ideal solution aims at minimizing benefit criteria while
maximizing cost criteria. Decision-makers utilize TOPSIS by selecting an
alternative that is closest to the positive ideal solution and farthest from
the negative ideal solution, a concept introduced by Abo-Sinna and
Amer (2005) and further detailed by Jahanshahloo et al. (2006) and
Shih et al. (2007). This fundamental idea underpins the TOPSIS method,
enabling effective decision-making by striking a balance between ben-
efits and costs.

A hybrid MCDM approach has been employed in this study by inte-
grating the AHP and TOPSIS techniques that draws upon various MCDM
methods applied in previous research (Tavana and Hatami-Marbini,
2011; Abedi and Norouzi, 2016; Akbari et al., 2020; Nazim et al.,
2022; Singh et al., 2023). Through this integrated approach, the
decision-making process is optimized, ensuring a comprehensive eval-
uation of the alternatives based on both benefit and cost considerations.
This algorithm has been used to rank and assign the weights to distinct
criteria related to high radon concentrations.

In AHP, the objectives and alternatives are systematically compared
to determine the relative importance of the alternatives. Saaty's nine-
point scale (Saaty, 1977) is used to compare the significance of objec-
tives, as shown in Table 1. The eigenvector method is applied to
calculate the weights and assess the consistency of the weights obtained

Table 1
Scale of pairwise comparison in AHP method.

Criteria
intensity

Description Intensity degree of
importance

1 The two criteria have an identical objective. Equal
3 A factor is prioritized marginally against

another.
Moderate

5 A criterion is highly prioritized against
another.

Strong

7 One criterion is given significantly higher
priority over another, and this is clearly
demonstrated through actions.

Very strong

9 The proof for prioritizing one criterion over
another has the highest possible strength to
validate.

Extreme

2, 4, 6, 8 Deployed to show the comprises between
the preference scores 1, 3, 5, 7, and 9.

Intermediate value
between two
adjacent
judgments

Reciprocity Deployed to do inverse comparisons. Opposites
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through pairwise comparisons. The Consistency Ratio (CR) is used to
ensure that the results are consistent. To be considered consistent, the
CR must not exceed 0.10 or 10% (Saaty, 1977).

Then, in the context of solving multi-criteria problems, AHP and
TOPSIS are integrated for decision-making purposes. The process is
detailed as follows (Pazand et al., 2012; Menon and Ravi, 2022; Hsu
et al., 2008):

Step 1. A decision matrix consisting of criteria and attributes is
created through pairwise comparisons. This matrix is given below:

C1 C2⋯Cn

C =

⎡

⎢
⎢
⎣

c11 ⋯ c1n
⋮ ⋱ ⋮

cn1 ⋯ cnn

⎤

⎥
⎥
⎦ =

C1

C2

⋮

Cn

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 a12 ⋯ a1n
1/a12 1 ⋯ a2n

⋮ ⋮ ⋱ ⋮

1/a1n 1/a2n ⋯ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
(4)

where cij represents the relative significance of the ith attribute compared
to the jth attribute as regards the overall objective. Alternatively, given
the set of criteria and sub-criteria C1, C2,…, Cn, the pairwise comparison
matrix C can be defined through the coefficient aij which represents the
judgment according to the scale described in Table 1. The outcomes of
comparing the criteria and sub-criteria are incorporated into the upper
triangular of the pairwise comparison matrix C. The lower triangular
values represent the relative positions corresponding to the reciprocal
values of the upper triangular matrix. Specifically, for a given pair of
criteria or sub-criteria (Ci, Cj), with i, j= 1, 2, …, n, i∕= j, the single value
aij is provided, then the relative judgment for the inverse comparison
(Cj, Ci) becomes aji = 1/aij.

Step 2. The decision matrix is normalized using the following
equation:

mij =
cij

∑n
i=1cij

(5)

Step 3. The weights for criteria and sub-criteria are normalized and
the check on consistency is provided. Thus, the vector of the weights
is denoted with

W = [wi]n×1 (6)

and its elements wi are normalized as follows:

wi =
∑n

j=1

mij

n
, i = 1,2,…, n. (7)

Then, the largest eigenvalue λmax is computed from the matrix C, so
that it is employed to assess the consistency index (CI) and consistency
ratio (CR) of the comparison matrix, as defined below:

CI =
λmax − n
n − 1

(8)

CR =
CI
RI

(9)

where RI is the random consistency index, which serves as a measure of
the average randomness in the ranking of attributes based on various
pairwise comparisons. In Table 2 the RI values for different values of n

are shown. If the computed CR is equal to or <10% (0.10), it indicates
that the assessment of attribute importance is reliable, and any in-
consistencies can be disregarded. On the other hand, a CR value >10%
suggests that the comparisons lack of consistency, necessitating cor-
rections to the judgments in the matrix.

Step 4. A matrix X which accounts for attributes measured in
different units, is normalized. This transformation converts the ma-
trix into dimensionless units, allowing for comparisons across
criteria. The data are normalized in the following manner:

rij =
xij

(∑n
i=1x2ij

)0.5, i = 1, 2,…, n and j = 1, 2,…,m, (10)

in which xij denotes the element of the decisional matrix X, where j
represents the alternatives (pixel values of evidence layers) and i denotes
the criteria.

Step 5. The elements vij of the weighted normalized matrix V are
calculated according to the following equation:

vij = wirij, i = 1,2,…, n and j = 1,2,…,m. (11)

Note that wi, i=1,2,...,n, represent the computed weights to be
assigned to the criteria, such as those determined through the AHP.

Step 6. The positive ideal solution is presumed to possess superior
beneficial characteristics and minimal costs (A+), while the negative
ideal solution is assumed to have the least favorable attributes in
terms of benefits and the highest costs (A− ). The subsequent
expression provides a definition for A+ and A− .

A+ =
{
max

(
vij| j ∈ J

)
min
(
vij| j ∈ J'

) }
=
{
v+1 ,…., v+n

}
(12)

A− =
{
min
(
vij| j ∈ J

)
max

(
vij| j ∈ J'

) }
=
{
v−1 ,…., v−n

}
(13)

where J is related to the beneficial attributes or equivalently positive
criteria, and J' is related to the non-beneficial attributes or equivalently
negative criteria (Ghezelbash et al., 2024).

Step 7. The separation measures, denoted as Di =
{
S+i , S−i

}
are

calculated using the Euclidean distance as follows:

S+i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
vij − v+j

)2
√
√
√
√ , i = 1,…,m, (14)

S−i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
vij − v−j

)2
√
√
√
√ , i = 1,…,m. (15)

Note that S+i represents the separation of each alternative from the
positive ideal solution (superior beneficial characteristics and minimal
costs) and S−i represents the separation of each alternative from the
negative ideal solution (minimum beneficial characteristics and
maximum costs).

Step 8. The relative proximity of alternatives to the ideal solution is
calculated as follows:

DD+
i =

S−i
S+i + S−i

, i = 1,…,m, (16)

Table 2
Values for the random consistency index RI, given the matrix order n (Saaty and Vargas, 2013)

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.53 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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given S+i + S−i >0, then it results that DD+
i ∈ [0,1]. A high relative

closeness value indicates a more favorable alternative.

Step 9. The assessment of a set of options is subsequently established
based on the comparative proximity values DDi

+.

3. Data used and evidence layer preparation

The GRHI serves as a fundamental tool in the scientific evaluation of
indoor radon concentration risks, addressing both natural and anthro-
pogenic determinants (Sakoda et al., 2011). Geogenic factors, which are
inherent to the earth's geology, involve complex processes of radon
generation and subsurface transport. These processes depend on
geological, soil, and hydrological parameters. Such factors exhibit
discernible geographical patterns and spatial structures, reflecting the
nuanced interplay of geological elements influencing radon exposure
risks (Bossew et al., 2020; Ciotoli et al., 2007).

Key geological parameters, notably the concentration of uranium in
rocks and soils, soil permeability, and geological inhomogeneities, play
a central role in the GRHI framework. These geological attributes,
compounded by climatic variations, exert substantial influence on radon
levels in soil gas (Cinelli et al., 2019). The GRHI, quantified on a dedi-
cated scale, integrates these multifaceted factors, enabling a compre-
hensive analysis of potential radon exposure risks in specific locations or
areas. It is necessary to consider and incorporate the above-mentioned
factors, systematically in the assessment process. The crucial criteria
and their corresponding sub-criteria, as well as their references for
introducing the GRHI map using the MCDM method, are provided in
Table 3 and described in the subsequent section.

3.1. Uranium concentration in rocks and soils

The uranium concentration in soils and rocks is crucial for evaluating
radon (222Rn) exposure risk (Matolín, 2017). Uranium-238 (238U) is
naturally found in various rocks, ranging from low levels in sedimentary
rocks to high levels in magmatic rocks (Smethurst et al., 2017). The
content of uranium in soil can be calculated via geochemical or radio-
logical analysis methods. Radiological analysis involves direct mea-
surement of uranium using alpha spectrometry or indirect measurement
through its progenies, (like 214Bi and 214Pb) using gamma spectrometry.
European soil geochemical data, gathered extensively, offer valuable
regional insights. This study utilized uranium, thorium, and potassium
concentration maps from the European Atlas of Natural Radiation,
created by using data from the Geochemical Atlas of Europe and
Geochemical Mapping of Agricultural and Grazing Land Soil projects.
These maps, accessible at a 10 km × 10 km resolution, have been
collected from the Joint Research Centre data catalogue at https://data.
jrc.ec.europa.eu/dataset and used for analysis. Furthermore, according
to Nogarotto (2018) and the results of uranium content mapping in

Italy's bedrock, the large part of the involved area in the Apulia region
has been categorized into three different lithological types based on the
lithological units: Late Cretaceous-Paleogene sedimentary rocks,
Eocene-Oligocene-Miocene sedimentary rocks, and Mesozoic carbonate
rocks. These categories have been associated with high, medium, and
low uranium content in bedrock, respectively. The Euclidean distance
algorithm has been used in the QGIS software to comprehensively cover
the entire Apulia region and investigate the effects of three specific
layers on radon concentration in various parts of the region, as well as to
create final GRHI maps (Dokmanic et al., 2015). In Fig. 3(a to f), the
maps on the left display the uranium content in bedrock and soil in the
Apulia region.

3.2. Geological inhomogeneities

Geological and human-made factors significantly influence radon
concentration in soil gas at specific locations (Ciotoli et al., 2016; Cinelli
et al., 2019). These factors include permeable irregularities, subvertical
orientations, intersections with various rock types, and the presence of
faults. Faults, notable geological irregularities, play a crucial role in
radon movement in soil. Their placement in regions with active or
passive geodynamic activity, proximity to the fault plane, and the type
of bedrock govern radon velocity and concentration in shallow soils.
Radon anomalies above faults vary in intensity and spatial distribution
due to factors such as sediment layers, aquifers, and fault geometry. The
development of fault zones and fractures is closely associated with radon
anomaly distribution. Fault cores act as radon pathways, while sur-
rounding damage zones release radon, especially when the core is
impermeable. Regions with high levels of fracturing, cracking, and
lithological variations exhibit varying permeability levels and radon
concentration changes (Annunziatellis et al., 2008; Pereira et al., 2010;
Seminsky et al., 2014; Ciotoli et al., 2016). In karstic regions, radon flow
depends on convective features within the karstic bedrock, including
caves, sinkholes, and dolines, which contribute significantly to radon
transport. Faults, caves, dolines, and sinkholes have been identified as
significant contributors in various studies (Petermann and Bossew,
2021; Coletti et al., 2022).

Researchers have emphasized the importance of fault characteristics,
particularly proximity to faults when studying radon concentration.
High radon emissions are observed in highly faulted areas, indicating
that proximity to faults leads to higher radon concentrations. Soil
permeability, which in turn affects radon gas concentrations, varies
according to the distribution of rocks and the severity of faulting and
fractures. Rock fractures and faults beneath the surface offer high
permeability paths, enabling radon gas migration. Therefore, the pres-
ence of faults contributes to elevated radon concentrations in soil.
Dwellings located closer to faults are more likely to exceed radon
guidelines, increasing vulnerability to elevated indoor radon levels. The
presence of geological faults near dwellings provides favorable path-
ways for radon migration from uranium-rich bedrock units to the

Table 3
Primary criteria and sub-criteria considered for the GRHI map.

Source of radon in
soil gas

Primary criteria Sub-criteria References

Geological factor Uranium concentration in rocks
and soils

Uranium, thorium, and potassium
concentrations in soil

https://data.jrc.ec.europa.eu/dataset

Uranium content in bedrock (Nogarotto, 2018)
Geological Inhomogeneities Fault https://www.isprambiente.gov.it/it, http://www.sit.puglia.it

Cave
Doline
Sinkhole

Permeability Fine fraction https://esdac.jrc.ec.europa.eu/content/topsoil-physical-properties-eu
rope-based-lucas-topsoil-dataBulk Density

Available Water Capacity (AWC)
Texture
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surface, resulting in elevated indoor radon levels (Amponsah et al.,
2008; Drolet and Martel, 2016).

In this study, the distance to the fault has been calculated and
considered as an input layer for processing. The information regarding
different layers in the Apulia region has been sourced from the ISPRA
(Higher Institute for Environmental Protection and Research) and SIT
Puglia website (http://www.sit.puglia.it). The Euclidean distance al-
gorithm (Dokmanic et al., 2015) has been used in QGIS software to
generate maps illustrating the distances to faults, dolines, caves, and
sinkholes, as depicted in the left maps in Fig. 3(g to j).

3.3. Permeability

Soil gas radon concentrations are highly dependent on permeability,
which measures the geological environment's capacity to transport soil
gases such as radon from their source (weathered or solid rock) to the
surface or inhabited areas (Nazaroff, 1992). Various factors such as soil
texture, temperature, pressure fluctuations, and soil moisture influence
this transportation rate. Radon is released into empty spaces from
mineral grains containing uranium in the soil. The movement of radon
relies on the interconnectedness of these spaces, enabling both vertical
and horizontal motion. However, vertical movement might be limited
by specific mineral particles or clay layers in the soil. The European soil
erodibility map was established using parameters like soil organic

Fig. 3. Various elements pertaining to geological factors and assessments, delineating (a to f) for uranium concentration in bedrock and soil, (g to j) for geological
inhomogeneities (e.g., faults, dolines, caves, sinkholes), and (k to n) for permeability layers (e.g., texture, AWC, bulk density, fine fraction). Each row illustrates the
sequence: raw data (left map), fuzzified layer (center map), and final classified map (right map).
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Fig. 3. (continued).
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Fig. 3. (continued).
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carbon, soil texture (sand, silt, clay), permeability, soil structure, stone
cover, and coarse fragments from the LUCAS database (Land Use/Cover
Area frame Statistical Survey). Soil permeability estimates were based
on textural classes since European-scale specific data were lacking.
Further analyses were introduced and improvement was achieved by
integrating data on the fraction of ultra-fine sand and hydraulic con-
ductivity, resulting in more precise estimates of soil erodibility and
permeability (Cinelli et al., 2019). Panagos et al. (2014) focused on

analyzing the physical properties of topsoil in Europe using data from
the LUCAS topsoil dataset. The finalized maps containing this informa-
tion can be accessed at European Soil Data Center (Panagos et al., 2012,
2022). The study encompassed the following details:

(1) Multivariate Additive Regression Splines were used to model the
percentages of silt, clay, sand, and coarse fragments in the topsoil.

Fig. 3. (continued).

Fig. 4. Criteria hierarchy model for Apulia GRHI map.
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(2) Bulk density values were calculated using soil texture datasets
calculated based on (Ballabio et al., 2016).

(3) USDA soil textural classes were determined based on silt, clay,
and sand maps.

(4) AWC for the fine earth fraction in the topsoil was assessed.

In this research, the fine fraction of soil has been calculated using
LUCAS texture maps, which offer comprehensive information about soil
properties throughout Europe. The maps on the left in Fig. 3 (k to n)
illustrate the conclusive maps within the Apulia region of AWC, bulk
density, soil texture, and the fine fraction.

3.4. Fuzzification and classification of layers

Before integrating the geospatial layers derived from available data
in this region, it is crucial to normalize their values within a consistent
range. This normalization is necessary because the minimum and
maximum values in each layer is not uniform. For this purpose, fuzzy
member functions can be used to convert the continuous-value pixels of
the evidential layers into a fuzzy space. This allows for the representa-
tion of values within the [0–1] range. In this study, the small and large
fuzzy membership functions commonly utilized in geoscience fields,
have been used to convert the values of different layers into the [0–1]
range using QGIS software. The small fuzzy membership function is used
when smaller input values provide more significance, resulting in higher
membership values (Raines et al., 2010). This function highlights the
probability of incorporating smaller input values into the set; thus,
values below the midpoint receive increased emphasis.

The large fuzzy function, introduced by Mohebbi Tafreshi et al.
(2021) and Raines et al. (2010), is utilized for emphasizing large input
values; as a consequence, values exceeding the midpoint are highly

likely to be part of the set, whereas values below the midpoint have a
lower probability of being included. This function enhances membership
values above the midpoint, leading to greater fitness. Eqs. (17) and (18),
formally defines the small and large membership functions:

μ(x) = 1

1+

(
x
f2

)f1
(17)

μ(x) = 1

1+

(
x
f2

)− f1
(18)

where μ(x) represents the membership value of the category, while f1
and f2 denote the spread and midpoint values, respectively. The final
fuzzy maps of the input layers are shown in the center of Fig. 3.

The Natural Breaks method is a statistical classification technique
commonly used in QGIS. This has been employed in this study to
partition a dataset into distinct and internally homogeneous classes. This
is achieved by minimizing the variance within each class and maxi-
mizing the variance between classes. By grouping similar data values
together, this method ensures that there is minimal difference within
each class and a significant difference between classes (Jenks and Cas-
pall, 1971; Baz et al., 2009). The Natural Breakmethod is used to classify
the input data into five classes, which are shown in the right maps of
Fig. 3.

Finally, the criteria hierarchy model useful to introduce the Apulia
GRHI map is shown in Fig. 4.

Table 4
Pairwise comparison between Natural Break classes of three criteria and 14 sub-criteria and their allocated weights using AHP.

Criteria Weight Sub-critical Weight Classes Weight Criteria Weight Sub-
critical

Weight Classes Weight

Geological factors (uranium
concentration in rocks and
soil)

0.311 Uranium in soil 0.158 1 0.033 Permeability 0.196 Fine
fraction

0.041 1 0.033
2 0.017 2 0.017
3 0.008 3 0.009
4 0.004 4 0.004
5 0.002 5 0.002

Thorium in soil 0.041 1 0.009 Bulk
Density

0.083 1 0.060
2 0.004 2 0.031
3 0.002 3 0.015
4 0.001 4 0.007
5 0.003 5 0.004

Potassium in soil 0.013 1 0.003 Texture 0.069 1 0.055
2 0.001 2 0.028
3 0.001 3 0.016
4 0.0005 4 0.006
5 0.0005 5 0.003

High Uranium in
bedrock

0.148 1 0.062 Geological
inhomogeneities

0.493 Fault 0.141 1 0.141
2 0.029 2 0.084
3 0.016 3 0.031
4 0.006 4 0.014
5 0.003 5 0.008

Medium uranium
in bedrock

0.050 1 0.021 Cave 0.071 1 0.024
2 0.009 2 0.014
3 0.005 3 0.005
4 0.002 4 0.003
5 0.001 5 0.001

Low uranium in
bedrock

0.014 1 0.006 Sinkhole 0.071 1 0.024
2 0.003 2 0.013
3 0.001 3 0.003
4 0.0005 4 0.002
5 0.0005 5 0.001

Permeability 0.196 AWC 0.029 1 0.021 Doline 0.071 1 0.024
2 0.011 2 0.014
3 0.005 3 0.005
4 0.003 4 0.002
5 0.001 5 0.001
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3.5. Allocating competent weights to the criteria and sub-criteria

The assessment of the relative importance of different evidence
layers and their competent weights is a crucial and challenging issue.
Assigning these weights should be carried out by genuine experts who
possess ample knowledge about the radon issue and the dataset collected
in the examined area.

As illustrated in Fig. 4, the primary focus of this study is to generate
GRHI map in Apulia region on the basis of three main factors, including
uranium content, geological inhomogeneities, and permeability, which
are segmented into 14 sub-criteria. These sub-criteria take into account
the scores that have been assigned to prioritize these criteria based on
inputs gathered from various expert opinions and a comprehensive re-
view of articles and technical documents related to the subject (Ciotoli
et al., 2017; De Iaco et al., 2017; Coletti et al., 2022). Additionally, a
pairwise comparison matrix has been created for the elements within
each hierarchical level, guided by the expertise of decision-makers. The
matrix has been employed to compute the final weights for each crite-
rion, sub-criterion, and their respective classes, as outlined in Table 4.

4. Mapping GRHI in Apulia region

Two approaches, FGO and AHP-TOPSIS, have been utilized to
construct a GRHI map and then the results have been compared through
the success-rate curves.

4.1. FGO model

The fuzzy logic overlay method has been recalled to integrate criteria
into a single GRHI map. Initially, the values of 14 sub-criteria have been

transformed into a [0–1] range based on eqs. (17) and (18). These
transformed values have served as weighted fuzzy evidence layers,
allowing the application of various fuzzy operators such as fuzzy AND,
OR, SUM, Gamma, and PRODUCT operators so as to synthesize these
layers, as described in Bonham-Carter (1994). The FGO has been
particularly advantageous in comparison to fuzzy SUM and fuzzy
PRODUCT operators due to its ability to counteract the “decrease” effect
of the fuzzy PRODUCT operator and the “increase” effect of the fuzzy
SUM operator, as in Yousefi and Carranza (2015).

In this study, the continuous-value multidisciplinary evidence layers
(layers with fuzzy membership values), have been integrated in order to
compute fuzzy prospectivity scores for identifying areas with high radon
potential. An optimal γ value has been selected using eq. (3) among
different values, and the best one has been chosen by applying the ROC
curve, as described in Section 4.3.2. Consequently, a fuzzy-based GRHI
map has been generated to delineate promising areas associated with the
high potential of radon in the Apulia region (Fig. 5).

4.2. Hybrid AHP-TOPSIS model

This research aims to integrate various layers so as to identify areas
with high radon potential in an unexplored study region (Apulia region -
Italy). For this purpose, the study innovatively employs the AHP-TOPSIS
procedure, a hybrid MCDM procedure that comprises AHP and TOPSIS
techniques. Indeed, the AHP has been used to calculate the competent
weights of criteria, sub-criteria, and alternatives, while the TOPSIS has
been utilized to integrate different evidence layers and to rank the pixel
scores.

The approach consists of three main phases: (a) establishing the basic
criteria and their corresponding sub-criteria and classes in accordance

Fig. 5. a) 14 different sub-criteria used for generating GRHI map, b) the final GRHI map based on FGO method, c) final GRHI map based on AHP-TOPSIS method.
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with the study's main aim; (b) calculating substantial weights (Table 4)
and applying them to criteria, sub-criteria and their relevant classes
using the AHP method; and (c) integrating and ranking different levels
of weighted evidence using the TOPSIS framework. In the initial phase,
pertinent data concerning key factors linked to the study's objective has
been gathered. Subsequently, a hierarchical structure has been
designed, as depicted in Fig. 4. The MCDM problem can be decomposed,
using the AHPmethod, into interconnected components, namely criteria
and sub-criteria.

The hierarchical framework comprises three primary levels: (a) the
highest tier introduces the Apulia region's GRHI map, which is the
central focus of this study; (b) the intermediate level encompasses the
main criteria, including geological factors, geological inhomogeneities
and permeability. These criteria have been further delineated into 14
fuzzified and classified sub-criteria; (c) the lowest tier accommodates
the decision alternatives. Specifically, the pixel values from integration
layers, which are associated with high radon potential, have served as
the basis for defining the alternatives and ranking according to the
TOPSIS method.

Next, a decision matrix has been constructed to allocate significant
weights to the criteria, sub-criteria, and alternatives. This matrix has
been established via pairwise comparisons, utilizing expert opinions and
the scale provided by Saaty (1977) in Table 3. Subsequently, significant
weights for each criterion and its associated classes have been calculated
and assigned using the AHP method. These calculated weights are pre-
sented in Table 4, demonstrating the comprehensive evaluation of the
hierarchical structure in this study. As depicted in this table, geological
inhomogeneities emerged as the most influential factor, possessing a
weight of 0.493. The geological factor and permeability, with weights of
0.311 and 0.196 respectively, indicate their significance. Similarly,
various sub-criteria and Natural Break classes associated with each cri-
terion underwent weighting through the AHP, whose outcomes are
presented in Table 4.

In the third step, the primary objective is to identify prospective
areas with high radon potential in the Apulia region using weighted
criteria and sub-criteria. In order to accomplish this objective, a decision
matrix has been generated, wherein the pixel values extracted from 14
fuzzified maps and represented as alternatives have been denoted by the
horizontal rows, and the 14 sub-criteria have been located in the vertical
columns. The initial matrix used to implement the AHP-TOPSIS pro-
cedure comprised a total of 77,184 rows and 14 columns. Following
that, a MATLAB-based program has been executed to weigh and rank the
multidimensional alternatives using the AHP-TOPSIS approach. This
process has led to the generation of a high-potential radon model. A
visual examination of the results reveals a positive spatial correlation
between known high radon potential areas and the high prospective
scores on the prospectivity map (Fig. 5).

4.3. Assessment of the GRHI maps in the Apulia region

The efficiency of GRHI maps is evaluated using the success-rate
curves method. As illustrated below, this approach is based on the
known presence of high-potential radon concentration and the areas
occupied by various anomaly classes in the evidence layers.

4.3.1. High-potential radon concentration in the Apulia region
To identify areas with high radon potential in the Apulia region, this

study has analyzed 2018 samples of radon measurement data obtained
from the Apulia Regional Environmental Protection Agency in Italy. The
samples have been collected from indoor environments across the
Apulia region, and refer to different ground and underground levels of
dwellings, schools, and workplaces in combination with other infor-
mation about building and ground characteristics. Sampled data were
taken by using SSNTD (NRPB/SSI type passive dosimeters) with six-
month exposure periods. Quality control included calibration with
certified radon atmospheres and adherence to ISO 17025 standards,

ensuring reliable results. The objective of identifying areas with high
radon potential has been pursued through a systematic analysis that is
enumerated below:

(1) According to Cinelli et al. (2011), a correction coefficient of 0.82
is applied to underground (basement) data to convert them into
ground data.

(2) According to Article 103 of Directive 2013/59/EURATOM (BSS),
the reference level for identifying high radon areas, based on
percentage sampling measurements exceeding 300 Bq/m3, is
established at 15%.

(3) The region is divided into cells, each covering an area of one
square kilometer. Geological information is linked and consid-
ered to the central point of each cell.

(4) For each cell, the logarithmic mean radon concentration is
calculated and compared to the corresponding value of the
smoothed logarithmic mean.

(5) The percentage above the action level (P) for each cell is calcu-
lated using the following equation:

P =

∫ ∞

5.1
exp

(

−
(x − lm)

2

2σ2G

)

⋅
1

σG
̅̅̅̅̅̅
2π

√ dx⋅100 (19)

where x represents the natural logarithm of radon concentration and lm
represents the logarithm mean computed for the cell, while σG is the
standard deviation of the logarithmic values for the particular geological
group/cell. The threshold level, fixed at 5.1 and equivalent to logarithm
of 300 Bq/m3, indicates the action level. Thus, the check that the per-
centage sampling measurements exceeding 300 Bq/m3, denoted with P,
is >15% has been conducted.

(6) High-potential points associated with its cells are mapped (Cinelli
et al., 2011).

In Fig. 5, the high potential areas recognized in this method are
shown as black points in the final GRHI maps.

4.3.2. Validation of FGO maps by the ROC curve
The FGO maps of areas with high radon potential have been gener-

ated for γ values of 0.80, 0.85, 0.90, and 0.95. Next, these maps have
been validated based on the existing areas with high radon potential,
which were defined in the previous step. A ROC curve is an analytical
technique, as explained in Giglioni et al. (2021) and Nahm (2022),
which provides a graphical tool for quantifying the performance of a

Fig. 6. Evaluation of the ROC curves for different γ values.
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process. The following confusion matrix D is fundamental for evaluating
the performance of classifiers and computing the integral of the ROC
curves:

D =

[
TP FP
FN TN

]

(20)

where

• TP stands for True Positive, that is correctly identified positive
instances

• FP stands for False Positive, that is instances incorrectly classified as
positive

• TN stands for True Negative, that is correctly identified negative
instances

• FN stands for False Negative, that is instances incorrectly classified as
negative

Thus, the true positive rate (TPr), also referred to as sensitivity or the
probability of detection, quantifies the proportion of accurately identi-
fied positive instances among all actual positive samples; conversely, the
false positive rate (FPr), also known as the probability of false alarms,
indicates the proportion of incorrectly identified positive instances
among all actual negative samples:

TPr =
TP

TP+ FN
(21)

FPr =
FP

FP+ TN
(22)

The ROC curve can be constructed by plotting the TPr against the FPr
for different threshold values. It should be noted that as the curve ap-
proaches the upper left corner of the ROC space, the model's accuracy
increases, but the model's accuracy decreases as the curve approaches
the 45-degree diagonal line in the ROC space.

The reliability of the ROC curve is calculated on the basis of the AUC
values (0 to 1), which correspond to the area under the curve, that is,

AUC =

∫ 1

0
ROC(f)df (23)

where f is associated to the FPr, while ROC(f) denotes the corresponding
TPr. If the model fails to identify a radon hazard area, the AUC becomes
equal to or lower than 0.5. The AUC value ranging from 0.5 to 1 in-
dicates the performance of a model, with higher values suggesting better
discrimination between two classes, as highlighted by Fawcett (2006)
and Nahm (2022).

Fig. 6 depicts the ROC curves, drawn for various γ values. Then, the
AUC values of 0.67, 0.71, 0.84, and 0.79 correspond to γ values of 0.80,
0.85, 0.90, and 0.95, respectively. Notably a γ value of 0.90 yields the
highest AUC value and has been chosen for the final FGO map.

4.3.3. Evaluation of final GRHI maps using the success-rate curve method
This study employs an improved success-rate curve approach to

evaluate the effectiveness of GRHI maps. The constructed success-rate
curve illustrates the accurately categorized portion of the study area
(Pa) along the horizontal axis and the portion of the target associated
with high radon potential (Po) within the study area along the vertical
axis. In order to assess the importance and effectiveness of prospectivity
maps the gauge line, which is a diagonal line, is drawn. Positive spatial
associations can be determined by comparing the relevant success-rate
curve with the gauge line. If the curve is above the gauge line, it in-
dicates a positive association between the prospectivity map and its
corresponding targets, meaning that map is able to precisely predict the
desired targets. Conversely, if the curve is below the gauge line, it sug-
gests a lack of positive spatial association (Carranza and Laborte, 2015;
Parsa et al., 2016; Ghezelbash and Maghsoudi, 2018). For comparative

purposes, it is crucial to display all success-rate curves within the same
plot. When the success-rate curve of a prospectivity map exceeds
another, it suggests a stronger spatial correlation with high radon
concentration.

This study has employed success-rate curves to compare and eval-
uate two prospectivity models namely hybrid AHP-TOPSIS and FGO.
The Pa and Po values for the two GRHI maps have been calculated using
a 10-percentile interval. This has been done to quantitatively evaluate
and compare the AHP-TOPSIS and FGO (with γ = 0.9) GRHI maps. Fig. 7
shows the success-rate curves for the hybrid AHP-TOPSIS and FGO
models.

The analysis of Fig. 7 reveals that both prospectivity models effec-
tively delineate promising areas with high potential radon, as their
success-rate curves are above the gauge line. Nonetheless, the success-
rate curve of the former model surpasses the gauge line to a greater
extent compared to the latter model, indicating a higher level of success
in identifying areas with elevated radon potential. Note that the final
GRHI map, which integrates geogenic factors like uranium content in
bedrock, soil permeability and geological inhomogeneities, shows a
strong correlation with high indoor radon levels in the Apulia region.
The validation, using success rate curves and ROC analysis, confirms the
effectiveness of the model in predicting radon prone areas.

The AHP-TOPSIS model primarily focuses on geogenic factors, which
are crucial indicators of radon potential in dwellings. However, it is
worth recognizing that building-related variables, such as construction
materials, foundation integrity, and ventilation, also significantly in-
fluence indoor radon concentrations. This complexity means that while
the geogenic-based predictions are robust, variations in indoor radon
levels can sometimes occur due to these additional factors.

This consideration further explains why, in some cases, the predicted
radon-prone areas may not perfectly correspond to high indoor radon
levels. However, despite these further challenges, the proposed model
effectively identifies areas with elevated radon risk, as demonstrated by
the validation results.

5. Conclusion

Given the significance of identifying high-potential radon areas and
the complexity involved in achieving this goal using various criteria, the
construction of a GRHI map for a specific region necessitates the use of
multidisciplinary spatial datasets from various sources related to geo-
genic factors and radon transportation.

In this study, a novel approach, called AHP-TOPSIS, was introduced
for combining specific characteristics of the recognized high-potential
radon zones and expert opinions. Thus, for the first time, a GRHI map
for the Apulia region (in Southern Italy) was created using this method.
3 primary factors and 14 sub-criteria were identified and represented as
spatial layers, that serve as effective indicators of radon high potential.

Fig. 7. Success rate curves for two GRHI mapping models.

I. Masoumi et al. Science of the Total Environment 956 (2024) 176419 

14 



To standardize the data, the fuzzification functions were applied, and
consistent scale layers were produced. Subsequently, the Natural Break
method was employed to classify and discretize the fuzzified values from
the 14 evidence layers. Hence, the AHP was employed to allocate sig-
nificant weights to different layers of evidence and interconnected
distinct populations. This allowed for identifying regions that have a
high likelihood of radon contamination. In order to evaluate this
approach, a FGOmapwas performed, excluding any expert opinions and
relying solely on fuzzified values from continuous evidential layers.
Finally, a conceptual validation model was implemented using success-
rate curves. This approach was employed to quantitatively assess the
GRHI maps.

The success rate curves for the two different methods of GRHI
mapping (AHP-TOPSIS and FGO) are positioned significantly above the
diagonal line. This suggests that both models align well with the known
high-potential areas of radon. However, the outcomes from the hybrid
AHP-TOPSIS approach have proved to be more impactful when con-
trasted with the FGO method. Consequently, the application of this
novel approach for GRHI mapping in the Apulia region not only have
produced the first GRHI map, but have also demonstrated its effective-
ness, as an MCDM method, for such mapping. This finding substantiates
the viability of the proposed method for future applications in GRHI
mapping. Moreover, based on the results on the elevated radon potential
areas identified through this approach, policymakers and researchers
can be empowered to adopt appropriate actions in order to effectively
reduce radon exposure and its associated health risks.

As a further development, supplementary data regarding informa-
tion about building and ground characteristics can be also included and
studied even through other approached including artificial neural
networks.
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Coletti, C., Ciotoli, G., Benà, E., Brattich, E., Cinelli, G., Galgaro, A., Massironi, M.,
Mazzoli, C., Mostacci, D., Morozzi, P., Mozzi, P., Nava, J., Ruggiero, L., Sciarra, A.,
Tositti, L., Sassi, R., 2022. The assessment of local geological factors for the
construction of a Geogenic Radon Potential map using regression kriging. A case
study from the Euganean Hills volcanic district (Italy). Sci. Total Environ. 808,
152064.

I. Masoumi et al. Science of the Total Environment 956 (2024) 176419 

15 

http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0005
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0005
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0005
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0010
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0010
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0015
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0015
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0015
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0015
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0020
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0020
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0025
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0025
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0025
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0030
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0030
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0030
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0270
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0270
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0035
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0035
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0035
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0035
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0040
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0040
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0045
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0045
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0045
https://doi.org/10.1016/C2013-0-03864-9
https://doi.org/10.1016/C2013-0-03864-9
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0050
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0050
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0050
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0050
https://doi.org/10.1016/j.cageo.2014.10.004
https://doi.org/10.1016/j.cageo.2014.10.004
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0055
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0055
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0055
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0060
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0060
https://doi.org/10.1007/978-3-642-46768-4_5
https://doi.org/10.1007/978-3-642-46768-4_5
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0070
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0070
https://doi.org/10.1016/j.jenvrad.2018.02.008
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0075
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0075
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0075
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0085
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0085
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0085
https://doi.org/10.4401/ag-7242
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0090
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0090
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0090
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0090
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0095
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0095
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0095
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0095
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0095
http://refhub.elsevier.com/S0048-9697(24)06575-6/rf0095


De Iaco, S., Maggio, S., Palma, M., 2017. Radon predictions with geographical
information system covariates: from spatial sampling to modeling. Geogr. Anal. 49,
215–235.

De Santis, V., Caldara, M., 2015. The 5.5–4.5 kyr climatic transition as recorded by the
sedimentation pattern of coastal deposits of the Apulia region, southern Italy.
Holocene 25 (8), 1313–1329.

Doglioni, C., Mongelli, F., Pieri, P., 1994. The Puglia uplift (SE Italy): an anomaly in the
foreland of the Apenninic subduction due to buckling of a thick continental
lithosphere. Tectonics 13, 1309–1321.

Dokmanic, I., Parhizkar, R., Ranieri, J., Vetterli, M., 2015. Euclidean distance matrices:
essential theory, algorithms, and applications. IEEE Signal Process. Mag. 32, 12–30.

Drolet, J.-P., Martel, R., 2016. Distance to faults as a proxy for radon gas concentration in
dwellings. J. Environ. Radioact. 152, 8–15.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874.
Friedmann, H., Baumgartner, A., Bernreiter, M., Gräser, J., Gruber, V., Kabrt, F.,
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