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Abstract. In the present work, a two-dimensional model based on a higher order Layer-Wise (LW) 
approach is presented for the static and dynamic analysis of doubly-curved anisotropic shell 
structures. The Equivalent Single Layer (ESL) methodology is also obtained as particular case of 
LW. Each lamina of the stacking sequence is modelled as an anisotropic continuum. The 
fundamental equations account for both surface and concentrated loads, as well as the effects of 
the Winkler-Pasternak foundation. Moreover, non-conventional boundary conditions are 
introduced, and the numerical solution is assessed from the Generalized Differential Quadrature 
(GDQ) method. The proposed formulation is validated with respect to refined three-dimensional 
simulations, pointing out its accuracy and computational efficiency. 
Introduction 
In many engineering applications, layered structures with complex shapes are very frequently 
adopted in many branches of engineering. In this context, novel design perspectives require more 
complicated models capable of providing accurate predictions in terms of structural response. 

Among two-dimensional methodologies, the Layer-Wise (LW) formulation [1] seems to 
provide very accurate results with respect to three-dimensional solutions, accounting for the 
compatibility conditions at the interface between adjacent laminae. More specifically, the 
governing equations are solved directly within each lamina. On the other hand, when the 
Equivalent Single Layer (ESL) approach [2-3] is adopted, a reference surface is provided for the 
entire structure, and a higher order through-the-thickness expansion of the field variable is adopted 
taking into account a generalized formulation. 

From literature, closed-form solutions can be derived only for a limited number of cases, such 
that numerical procedures like classical finite elements are more suitable to solve approximately 
more complicated cases. In this context, refined simulations can be very high computationally 
demanding, thus spectral collocation approaches like the Generalized Differential Quadrature 
(GDQ) are adopted [4] since they lead to very accurate results with a reduced number of Degrees 
of Freedom (DOFs). 

In the present contribution, a generalized higher order two-dimensional formulation based on a 
LW approach is proposed to study the linear statics and dynamics of laminated shell structures 
featuring a double curvature, general lamination schemes, and enforced with unconventional 
external constrains [5]. Then, a unified higher order ESL theory is outlined as a particular case of 
the LW. A numerical solution of the fundamental equations is provided, taking into account the 
GDQ method. A doubly-curved shell structure is here selected as benchmark, characterized by a 
softcore lamination scheme, and unconventional boundary conditions. The results are compared 
to those ones obtained from a 3D Finite Element Method (FEM), pointing out the accuracy of the 
proposed formulation, and its computational efficiency. The present ESL and LW higher order 
formulations have been implemented in the DiQuMASPAB software [4], and all the material 
properties are obtained from its database. 
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Theoretical formulation 
Let consider a laminated doubly-curved shell made of l  laminae, described in a reference surface 
( )1 2,α αr  located in its middle thickness. In particular, a global coordinate system 1 2' ,O α α ζ  is 

introduced starting from the principal directions of ( )1 2,α αr . Furthermore, a local coordinate 
system ( )

1 2' , kO α α ζ  is assessed in each k -th layer of thickness kh , with 1,...,k l= . As a consequence, 
the position vector ( ) ( )1 2, ,k α α ζR  of an arbitrary point of the shell can be described as [1]: 

( ) ( )( ) ( ) ( )1
1 2 1 2 1 2, , , ,

2 2
k k kk k

k

h
z

ζ ζ
α α ζ α α α α+ + 

= + + 
 

R r n  (1) 

where ( ) 0 1 0 1
1 2 1 1 2 2, , ,α α α α α α   ∈ ×     and 1,k kζ ζ ζ + ∈   . In addition, 1,k kζ ζ +  denote the locations of 

the intrados and the extrados of the lamina at issue in the global reference system, respectively, 
whereas the dimensionless local out-of-plane coordinate is defined as ( )2 k

k kz hζ= . In other words, 
in Eq. (1) a midsurface is provided for each lamina, so that the global and the local out-of-plane 
coordinates ζ  and ( )kζ  are related as: 

( )kd dζ ζ=   (2) 

On the other hand, the geometry of the structure can be described in the ESL framework in 
terms of the global thickness coordinate ζ , as follows [2]: 

( ) ( ) ( )1 2 1 2 1 2, , , ,α α ζ α α ζ α α= +R r n   (3) 

Referring to the local geometric reference system ( )
1 2' kO α α ζ , the three-dimensional 

displacement field vector ( ) ( )( ) ( ) ( ) ( )
1 2 1 2 3, ,

Tk k k k kU U Uα α ζ  =  U  is described by means of generalized 

thickness functions ( )i kFα
τ  for 1,...,3i =   collected in the matrix ( )k

τF  defined in each k -th layer for 
each 0,..., 1Nτ = + . Thus, ( )k

iU  is expressed in terms of the so-called generalized displacement field 
components ( )k

iu τ , setting 1,2,3i = : 
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Based on the ESL approach, the relation ( ) ( )kτ τ=u u  should be considered in Eq. (4). The 
constitutive equation considered in the problem is valid for generally anisotropic materials relating 
each component of the three-dimensional stress and strain vectors ( )kσ  and ( )kε : 
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The elastic stiffness matrix ( ) ( ) ( ) ( )( )Tk k k k=E T E T  of Eq. (5), referred to the geometric reference 

system ( )
1 2' kO α α ζ , is derived from the rotation transformation ( ) ( )k

kϑT  of matrix ( )kE , with 
coefficients ( )k

ijE  for , 1,...,6i j = , associated to the reference system of the material [4]. The 
fundamental equations and the related boundary conditions are derived from the Hamiltonian 
Principle, accounting for the virtual variation of the elastic strain energy, kinetic energy and 
external work. Referring to an arbitrary τ -th kinematic expansion order, one gets: 

( ) ( ) ( ) ( ) ( )
1 1

0 0
for 0,..., 1, 1,...,

N N
k k k k k N k lτη η τη η τ

η η

τ
+ +

= =

− + = = + =∑ ∑L u M u q 0  (6) 

where ( )kτηL  and ( )kτηM  denote the fundamental and mass matrix, respectively. The symbol 
( ) ( ) ( ) ( )

1 2 3

Tk k k kq q qτ τ τ τ =  q  accounts for the vector of generalized external loads, whose components are 
determined according to a static equivalence principle. 

The higher order two-dimensional problem of Eq. (6) is solved with the GDQ method, starting 
from a discretization of the physical domain in N MI I×  discrete points according to the Chebyshev-
Gauss-Lobatto (CGL) distribution [4]. Referring to an arbitrary univariate function ( )f f x= , the 
GDQ technique provides the following expression for the n -th order derivative evaluated at an 
arbitrary point ix  for 1,..., Qi I= : 

( ) ( ) ( ) ( ) ( )
1

 = 1, 2,..., 
Q

i

In
n n

i ij j Qn
jx x

f x
f x f x i I

x
ς

==

∂
= ≅

∂ ∑  (7) 

where the weighting coefficients ( )n
ijς  are computed with a recursive procedure. 

Applications and results 
We now present some results from the statics and dynamics of a doubly-curved laminated panel 
with a softcore, made of generally anisotropic materials. A revolution hyperbolic hyperboloid is 
considered [4], whose reference surface can be described with principal coordinates 1 2,α α  
according to the following relation: 

( )1 2 1 2 1 1 2 2 1 3, cosh cos cosh sin sinha a cα α α α α α α= − +r e e e  (8) 
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with 2.00ma =  and 1.50mc = . The lamination scheme consists of four different layers with 
general orientation ( )30 / 70 / 70 / 45 . The two external sheets of the structure are made of graphite-

epoxy ( )( )31450 kg / mkρ = , here modeled as orthotropic material with elastic moduli 
( )
1 13.79 GPakE = , ( ) ( )

2 3 8.96 GPak kE E= = , shear moduli ( ) ( )
12 13 7.10 GPak kG G= = , ( )

23 6.21 GPakG =  
and Poisson’s ratios ( ) ( )

12 13 0.30k kν ν= = , ( )
23 0.49kν = . On the other hand, the central core is made of a 

triclinic material ( )( )37750 kg / mkρ = , characterized by the following anisotropic stiffness matrix 
( )kE  [2]: 

( )
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 −
 

− 
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−  

 (9) 

More specifically, the core is made of a lamina with triclinic-soft material, whose stiffness 
constants are equal to 1 1000  of those reported in Eq. (9), whereas the third layer follows exactly 
the triclinic material of Eq. (9). Unconventional boundary conditions have been enforced 
accounting for a Double-Weibull distribution of linear springs. For more details on the topic, the 
interested reader is referred to [5]. 
In Table 1 the first ten mode frequencies, calculated with different higher order ESL and LW 
theories, are compared to those ones resulting from a 3D FEM simulation with 20-node brick 
elements. 

Table 1. Free vibration analysis of a revolution hyperbolic hyperboloid laminated with generally 
anisotropic materials employing higher order theories with both the ESL and LW approaches. 

Mode [ ]Hzf  ( )K
SSSB CFF  

 3D FEM FSDT TSDT ED3 EDZ3 ED4 EDZ4 LD1 LD2 LD3 LD4 
DOFs 327402 5046 10092 10092 12615 12615 15138 20184 30276 40368 50460 

1 11.53 19.21 18.38 18.37 17.26 14.79 14.76 12.17 11.42 11.37 11.39 
2 14.96 28.02 26.70 26.69 24.60 20.24 20.16 15.30 15.06 15.09 15.24 
3 21.42 32.11 31.05 31.07 29.77 26.62 26.57 22.40 21.17 21.13 21.13 
4 28.53 43.04 41.27 41.31 39.21 35.50 35.45 29.76 28.74 28.75 28.90 
5 31.71 52.75 50.13 50.16 46.65 38.95 38.81 32.65 31.50 31.42 31.49 
6 33.12 54.80 52.27 52.35 48.62 40.82 40.73 33.80 32.96 32.95 33.18 
7 40.15 64.36 61.41 61.38 57.92 51.33 51.18 41.83 40.08 40.08 40.15 
8 43.33 66.00 63.11 63.20 59.75 52.09 51.95 44.51 43.01 42.96 42.98 
9 44.38 69.84 66.35 66.44 62.07 53.68 53.56 45.51 43.93 43.98 43.99 
10 47.04 80.76 75.26 75.23 67.94 57.89 57.77 48.89 46.85 46.86 46.93 

Geometric Inputs: Revolution Hyperbolic Hyperboloid, 2.00 ma = , 1.50 mc =  
0
1 1α = − , 1

1 1α = , 0
2 0α =  and 1

2 2α π= , 1 4 0.01 mh h= = , 2 0.10 mh = , 3 0.03 mh =  
Lamination Scheme: 1st layer: graphite-epoxy, 2nd layer: triclinic, 3rd layer: triclinic-soft, 4th layer: graphite-
epoxy 
Computational Grid: CGL distribution with 31N MI I= =  
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When the Murakami’s zigzag function [2] is adopted in Eq. (4) within an ESL framework, more 
accurate results are obtained. However, if LW simulations are performed, a perfect alignment 
between the 3D FEM-based predictions is outlined. Fig. 1 shows the first eight mode shapes of the 
structure, calculated by means of the LD4 theory, showing the three-dimensional capability of the 
proposed formulation. 

 
 

1 11.39 Hzf =  

 
 

2 15.24 Hzf =  

 
 

3 21.13 Hzf =  

 
 

4 28.90 Hzf =  

 
 

5 31.49 Hzf =  

 
 

6 33.18 Hzf =  

 
 

7 40.15 Hzf =  

 
 

8 42.98 Hzf =  

Figure 1. First eight mode shapes of a laminated anisotropic revolution hyperbolic hyperboloid 
under general boundary conditions. The modal eigenvectors have been calculated employing the 

LD4 theory. 
 
The same structure has been investigated under a static load. In particular, a load ( )

3 2000 Nq + = −  
is applied on the structure, according to Ref. [5]. Taking into account a bivariate super elliptic 
distribution [5], the external load is distributed only in a limited area within the physical domain, 
setting 1 2 0m mα α= =  and 1 2 0.53δ δ= =  and 1000n = . The three-dimensional through-the-
thickness stress distribution is depicted in Fig. 2, referring to the point of the physical domain 
located at ( ) ( )( )1 0 1 0

1 1 2 20.25 ,0.75α α α α− − . 
Classical approaches like FSDT and TSDT are not capable of predicting the three-dimensional 
finite element outcomes, as well as higher order ESL theories. The static response of the entire 
lamination scheme can be properly evaluated only with higher order LW theories for both in-plane 
and out-of-plane stress components. As can be seen from the three-dimensional solution, the abrupt 
change of stiffnesses between two adjacent layers leads to very complicated stress distributions, 
which requires a higher order LW approach among two-dimensional theories. 
Conclusions 
In the present work a generalized higher order two-dimensional theory has been presented for the 
static and modal analysis of shell structures made of generally anisotropic laminates. Following 
the LW approach, the fundamental equations are derived within each layer of the structure. As 
particular case, a unified ESL theory accounting for zigzag functions has been derived. The 
equations of motion have been discretized in a strong form via the GDQ method, together with the 
associated boundary conditions. The proposed methodology has been applied to a doubly-curved 
shell structure with a generally anisotropic lamination scheme and soft layers, showing the 
accuracy of the formulation, as well as its computational efficiency. 
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Figure 2. Through-the-thickness distributions of the three-dimensional stress components 
calculated by means of various higher order ESL theories of a fully-clamped ellipsoid subjected 

to a uniform surface load applied at the top surface. 
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