
LIE STRUCTURE OF SMASH PRODUCTS

SALVATORE SICILIANO AND HAMID USEFI

Abstract. We investigate the conditions under which the smash product of an
(ordinary or restricted) enveloping algebra and a group algebra is Lie solvable or
Lie nilpotent.

1. Introduction

Let A be an associative algebra over a field and regard A as a Lie algebra via
the Lie product defined by [x, y] = xy − yx, for every x, y ∈ A. Then A is said
to be Lie solvable (respectively, Lie nilpotent) if it is solvable (nilpotent) as a Lie
algebra. The Lie structure of associative algebras has been extensively studied
over the years and considerable attention has been especially devoted to group
algebras (see e.g. [3, 4, 5, 13, 18, 19, 20]) and restricted enveloping algebras (see
e.g. [15, 16, 17, 22, 23, 24]). In particular, Passi, Passman and Sehgal established
in [13] when the group algebra FG of a group G over a field F is Lie solvable
and Lie nilpotent. Later, Riley and Shalev in [15] settled the same problems for
the restricted enveloping algebra u(L) of a restricted Lie algebra L over a field of
characteristic p > 0, under the assumption that p > 2 for Lie solvability.

Now suppose that a group G acts by automorphisms on a restricted Lie algebra
L over a field F of positive characteristic. Then this action is naturally extended
to the action of FG on u(L) and one can form the smash product u(L)#FG.
Necessary and sufficient conditions under which these smash products satisfy a
nontrivial polynomial identity were provided by Bahturin and Petrogradsky in [1].

In the main results of this paper we determine the conditions under which
u(L)#FG is Lie solvable in odd characteristic (Theorem 3.1) or Lie nilpotent (Theo-
rem 4.2). We also deal with smash products U(L)#FG, where U(L) is the ordinary
enveloping algebra of a Lie algebra over any field. In particular, we establish when
U(L)#FG is Lie solvable (in characteristic different than 2) or Lie nilpotent.

It is worth mentioning that smash products, sometimes referred to as semidirect
products, arise very frequently in the theory of Hopf algebras. A classical example
is a celebrated structure theorem of Cartier-Kostant-Milnor-Moore, asserting that
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every cocommutative Hopf algebra over an algebraically closed field of characteris-
tic zero can be presented as a smash product of a group algebra and an enveloping
algebra (see e.g. [12, §5.6]). Cocommutative Hopf algebras satisfying a polyno-
mial identity have been investigated by Kochetov in [11]. As an application of our
results, we show that a cocommutative Hopf algebra over a field of characteristic
zero is Lie solvable if and only if it is commutative.

2. Preliminaries

We briefly recall the notion of smash product. We refer the reader to [12, §4.1]
or [7, §6.1] for details. Let H be a Hopf algebra and suppose that A is a left
H-module algebra via ϕ : H → EndF(A). For every h ∈ H and x ∈ A we set
h ∗ x = ϕ(h)(x) and use the so-called Sweedler’s notation ∆(h) =

∑
h1 ⊗ h2 for

the comultiplication of H. We recall that the smash product A#H is the vector
space A⊗FH endowed with the following multiplication (we will write a#h for the
element a⊗ h):

(a#h)(b#k) =
∑

a(h1 ∗ b)#h2k.

Now, let G be a group and suppose that G acts by automorphisms on an associative
algebra A over a field F via a group homomorphism ϕ : G→ Aut(A). By linearity,
the Hopf algebra FG acts on A making A an FG-module algebra and, conversely,
every FG-module algebra arises in such a way. Note that, as ∆(g) = g ⊗ g, in this
case the multiplication in A#FG is just given by (a#g)(b#h) = a(g ∗ b)#gh, for
all a, b ∈ A and g, h ∈ G.

In particular, if the group G acts on a Lie algebra L by Lie algebra automor-
phisms, then this action is naturally extended to the action on the universal en-
veloping algebra U(L) and we can form the smash product U(L)#FG. Similarly,
we will consider the smash product u(L)#FG when G acts by (restricted) Lie al-
gebra automorphisms on a restricted Lie algebra L over a field of characteristic
p > 0.

For a group G we will denote by G′ the derived subgroup of G. If L is a restricted
Lie algebra over a field of characteristic p > 0, we recall that a subset S of L is
said to be p-nilpotent if S[p]m = {x[p]m|x ∈ S} = 0, for some m ≥ 1. We will
also denote by L′ the derived subalgebra [L,L] of L. The Lie structure of group
algebras and restricted enveloping algebras has been investigated, respectively, by
Passi, Passman and Sehgal in [13] and by Riley and Shalev in [15]. We quote their
results for future reference:

Theorem 2.1 ([13]). Let FG be the group algebra of a group G over a field F of
characteristic p ≥ 0. Then FG is Lie nilpotent if and only if one of the following
conditions holds:

(1) p = 0 and G is abelian;
(2) p > 0, G is nilpotent and G′ is a finite p-group.
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Theorem 2.2 ([13]). Let FG be the group algebra of a group G over a field F of
characteristic p ≥ 0. Then FG is Lie solvable if and only if one of the following
conditions holds:

(1) p = 0 and G is abelian;
(2) p > 2 and G′ is a finite p-group;
(3) p = 2 and G has a subgroup N of index at most 2 such that N ′ is a finite

2-group.

Theorem 2.3 ([15]). Let L be a restricted Lie algebra over a field of characteristic
p > 0. Then u(L) is Lie nilpotent if and only if L is nilpotent and L′ is finite-
dimensional and p-nilpotent.

Theorem 2.4 ([15]). Let L be a restricted Lie algebra over a field of characteristic
p > 2. Then u(L) is Lie solvable if and only if L′ is finite-dimensional and p-
nilpotent.

We mention that Theorem 2.4 does not hold in characteristic 2 and the charac-
terization of Lie solvable restricted enveloping algebras has been completed only
recently in [24].

We will make frequent use of the following result which was proved by Zalesskii
and Smirnov in [28] and, independently, by Sharma and Srivastava in [21].

Theorem 2.5. Let R be a Lie solvable ring. Then the two-sided ideal of R generated
by [[R,R], [R,R]], R] is associative nilpotent.

3. Lie solvability

Let G be a group and L be a restricted Lie algebra over a field F of positive
characteristic p. In this section, we establish when the smash product of FG and
u(L) is Lie solvable. We will denote by ω(G) and ω(L) the augmentation ideals of
FG and u(L), respectively. Let S ⊆ L. We will use the symbols 〈S〉F and 〈S〉p,
respectively, for the F-vector space and the restricted subalgebra generated by S.
Moreover, we write L′p instead of 〈L′〉p, and we denote by Z(L) the center of L.
If G acts by automorphisms on L, we say that a subalgebra H of L is G-stable if
g ∗ x ∈ H for every g ∈ G and x ∈ H, and that G acts trivially on H if g ∗ x = x
for every g ∈ G, x ∈ H.

Theorem 3.1. Let G be a group acting by automorphisms on a restricted Lie
algebra L over a field F of characteristic p > 2. Then u(L)#FG is Lie solvable if
and only if the following conditions hold:

(1) G′ is a finite p-group;
(2) L contains a finite-dimensional p-nilpotent G-stable restricted ideal P such

that L/P is abelian and G acts trivially on L/P .

Proof. Let R = u(L)#FG. First, we prove the sufficiency. Since P is a G-stable
restricted ideal of L, we have

u(L)#FG/(Pu(L)#FG) ∼= u(L/P )#FG.
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Since P is finite-dimensional and p-nilpotent, ω(P ) is an associative nilpotent ideal
of u(P ), by [15]. Consequently, Pu(L) = ω(P )u(L) = u(L)ω(P ) is a nilpotent ideal
of u(L). Hence, Pu(L)#FG is a nilpotent ideal of R. Thus, as G acts trivially on
L/P , it is enough to show that

u(L/P )#FG ∼= u(L/P )⊗F FG

is Lie solvable. But this is indeed the case as u(L/P ) is commutative and FG is
Lie solvable by Theorem 2.2.

Now suppose that R is Lie solvable. Since FG and u(L) embed in R, we deduce
by Theorems 2.2 and 2.4 that G′ is a finite p-group and L′p is finite-dimensional
and p-nilpotent. Note that L′p is G-stable and

u(L)#FG/(L′pu(L)#FG) ∼= u(L/L′p)#FG.

Moreover, L′pu(L)#FG is associative nilpotent. Therefore, we can replace L with
L/L′p and assume that L is abelian. Indeed, suppose that there exists a finite-

dimensional p-nilpotent G-stable restricted ideal P̄ = P/L′p of L̄ = L/L′p such

that G acts trivially on L̄/P̄ . Then L/P ∼= L̄/P̄ is abelian and clearly P satisfies
condition (2) of the statement. Note that, by [14], the ideal [R,R]R is nil of
bounded index, say t. Let r be a positive integer such that pr ≥ t. Then the
elements [1#g, x#g−1] = ((g − 1) ∗ x)#1 must be nilpotent of index at most pr.
Let P be the space spanned by all elements (g − 1) ∗ x, where x ∈ L and g ∈ G.
Since L is abelian, we have

(g ∗ x− x)p = (g ∗ x)p − x[p] = g ∗ x[p] − x[p] = (g − 1) ∗ x[p] ∈ P.

Thus, P is a p-nilpotent restricted ideal of L. Furthermore, P is G-stable. Indeed,
we have

h ∗ ((g − 1) ∗ x) = hg ∗ x− h ∗ x = (hgh−1 − 1) ∗ (h ∗ x) ∈ P,

for every g, h ∈ G and x ∈ L. In order to prove the necessity part, it is then enough
to show that P is finite-dimensional.

Let J be the associative ideal of R generated by [[[R,R], [R,R]], R]. Note that,
by Theorem 2.5, J is associative nilpotent. Now consider Lie commutators of the
following type:

ξ1 :=[x#g−1, 1#g] = (1− g) ∗ x#1;

ξ2 :=[y#1, 1#h] = (1− h) ∗ y#h;

ξ :=[ξ1, ξ2] = ((1− h) ∗ y)((1− h)(1− g) ∗ x)#h;

[ξ, z#1] =((1− h) ∗ y)((1− h)(1− g) ∗ x)((h− 1) ∗ z)#h

=− (1− h) ∗ (y((1− g) ∗ x)z)#h.
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Let Q be the subspace spanned by all (1− h)(1− g) ∗ x, where x ∈ L, g ∈ G and
h ∈ G′. Note that Q is G-stable:

a ∗ ((1− h)(1− g) ∗ x) = (a(1− h)(1− g)) ∗ x
= (1− aha−1)(1− aga−1) ∗ (a ∗ x) ∈ Q,

for every a, g ∈ G, h ∈ G′ and x ∈ L. Furthermore, J contains all the elements of
the form

[ξ, z#1](1#h−1) = (h− 1) ∗ (y((1− g) ∗ x)z)#1.

We deduce, by the PBW Theorem for restricted Lie algebras (see e.g. [26, Chapter
2, §5, Theorem 5.1]), that (1 − h)ω(G) ∗ L must be finite-dimensional, for every
h ∈ G′. Since G′ is finite, we then conclude that Q is indeed a G-stable p-nilpotent
finite-dimensional restricted ideal of L. Since the ideal Qu(L)#FG is associative
nilpotent, we replace without loss of generality L with L/Q and assume that G′

acts trivially on P . In particular,

(g2 − g) ∗ x = g(g − 1) ∗ x = g ∗ x− x,
for every g ∈ G′ and x ∈ L. It follows by induction on n that

gn ∗ x = ng ∗ x− (n− 1)x,

for every g ∈ G′, x ∈ L. In particular,

gp ∗ x = x,

for every g ∈ G′ and x ∈ L.
Next we consider Lie commutators of the following type:

[1#g, x#1] = (g − 1) ∗ x#g;

[z#g, y#1] = z((g − 1) ∗ y)#g;

η = [(g − 1) ∗ x#g, z((g − 1) ∗ y)#g]

= (g − 1) ∗ (xyz)#g2;

[η, u#g−2] = (g − 1) ∗ (xyz((g + 1) ∗ u))#1

= ((g − 1) ∗ x)((g − 1) ∗ y)((g − 1) ∗ z)((g2 − 1) ∗ u)#1,

where x, y, z ∈ L and g ∈ G′. Let

I = 〈(g2 − 1) ∗ u | u ∈ L, g ∈ G′〉F.
Then I is a p-nilpotent restricted ideal of L contained in P . Moreover, for every
u ∈ L, g ∈ G′ and h ∈ G we have

h((g2 − 1) ∗ u) = (hg2h−1)h ∗ u− h ∗ u = ((hgh−1)2 − 1) ∗ (h ∗ u) ∈ I,
so that I is G-stable. Note that J contains all the elements

((g − 1) ∗ x)((g − 1) ∗ y)((g − 1) ∗ z)((g2 − 1) ∗ u)#1,

where x, y, z, u ∈ L and g ∈ G′. Since J is nilpotent and p > 2, we deduce by
the PBW Theorem that I must be finite-dimensional. It follows that Iu(L)#FG



6 SALVATORE SICILIANO AND HAMID USEFI

is associative nilpotent. Hence, without loss of generality, we replace L with L/I
and assume that g2 acts trivially on L, for every g ∈ G′. Put m = p−1

2
. For every

g ∈ G′ and x ∈ L, we have

g ∗ x = (gp−2m)) ∗ x = gp ∗ ((gm)2 ∗ x) = gp ∗ x = x.

This means that G′ acts trivially on L. Consequently, there is an induced action
of G/G′ on L given by (G′g) ∗ x = g ∗ x, for every g ∈ G and x ∈ L. Moreover, we
clearly have P = ω(G) ∗ L = ω(G/G′) ∗ L and then, in order to prove our claim,
we can replace G by G/G′. For every g, h, a ∈ G and x, y, z ∈ L we have:

[1#g, x#g−1a] = (g − 1) ∗ x#a;

[1#h, y#h−1] = (h− 1) ∗ y#1;

ζ : = [(g − 1) ∗ x#a, (h− 1) ∗ y#1]

= ((g − 1) ∗ x)((a− 1)(h− 1) ∗ y)#a;

[ζ, z#1] = ((g − 1) ∗ x)((a− 1)(h− 1) ∗ y)((a− 1) ∗ z)#a ∈ J.

Since J is nilpotent and p > 2, we deduce that N = ω2(G)∗L is a finite-dimensional
p-nilpotent G-stable restricted ideal of L. We can then replace L by L/N and
assume that G acts trivially on P . Finally, we have

[1#a, x#a−1g] = (a− 1) ∗ x#g;

[z#h, y#1] = z((h− 1) ∗ y)#h;

θ := [(a− 1) ∗ x#g, z((h− 1) ∗ y)#h]

= ((a− 1) ∗ x)((h− 1) ∗ y)((g − 1) ∗ z)#gh;

[θ, u#g−1h−1] = ((a− 1)∗x)((h− 1)∗y)((g − 1) ∗ z)((gh− 1) ∗ u)#1 ∈ J, (3.1)

for every a, g, h ∈ G and x, y, z, u ∈ L. We observe from ω(G)2 ∗ L = 0 that

(gh− 1) ∗ x = (g − 1) ∗ x+ (h− 1) ∗ x, (3.2)

for every g, h ∈ G and x ∈ L. Suppose, if possible, that P is infinite-dimensional.
If (g − 1) ∗ L is infinite-dimensional for some g ∈ G, then there exists a sequence
x1, y1, z1, x2, y2, z2, . . . of elements of L such that the set

{(g − 1) ∗ xi, (g − 1) ∗ yj, (g − 1) ∗ zk| i, j, k = 1, 2, . . .}
is linearly independent. Similarly, as in Equation (3.1), we can see that

Ai = ((g − 1) ∗ xi)((g − 1) ∗ yi)((g − 1) ∗ zi)((g2 − 1) ∗ zi)#1 ∈ J,
for every i. However, by Equation (3.2) and the PBW Theorem, it follows that
A1A2 · · ·An 6= 0 for every n, contradicting the fact the J is nilpotent. Thus,
(g − 1) ∗ L is finite-dimensional, for every g ∈ G. Moreover, using Equations (3.1)
and (3.2), we can see that ω(G) ∗ x is finite-dimensional, for every x ∈ L. Now,
we claim that there exist u ∈ L and g, h ∈ G such that (g − 1) ∗ u and (h− 1) ∗ u
are linearly independent. Let g ∈ G be such that (g − 1) ∗ L 6= 0 and consider
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χ(g) = {y ∈ L|(g − 1) ∗ y = 0}. Let H be a complement of the subspace χ(g) in
L. Then

dimH = dimL/χ(g) = dim (g − 1) ∗ L <∞.
Note that ω(G)∗H is finite-dimensional. Then, since (g−1)∗L is finite-dimensional
and P = ω(G) ∗ L is infinite-dimensional, there exist h ∈ G and y ∈ χ(g) such
that (h − 1) ∗ y /∈ (g − 1) ∗ L. Let x ∈ L \ χ(g) and put u = x + y. It is clear
that (g − 1) ∗ u and (h − 1) ∗ u are linearly independent, as claimed. Now, set
g1 = g, h1 = h, u1 = u, V0 = 0, Z1 = {(g1 − 1) ∗ u1, (h1 − 1) ∗ u1}. Suppose that we
have already defined g1, h1, . . . , gn, hn ∈ G and u1, u2, . . . , un ∈ L such that the set

Zi = {(gi − 1) ∗ ui, (hi − 1) ∗ ui}

is linearly independent modulo Vi−1, for every i = 1, 2, . . . , n, where

Vi =
i∑

k=1

(gk − 1) ∗ L+
i∑

k=1

(hk − 1) ∗ L.

Note that Vn and all the spaces (g − 1) ∗ L are finite-dimensional whereas P is
infinite-dimensional. Arguing in a similar way as above, we can find gn+1, hn+1 ∈ G
and un+1 ∈ L such that the set

Zn+1 = {(gn+1 − 1) ∗ un+1, (hn+1 − 1) ∗ un+1}

is linearly independent modulo Vn. Let m denote the nilpotency index of J . Since
P is infinite-dimensional, we can find a1, . . . , am ∈ G and x1, . . . , xm ∈ L such that
the elements (a1 − 1) ∗ x1, . . . , (am − 1) ∗ xm are linearly independent modulo Vm.
By (3.1), for every j = 1, 2, . . . ,m, we have

Bi = ((a− 1) ∗ xi)((gi − 1) ∗ ui)((hi − 1) ∗ ui)((gihi − 1) ∗ ui) ∈ J.

At this stage, from (3.2) and the PBW Theorem, we conclude that

B1B2 · · ·Bm 6= 0,

a contradiction. Thus P is finite-dimensional, completing the proof. 2

Remark 3.2. In the statement of Theorem 3.1, the assumption on the charac-
teristic cannot be removed. In fact, by Theorem 2.2 and the main theorem in [24],
in characteristic 2 the Lie solvability of u(L)#FG forces neither G′ to be a finite
2-group nor L′ be finite-dimensional and 2-nilpotent (implying that condition (2)
of Theorem 3.1 cannot hold in this case). Moreover, unlike the odd characteristic
case, in characteristic 2 the tensor product of two Lie solvable algebras is not nec-
essarily Lie solvable. For example, consider the three-dimensional Heisenberg Lie
algebra L with a non-trivial p-map on the center and the symmetric group S3 on
three elements acting trivially on L. Thus, in characteristic 2, u(L)⊗FFG may not
be Lie solvable when u(L) and FG are Lie solvable.
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We recall that an associative algebra A is said to be strongly Lie solvable if
δ(n)(R) = 0 for some n, where δ(0)(A) = A and δ(n+1)(A) is the associative ideal
[δ(n)(A), δ(n)(A)]A of A. In view of a result of Jennings (see [10], Theorem 5.6),
this is equivalent to require that A contains a nilpotent ideal N such that A/N
is commutative. Certainly, strong Lie solvability implies Lie solvability, but the
converse is not true in general. For instance, in characteristic 2, Lie solvable group
algebras or restricted enveloping algebras need not be strongly Lie solvable (cf. [22]
and Section V.6 of [18]). However, using the aforementioned result of Jennings,
it is easy to see that in any positive characteristic, if A = u(L)#FG satisfies the
conditions of the statement of Theorem 3.1, then it is strongly Lie solvable. Indeed,
take

N = Pu(L)#FG+ u(L)#ω(G′)FG
and observe that N is a nilpotent ideal of A such that A/N is commutative. Thus,
we obtain the following generalization of a result of Sehgal (see [18, §V.6]) and of
Corollary 1 of [22]:

Corollary 3.3. Let G be a group acting by automorphisms on a restricted Lie
algebra L over a field F of characteristic p > 2. Then u(L)#FG is Lie solvable if
and only if it is strongly Lie solvable.

4. Lie nilpotency

We now consider the Lie nilpotency. We keep the same notation as in Section 3.
Longer Lie commutators are interpreted using the left-normed convention.

If u(L)#FG is Lie nilpotent and the ground field has characteristic p > 2, then
we already know from Theorem 3.1 that ω(G) ∗ L is finite-dimensional. However,
in order to extend such a conclusion also in characteristic 2, we need the following:

Lemma 4.1. Let G be a group acting by automorphisms on a restricted Lie algebra
L over a field F of characteristic p > 0. If u(L)#FG is Lie nilpotent then L contains
a finite-dimensional p-nilpotent G-stable restricted ideal P such that L/P is abelian
and G acts trivially on L/P .

Proof. By Theorem 2.1, we have that G′ is a finite p-group and, by Theorem 2.3, L′p
is finite-dimensional and p-nilpotent. Moreover, L′p is G-stable and so L′pu(L)#FG
is an associative nilpotent ideal of u(L)#FG. Therefore, without loss of generality
we can replace L by L/L′p and assume that L is abelian. We can show, similarly as
in the proof of Theorem 3.1, that P = ω(G) ∗L is a G-stable p-nilpotent restricted
ideal of L. We can further assume that G′ acts trivially on P . It follows that

[1#g, x1#g, . . . , xn#g] = ((g − 1) ∗ x1)((g − 1) ∗ x2) · · · ((g − 1) ∗ xn),

for every g ∈ G′ and x1, x2, . . . , xn ∈ L. Since u(L)#FG is Lie nilpotent, the PBW
Theorem forces that dim (g − 1) ∗ L <∞, for every g ∈ G′. As G′ is finite, it then
follows that Q = ω(G′) ∗ L is a finite-dimensional G-stable restricted ideal of L.
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We can then replace L with L/Q in order to assume that G′ acts trivially on L. In
turn, this allows to replace G by G/G′ and assume that G is abelian. We have

[y#1, 1#g1] = (1− g1) ∗ y#g1;

[y#1, 1#g1, . . . , 1#gn] = (1− gn) · · · (1− g1) ∗ y#g1 · · · gn,

for every y ∈ L and g1, . . . , gn ∈ G. Since u(L)#FG is Lie nilpotent, we deduce
by the PBW Theorem that there exists a minimal m such that ω(G)m ∗ L = 0.
We now prove by induction that ω(G) ∗ L is finite-dimensional. We may assume
m ≥ 2. Note that ω(G)i ∗L is a G-stable p-nilpotent restricted ideal of L, for every
1 ≤ i ≤ m. We have:

[1#g1, y#g−11 g2] = (g1 − 1) ∗ y#g2,

for every g1, g2 ∈ G and y ∈ ω(G)m−2 ∗ L. Since ω(G)m ∗ L = 0, we have

[1#g1, y1#g
−1
1 g2, . . . , yn#g−1n gn+1]=((g1 − 1) ∗ y1) · · · ((gn − 1) ∗ yn)#gn+1,

for every g1, g2, . . . , gn, gn+1 ∈ G and y1, y2, . . . , yn ∈ ω(G)m−2 ∗L. Since u(L)#FG
is Lie nilpotent, we deduce by the PBW Theorem that ω(G)m−1 ∗L must be finite-
dimensional. We can now replace L with L/(ω(G)m−1 ∗ L) and assume ω(G)m−1 ∗
L = 0. By induction on m, we deduce that ω(G) ∗ L is finite-dimensional, as
required. 2

We are now in position to prove the main result of this section. Let a group G
act by automorphisms on an F-vector space V . One says that G acts nilpotently
on V if there exists a chain 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V of G-stable subspaces of
V such that the induced action of G on each factor Vi/Vi−1 is trivial. Note that
this is tantamount to saying that ω(G)m ∗ V = 0 for some m, where V is regarded
as an FG-module in the natural way.

Theorem 4.2. Let G be a group acting by automorphisms on a restricted Lie
algebra L over a field F of characteristic p > 0. Then u(L)#FG is Lie nilpotent if
and only if the following conditions are satisfied:

(1) G is nilpotent and G′ is a finite p-group;
(2) L is nilpotent;
(3) G acts nilpotently on L;
(4) L has a finite-dimensional p-nilpotent G-stable restricted ideal P such that

L/P is abelian and G acts trivially on L/P .

Proof. First we prove the necessity. Clearly, L is nilpotent and, by Theorem 2.1, G
is nilpotent and G′ is a finite p-group. By Lemma 4.1, L has a finite-dimensional
p-nilpotent G-stable restricted ideal P such that L/P is abelian and G acts trivially
on L/P . Thus, it is enough to prove that that G acts nilpotently on P . If P = 0,
we are done. So, we suppose P 6= 0. Let us first prove the claim when G is abelian.
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We have

[y#1, 1#g1] = (1− g1) ∗ y#g1;

[y#1, 1#g1, . . . , 1#gn] = (1− gn) · · · (1− g1) ∗ y#g1 · · · gn,

for every y ∈ L and g1, . . . , gn ∈ G. We deduce that ω(G)m ∗ L = 0, for some
integer m.

Suppose now that G is nilpotent of class c ≥ 2 and set N = γc(G), the last
nontrivial term of the descending central series of G. The argument above shows
that N acts nilpotently on L. In particular, there exists a smallest integer r such
that ω(N)r+1 ∗ (Z(L)∩P ) = 0. Since L is nilpotent, we have Z(L)∩P 6= 0. Hence,
there exists a nonzero element y ∈ ω(N)r ∗ (Z(L)∩P ) such that y[p] = 0. Then we
have h∗y = y, for all h ∈ N . Let H be the G-stable restricted ideal of L generated
by y, that is

H = 〈g ∗ y | g ∈ G〉F.
Note that

h ∗ (g ∗ y) = (hg) ∗ y = (gh) ∗ y = g ∗ (h ∗ y) = g ∗ y,
for every h ∈ N and g ∈ G. This means that N acts trivially on H and so we get an
induced action of G/N on H given by (Ng) ∗ z = g ∗ z, for every z ∈ H and g ∈ G.
Consider the smash product u(H)#F(G/N). By induction on the nilpotence class
c of G, we deduce that there exists an integer k such that ω(G/N)k∗H = 0. Hence,

0 = (Ng1 − 1) · · · (Ngk − 1) ∗ z = (g1 − 1) · · · (gk − 1) ∗ z,
for every g1, . . . , gk ∈ G and z ∈ H. We conclude that

ω(G)k ∗H = 0. (4.1)

We now proceed by induction on dimP to show that G acts nilpotently on P .
Since H is G-stable, we note that G acts on L/H. Then consider the smash
product u(L/H)#FG. By the induction hypothesis, there exists an integer m such
that

ω(G)m ∗ (P/H)⊆H. (4.2)

Thus, Equations (4.1) and (4.2) together imply that ω(G)m+k ∗P = 0, as required.
Now we prove the converse. Let I = Pu(L)#FG. Since Pu(L) is associative

nilpotent, we note that I is an associative nilpotent ideal of R = u(L)#FG. We
argue by induction on dimP to show that R is Lie nilpotent. If dimP = 0 the
claim is trivial. Let k be the smallest integer such that ω(G)k+1 ∗ (Z(L) ∩ P ) = 0.
Let z be a non-zero element in ω(G)k ∗ (Z(L) ∩ P ) such that z[p] = 0. Note that
g ∗ z = z, for all g ∈ G. By the induction hypothesis, we have that u(L/〈z〉p)#FG
is Lie nilpotent. Note that

u(L/〈z〉p)#FG ∼=
u(L)#FG
〈z〉pu(L)#FG

.
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Thus, there exists an integer n such that γn(R)⊆〈z〉pu(L)#FG, where γn(R) is
the n-th term of the descending central series of R regarded as a Lie algebra. Let
u ∈ u(L) and g ∈ G. Since G acts trivially on L/P , we have g ∗ u = u modulo
Pu(L). Moreover, L/P is abelian. So,

[zu#g, v#h] = zu(g ∗ v)#gh− v(h ∗ zu)#hg

= zuv#gh− vzu#hg (mod I2)

= zuv#[g, h] (mod I2).

By induction we get:

[zu1#g1, u2#g2, . . . ut#gt] = zu1 · · ·ut#[g1, . . . , gt] (mod I2),

for every u1, . . . , ut ∈ u(L) and g1, . . . , gt ∈ G. Since FG is Lie nilpotent, we deduce
that γ`(R)⊆I2, for some `. This means that R/I2 is Lie nilpotent and it follows
from Proposition 4.3 in [27] that R is Lie nilpotent. 2

We recall that an associative algebra A is strongly Lie nilpotent if A(m) = 0
for some m, where A(1) = A and A(m+1) is the associative ideal [A(m), A]A of A.
Of course, if A is strongly Lie nilpotent then it is Lie nilpotent, but the converse
is not true in general (see [8]). However, the combination of our previous result
and Theorem 6.5 in [10] shows that u(L)#FG is indeed strongly nilpotent when L
and G satisfy conditions (1)-(4) of Theorem 4.2. Therefore we have the following
corollary, which generalizes a result of Passi, Passman and Sehgal for group algebras
(see [13] or [18, §V.6] ) and a result of Riley and Shalev for restricted enveloping
algebras (see [15, Corollary 6.3]):

Corollary 4.3. Let G be a group acting by automorphisms on a restricted Lie
algebra L over a field F of characteristic p > 0. Then u(L)#FG is Lie nilpotent if
and only if it is strongly Lie nilpotent.

5. Ordinary enveloping algebras and concluding remarks

In view of Theorems 3.1 and 4.2, it is a rather easy matter to deal with the Lie
properties of smash products of ordinary enveloping algebras and group algebras.
Indeed, we have

Theorem 5.1. Let G be a group acting by automorphisms on a Lie algebra L over
a field F of characteristic p ≥ 0.

1) If p = 0, then U(L)#FG is Lie solvable if and only G and L are abelian
and G acts trivially on L.

2) If p > 2, then U(L)#FG is Lie solvable if and only L is abelian, G′ is a
finite p-group and G acts trivially on L.

3) If p > 0, then U(L)#FG is Lie nilpotent if and only if L is abelian, G is
nilpotent, G′ is a finite p-group and G acts trivially on L.
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Proof. 1) Suppose that R = U(L)#FG is Lie solvable. Since R contains isomorphic
copies of U(L) and FG, both U(L) and FG must be Lie solvable. It then follows
from Proposition 6.2 of [15] and Theorem 2.2 that L and G are both abelian. It
remains to prove that the action of G on L is trivial. Note that by [2] the ideal
[R,R]R is nil. Then, the element

z = [1#g, x#g−1] = (g ∗ x− x)#1 ∈ [R,R]R

must be nilpotent. Hence, there is a positive integer n such that

(g ∗ x− x)n#1 = zn = 0.

Since U(L) is a domain, we have x− g ∗ x = 0, as desired. The converse obviously
follows from the fact that the tensor product of two commutative algebras is a
commutative algebra.

2) Suppose that U(L)#FG is Lie solvable. Let L̂ be the restricted Lie algebra
consisting of all primitive elements of the F-Hopf algebra U(L). Then:

L̂ =
∑
k≥0

Lpk ⊆ U(L).

Here, Lpk is the F-vector space spanned by all xp
k
, where x ∈ L. It is known that

U(L) = u(L̂) (see e.g. [25, §1.1, Corollary 1.1.4]). Furthermore, G acts on L̂ by
restricted automorphisms and so Theorem 3.1 applies. In particular, G′ is a finite
p-group. Moreover, since U(L) is a domain, the only p-nilpotent restricted ideal of

L̂ is zero. We deduce, by Theorem 3.1, that L is abelian and G acts trivially on L.
To prove the converse, we note that U(L) is commutative and FG is Lie solvable
(by Theorem 2.2). Then, U(L)#FG ∼= U(L)⊗F FG is Lie solvable.

3) Suppose that U(L)#FG is Lie nilpotent. Arguing as in part 2) of the proof,

we see that U(L) = u(L̂). Therefore, by Theorem 4.2, G is nilpotent and G′ is a
finite p-group. Moreover, since U(L) is a domain, L is abelian and G acts trivially
on L. The converse follows from the fact that U(L) is commutative, FG is Lie
nilpotent by Theorem 2.1, and U(L)#FG ∼= U(L)⊗F FG. 2

Remark 5.2. The second assertion of Theorem 5.1 does not hold in characteristic
2. Indeed, U(L)#FG can be Lie solvable in characteristic 2 even if L is not abelian
(see Corollary 6.2 in [24]) or G′ is not a finite 2-group (cf. Theorem 2.2).

As an application of Theorem 5.1 we get the following:

Corollary 5.3. Let H be a cocommutative Hopf algebra over a field F of charac-
teristic zero. Then H is Lie solvable if and only if H is commutative.

Proof. Since Lie solvability is a multilinear identity, we can assume that F is al-
gebraically closed. Now, by the Cartier–Kostant–Milnor–Moore Theorem (see e.g.
[12, §5.6] ), every cocommutative Hopf algebra over an algebraically closed field of
characteristic zero is isomorphic as an algebra to the smash product U(L)#FG,
where L is the Lie algebra of primitive elements of H and G is the group of the
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group-like elements of H. Therefore, by Theorem 5.1, we infer thatH is Lie solvable
if and only if it is isomorphic to the tensor product of two commutative algebras
(and so itself is commutative), yielding the claim. 2

As the following example shows, in general the previous result is false without
the assumption of cocommutativity:

Example 5.4. Consider the 4-dimensional Sweedler’s Hopf algebra H over a field
F of characteristic zero. We recall that H is generated as an F-algebra by two
elements c and x satisfying the relations

c2 = 1, x2 = 0, xc = −cx.

Then {1, c, x, cx} is a basis of H, and H has a structure of a non-cocommutative
Hopf algebra with comultiplication induced by ∆(c) = c⊗c and ∆(x) = c⊗x+x⊗1,
counit given by ε(c) = 1 and ε(x) = 0, and antipode given by S(c) = c−1 and
S(x) = −cx. (For details we refer the reader to Section 4.6 of [7].) We have
[H,H] = 〈x, cx〉F and [[H,H], [H,H]] = 0, so that H is Lie solvable but not
commutative.
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his visit while this work was completed.

References

[1] Yu. Bahturin, V. Petrogradsky: Polynomial identities in smash products, J. Lie Theory 12
(2002), 369–395.

[2] J. Bergen, D.M. Riley, H. Usefi: Lie superalgebras whose enveloping algebras satisfy a non-
matrix polynomial identity, Israel J. Math. 196 (2013), no. 1, 161–173.

[3] A.K. Bhandari, I.B.S. Passi: Lie nilpotency indices of group algebras, Bull. London Math.
Soc. 24 (1992), 68-70.

[4] A. Bovdi, A. Grishkov: Lie properties of crossed products, J. Algebra 320 (2008), 3447–3460.
[5] A.A. Bovdi, I.I. Khripta: Generalized Lie nilpotent group rings, Math. U.S.S.R. Sbornik 57

(1987), 165–169.
[6] A.A. Bovdi, J. Kurdics: Lie properties of the group algebra and the nilpotency class of the

group of units, J. Algebra 212 (1999), 28-64.
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