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Abstract. We consider the four-dimensional oscillator group, equipped with a well-
known one-parameter family of left-invariant Lorentzian metrics, which includes the bi-
invariant one [15]. In a suitable system of global coordinates, the Ricci soliton equation
for these metrics translates into a system of partial differential equations. Solving such
system, we prove that all these metrics are Ricci solitons. In particular, the bi-invariant
metric on the oscillator group gives rise to infinitely many Ricci solitons (and so, also to
Yamabe solitons).
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1. Introduction

The oscillator group is a four-dimensional connected, simply connected Lie group, whose
Lie algebra (known as the oscillator algebra) coincides with the one generated by the
differential operators, acting on functions of one variable, associated to the harmonic
oscillator problem. This group is given by R× C× R, with the product

(x1, z1, y1) · (x2, z2, y2) = (x1 + x2 +
1

2
Im(z̄1e

iy1z2), z1 + eiy1z2, y1 + y2).

After its introduction [22], the oscillator group has been extended to a one parameter
family Gµ (µ > 0), then generalized in any even dimension 2n ≥ 4, and proved several
times to be an interesting object to study both in differential geometry and in mathematical
physics. Among others, the following aspects of the geometry of the oscillator group(s)
have been investigated: Yang-Baxter [2] and Einstein-Yang-Mills equations [14], compact
quotients by lattices [3], parallel hypersurfaces [9], Ricci collineations and other curvature
symmetries [11], homogeneous structures [15], electromagnetic waves [19], the Laplace-
Beltrami operator [20].

The four-dimensional oscillator group is a well known homogeneous spacetime [13]. Its
bi-invariant metric g0 has been generalized to a one-parameter family ga, −1 < a < 1,
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of left-invariant Lorentzian metrics, of which g0 is the only bi-invariant and symmetric
example [15]. Equipped with these left-invariant Lorentzian metrics, the oscillator group
is “one of the most celebrated examples of Lorentzian naturally reductive spaces” [1].

It is natural to investigate the curvature properties of these renowned examples of
homogeneous spacetimes. For example, it is well known that the bi-invariant metric g0 is
symmetric and conformally flat. The aim of the present paper is to prove that (Gµ, ga) is
a Lorentzian Ricci soliton, for any −1 < a < 1 (and µ > 0).

A Ricci soliton is a pseudo-Riemannian manifold (M, g) admitting a smooth vector field
X, such that

(1.1) LXg + % = λg,

where LX and % respectively denote the Lie derivative in the direction of X and the Ricci
tensor and λ is a real number. A Ricci soliton is said to be shrinking, steady or expanding,
according to whether λ > 0, λ = 0 or λ < 0, respectively.

Ricci solitons are the self-similar solutions of the Ricci flow. As such, they are essen-
tial in understanding its singularities. We may refer to the recent survey [12] for more
information and further references on Ricci solitons. Introduced by Hamilton [16] on
Riemannian manifolds, Ricci solitons have recently been studied by several authors in
pseudo-Riemannian settings, and in particular on Lorentzian spaces. Some examples of
the study of Lorentzian Ricci solitons may be found in [4]-[8],[10].

In a setting of local coordinates, the Ricci soliton equation (1.1) translates into a system
of partial differential equations, which in general is not possible to deal with. For this
reason, when one considers a pseudo-Riemannian homogeneous space (in particular, a Lie
group equipped with a left-invariant pseudo-Riemannian metric), the first approach in
studying the Ricci soliton equation (1.1) is algebraic. A homogeneous Ricci soliton is a
homogeneous space M = G/H, together with a G-invariant metric g, for which equation
(1.1) holds. An invariant Ricci soliton is a homogeneous one, such that equation (1.1)
holds for an invariant vector field.

Algebraic Ricci solitons, introduced by Lauret [18] for Riemannian manifolds, have been
successively extended to pseudo-Riemannian settings [21]. An algebraic Ricci soliton is a
simply connected Lie group G, equipped with a left-invariant pseudo-Riemannian metric
g, such that

Ric = c Id +D,

where Ric denotes the Ricci operator, c is a real number, and D ∈ Der(g). An algebraic
Ricci soliton on a solvable Lie group is called a solvsoliton.

Any algebraic Ricci soliton metric g is also a Ricci soliton [18],[21]. Moreover, it is
relevant to observe that all known examples of homogeneous Riemannian Ricci soliton
metrics on non-compact homogeneous manifolds are isometric to some solvsolitons ([17,
Remark 1.5]).

By the above definitions, when we are concerned with the Ricci soliton metrics on a
homogeneous space G, it is clear that invariant and algebraic Ricci solitons are subclasses
of the class of homogeneous Ricci soliton, which in general do not exhaust the whole class.
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Moreover, an invariant Ricci soliton need not be algebraic [21]. As we shall see, neither
does the converse hold: an algebraic Ricci soliton need not be invariant.

Algebraic Ricci solitons on oscillator groups of every even dimension were investigated
in [21], proving that g0 is a steady algebraic Ricci soliton (nontrivial, since the metric
is not Einstein). In this paper, we focus on the four-dimensional case, also because of
its greater physical motivation. We completely solve the system of partial differential
equations, which translates (1.1) in a suitable set of global coordinates on (Gµ, ga). The
main result is the following.

Theorem 1.1. Every left-invariant metric ga, −1 < a < 1 on the four-dimensional
oscillator group Gµ is a Ricci soliton. More precisely,

(a) The bi-invariant metric g0 is a Ricci soliton (expanding, steady and shrinking, as
it satisfies equation (1.1) for any real value of λ);

(b) The left-invariant metric ga, for any a 6= 0, is a Ricci soliton, which is expanding
when a > 0 and shrinking when a < 0.

A pseudo-Riemannian manifold (M, g) is said to be a Yamabe soliton if it admits a
vector field Y , such that

(1.2) LY g = (τ − ρ)g,

where τ denotes the scalar curvature and ρ is a real constant. Clearly, a Yamabe soliton is
nontrivial when equation (1.2) holds with τ 6= ρ, otherwise it just reduces to the equation
for Killing vector fields. As we shall explain at the end of Section 3, the result listed in
point (a) of Theorem 1.1 has the following consequence.

Corollary 1.2. The bi-invariant metric g0 on the four-dimensional oscillator group Gµ
is a Yamabe soliton.

The paper is organized in the following way. In Section 2 we shall report the description
of a set of global coordinates (x1, x2, x3, x4) on the oscillator group and explicitly compute
all the curvature information with respect to the corresponding basis

{
∂
∂xi

}
of coordinate

vector fields. In Section 3 we shall introduce the system of ten PDE that express the
Ricci soliton equation (1.1) in these global coordinates, and we shall solve it in the case
of the bi-invariant metric g0. The case of the remaining left-invariant Lorentzian metrics
ga, a 6= 0 is dealt with in Section 4.

2. The oscillator group

The four-dimensional oscillator algebra is the real Lie algebra gµ with generators
X,Y, P,Q, whose non-vanishing Lie brackets are

(2.1) [X,Y ] = P, [Q,X] = µY, [Q,Y ] = −µX,

where µ > 0 is a real constant (with respect to the standard notations used for example
in [9] and [21], here we use µ instead of λ, to avoid confusion with equation (1.1)). The
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corresponding connected simply connected Lie group is called the (four-dimensional) os-
cillator group, and we shall denote it by Gµ. In [9], generalizing the argument used in [22]
for the case µ = 1, equation (2.1) was proved to hold for matrices

X =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Y =


0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

P =


0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 , Q =


0 0 0 0
0 0 −µ 0
0 µ 0 0
0 0 0 0

 .

Then, the oscillator group corresponds to the four-dimensional subgroup of GL(4,R)

Gµ = {Mµ(x1, x2, x3, x4) ∈ GL(4,R) | x1, x2, x3, x4 ∈ R},

having as typical group element

Mµ(xi) = exp(x1P ) exp(x2X) exp(x3Y ) exp(x4Q),

that is,

Mµ(xi) =


1 x2 sin(µx4)− x3 cos(µx4) x2 cos(µx4) + x3 sin(µx4) 2x1 + x2x3

0 cos(µx4) − sin(µx4) x2

0 sin(µx4) cos(µx4) x3

0 0 0 1

 .

More precisely, Mµ provides a diffeomorphism between Gµ and R3 × R/2πµ Z.

Throughout the paper, we shall denote by ∂j := ∂/∂xj the coordinate vector field
corresponding to the xj-coordinate. As a matrix in gl(4,R), this corresponds to
∂Mµ

∂xj
(x1, x2, x3, x4). With respect to coordinate vector fields ∂i, a basis {e1, e2, e3, e4}

of left-invariant vector fields on Gµ is explicitly given by

(2.2)

e1 = ∂1,

e2 = −x3 cos(µx4)∂1 + cos(µx4)∂2 + sin(µx4)∂3,

e3 = x3 sin(µx4)∂1 − sin(µx4)∂2 + cos(µx4)∂3,

e4 = ∂4.

For this basis, one has (ej)I = (∂xj )I , where I = Mµ(0, 0, 0, 2kπ/µ), for any integer k, is the
identity matrix. By equation (2.2), a direct calculation yields that the only non-vanishing
Lie brackets [ei, ej ] are given by

(2.3) [e2, e3] = e1, [e2, e4] = −µe3, [e3, e4] = µe2,
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so that the above Lie algebra coincides with the oscillator Lie algebra gµ, via the identifi-
cations X = e2, Y = e3, P = e1 and Q = e4. Further details on this description may be
found in [9], and in the original paper [22] for the classic case µ = 1.

In [15], the oscillator group Gµ has been equipped with the one-parameter family of left-
invariant Lorentzian metrics ga = 〈, 〉, described by having as the possibly nonvanishing
products

(2.4) 〈e1, e1〉 = 〈e4, e4〉 = a, 〈e2, e2〉 = 〈e3, e3〉 = 1, 〈e1, e4〉 = 〈e4, e1〉 = 1,

for any real constant with −1 < a < 1. The case when a = 0 and µ = 1 gives the
bi-invariant metric on the classic oscillator group G1 [15]. When a 6= 0, ga is only left-
invariant. As proved in [9], with respect to the coordinates (x1, x2, x3, x4) described above,
the metric ga is explicitly given by

(2.5) ga = adx21 + 2ax3dx1dx2 + (1 + ax23)dx
2
2 + dx23 + 2dx1dx4 + 2x3dx2dx4 + adx24.

It may be observed that the above explicit description (2.5) is the same for any value of
µ, since this parameter is used in (2.2) for the description of the left-invariant basis.

The explicit description of these metrics makes possible to explicitly compute their
Levi-Civita connection and curvature. With respect to the basis {∂i} of coordinate vector
fields, the Levi-Civita connection ∇ is completely determined by the following possibly
non-vanishing components:

(2.6)
∇∂1∂2 = −a

2∂3, ∇∂1∂3 = −ax3
2 ∂1 + a

2∂2, ∇∂2∂2 = −ax3∂3,

∇∂2∂3 =
1−ax23

2 ∂1 + ax3
2 ∂2, ∇∂2∂4 = −1

2∂3, ∇∂3∂4 = −x3
2 ∂1 + 1

2∂2.

Remark 2.1. The above description of the Levi-Civita connection of (G, ga) yields that
if a 6= a′, then (G, ga) is not homothetic to (G, ga′) (in particular, they are not isometric).

In fact, for the Levi-Civita connections ∇ and ∇′ of ga and ga′ respectively, we have
∇∂1∂2 = −a

2∂3 6= −
a′

2 ∂3 = ∇′∂1∂2.

We can then describe the Riemann-Christoffel curvature tensor R of (Gλ, ga) with re-
spect to {∂i}, computing R(∂i , ∂j )∂k = ∇∂i∇∂j ∂k−∇∂j∇∂i∂k for all indices i, j, k. Denot-

ing by Rij the matrix describing R(∂i, ∂j) with respect to the basis of coordinate vector
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fields, we have

R12 =


a2x3
4

a2x23+a
4 0 ax3

4

−a2

4 −a2x3
4 0 −a

4
0 0 0 0
0 0 0 0

 , R13 =


0 0 a

4 0
0 0 0 0

−a2

4 −a2x3
4 0 −a

4
0 0 0 0

 ,

R14 = 0, R23 =


0 0 ax3 0
0 0 −3a

4 0

−a2x3
4

3a−a2x23
4 0 −ax3

4
0 0 0 0

 ,

R24 =


−ax3

4 −ax23+1
4 0 −x3

4
a
4

ax3
4 0 1

4
0 0 0 0
0 0 0 0

 , R34 =


0 0 −1

4 0
0 0 0 0
a
4

ax3
4 0 1

4
0 0 0 0

 .

Next, the Ricci tensor of (Gµ, ga) is obtained as a contraction of the curvature tensor, by
the equation %(X,Y ) = tr(Z 7→ R(Z,X)Y ). With respect to {∂i}, the Ricci tensor is then
described by the matrix

(2.7) % =


1
2a

2 1
2a

2x3 0 1
2a

1
2a

2x3
1
2a(ax23 − 1) 0 1

2ax3

0 0 −1
2a 0

1
2a

1
2ax3 0 1

2


and the Ricci operator Q, defined by g(QX,Y ) := %(X,Y ), is determined by the matrix

Q =


1
2a ax3 0 1

2

0 −1
2a 0 0

0 0 −1
2a 0

0 0 0 0

 .

Comparison between equations (2.7) and (2.5) easily yields that these metrics are never
Einstein (see also [21]). Moreover, the Ricci eigenvalues are 0, 1

2a and −1
2a (twice), and so,

the Ricci tensor is degenerate, for any value of a. Finally, the Weyl conformal tensor W
is completely determined by the following possibly non-vanishing matrices Wij , describing
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W (∂i, ∂j) with respect to the coordinate vector fields {∂i}:
(2.8)

W12 =


a2x3

6
a(1+ax2

3)
6 0 ax3

6

−a2

6 −a2x3

6 0 −a
6

0 0 0 0

0 0 0 0

 , W13 =


0 0 a

6 0

0 0 0 0

−a2

6 −a2x3

6 0 −a
6

0 0 0 0

 ,

W14 =


−a

3 −ax3

3 0 −a2

3

0 0 0 0

0 0 0 0
a2

3
a2x3

3 0 a
3

 , W23 =


0 0 ax3

2 0

0 0 −a
3 0

−a2x3

6
a(2−ax2

3)
6 0 −ax3

6

0 0 0 0

 ,

W24 =


−ax3

2 −ax2
3

2 0 −a2x3

2
a
6

ax3

6 0 a2

6

0 0 0 0

a2x3

3
a(2ax2

3−1)
6 0 ax3

3

 , W34 =


0 0 0 0

0 0 0 0
a
6

ax3

6 0 a2

6

0 0 −a
6 0

 .

In particular, by (2.8), ga is locally conformally flat if and only if a = 0. Starting from
the above equations, it is also easy to check the well-known fact that ∇R = 0 (that is,
(Gµ, ga) is locally symmetric) if and only if a = 0.

Remark 2.2. Using equation (2.2), we can easily determine the components ui of a vector
field X with respect to the basis of left-invariant vector fields {e1, e2, e3, e4}, in terms of
its components Xi with respect to the basis of coordinate vector fields {∂1, ∂2, ∂3, ∂4} (and
conversely). Explicitly, if X = Xi∂i = ujej , then by (2.2) we have

(2.9)
(u1, u2, u3, u4)

= (X1 + x3X
2, cos(µx4)X

2 + sin(µx4)X
3, cos(µx4)X

3 − sin(µx4)X
2, X4).

In particular, X is a left-invariant vector field if and only if the above Eq. (2.9) holds for
some constants ui, i = 1, . . . , 4.

3. The general system of equations and the solutions for g0

With respect to the coordinate system (x1, x2, x3, x4), let X = Xi∂i denote an arbitrary
vector field on (Gµ, ga), where Xi = Xi(x1, x2, x3, x4), i = 1, . . . , 4 are arbitrary smooth
functions. We now determine the Lie derivative LXga of the metric ga, as explicitly
described in (2.5), with respect to X. To do so, we calculate (LXga)(∂i, ∂j), for all indices
i ≤ j. These components of LXga, together with (2.5) and (2.7), yield that the left-
invariant metric ga, together with the smooth vector field X, is a solution of the Ricci
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soliton equation (1.1) if and only if the following system of 10 PDE is satisfied:
(3.1)

2 a∂1X
1 + 2 ax3∂1X

2 + 2 ∂1X
4 + 1

2a
2 − aλ = 0,

ax3∂1X
1 + a∂2X

1 + ∂1X
2 + ax23∂1X

2 + ax3∂2X
2 + aX3 + x3∂1X

4 + ∂2X
4

+1
2a

2x3 − aλx3 = 0,

a∂3X
1 + ax3∂3X

2 + ∂1X
3 + ∂3X

4 = 0,

∂1X
1 + a∂4X

1 + x3∂1X
2 + ax3∂4X

2 + a∂1X
4 + ∂4X

4 + 1
2a− λ = 0,

2 ax3∂2X
1 + 2 ∂2X

2 + 2 ax23∂2X
2 + 2 ax3X3 + 2x3∂2X

4 + 1
2a

2x23 − 1
2a− λ− aλx

2
3 = 0,

ax3∂3X
1 + ∂3X

2 + ax23∂3X
2 + ∂2X

3 + x3∂3X
4 = 0,

∂2X
1 + ax3∂4X

1 + x3∂2X
2 + ∂4X

2 + ax23∂4X
2 +X3 + a∂2X

4 + x3∂4X
4 + 1

2ax3

−λx3 = 0,

2 ∂3X
3 − 1

2a− λ = 0,

∂3X
1 + x3∂3X

2 + ∂4X
3 + a∂3X

4 = 0,

2 ∂4X
1 + 2x3∂4X

2 + 2 a∂4X
4 + 1

2 − aλ = 0.

We will completely solve the system of PDE (3.1), determining the Ricci solitons of the
four-dimensional oscillator group.

Integrating the eight equation of (3.1), and the first equation of (3.1) with respect to
X4, we find

(3.2)

{
X3 = (14a+ 1

2λ)x3 + F3(x1, x2, x4),

X4 = −aX1 − ax3X2 +
(
1
2aλ−

1
4a

2
)
x1 + F4 (x2, x3, x4) ,

for some smooth functions F3, F4. Replacing into the third equation of (3.1), it becomes

(3.3) ∂1F3 (x1, x2, x4)− aX2 + ∂3F4 (x2, x3, x4) = 0.

It is now evident that the Eq. (3.3) (and so, the whole system (3.1)) will have different
sets of solutions, depending on whether a = 0 or a 6= 0. In the remaining part of this
section, we shall continue assuming a = 0, while in the next one we shall solve (3.1) for
a 6= 0.
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Taking into account a = 0 and (3.2), system (3.1) now reduces to

(3.4)



∂1X
2 + ∂2F4 (x2, x3, x4) = 0,

∂1F3(x1, x2, x4) + ∂3F4 (x2, x3, x4) = 0,

∂1X
1 + x3∂1X

2 + ∂4F4 (x2, x3, x4)− λ = 0,

2 ∂2X
2 + 2x3∂2F4 (x2, x3, x4)− λ = 0,

∂3X
2 + ∂2F3(x1, x2, x4) + x3∂3F4 (x2, x3, x4) = 0,

∂2X
1 + x3∂2X

2 + ∂4X
2 + F3(x1, x2, x4) + x3∂4F4 (x2, x3, x4)− 1

2λx3 = 0,

∂3X
1 + x3∂3X

2 + ∂4F3(x1, x2, x4) = 0,

2 ∂4X
1 + 2x3∂4X

2 + 1
2 = 0.

In the second equation of (3.4), function F3 depends on (x1, x2, x4), while F4 depends
on (x2, x3, x4). Therefore, this equation implies that there exists some smooth function
K(x2, x4), such that

∂1F3(x1, x2, x4) = −∂3F4 (x2, x3, x4) = K(x2, x4).

Integrating, we get

F3 (x1, x2, x4) = K (x2, x4)x1 +G3 (x2, x4) ,

F4 (x2, x3, x4) = −K (x2, x4)x3 +G4 (x2, x4) ,

for some smooth functions G3, G4. Substituting the above into system (3.4), it becomes

(3.5)



∂1X
2 − x3∂2K (x2, x4) + ∂2G4 (x2, x4) = 0,

∂1X
1 + x3∂1X

2 − x3∂4K (x2, x4) + ∂4G4 (x2, x4)− λ = 0,

2 ∂2X
2 − 2x23 ∂2K (x2, x4) + 2x3∂2G4 (x2, x4)− λ = 0,

∂3X
2 + x1∂2K (x2, x4) + ∂

∂x2
G3 (x2, x4)− x3K (x2, x4) = 0,

∂2X
1 + x3∂2X

2 + ∂4X
2 + x1K (x2, x4) +G3 (x2, x4)− x23 ∂4K (x2, x4)

+ x3∂4G4 (x2, x4)− 1
2 λx3 = 0,

∂3X
1 + x3∂3X

2 + x1∂4K (x2, x4) + ∂4G3 (x2, x4) = 0,

2 ∂1X
1 + 2x3∂4X

2 + 1
2 = 0.

We now integrate the first two equations in (3.5) and we get
(3.6){

X1 =
(
(x3∂4 − x23∂2)K (x2, x4) + (x3∂2 − ∂4)G4 (x2, x4) + λ

)
x1 + F1 (x2, x3, x4) ,

X2 = (x3∂2K (x2, x4)− ∂2G4 (x2, x4))x1 + F2 (x2, x3, x4) ,

for some smooth functions F1, F2. Replacing into the fourth equation of (3.5), it gives

2 (∂2K (x2, x4))x1 + ∂3F2 (x2, x3, x4) + ∂2G3 (x2, x4)− x3K (x2, x4) = 0.
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The above equation must be satisfied for any value of x1. Therefore, it yields
∂2K (x2, x4) = 0, that is, K (x2, x4) = H(x4), where H is a smooth function, and then
reduces to

∂3F2 (x2, x3, x4) + ∂2G3 (x2, x4)− x3K (x2, x4) = 0,

which easily yields

F2 (x2, x3, x4) = 1
2 x

2
3H (x4)− x3∂2G3 (x2, x4) + F5 (x2, x4) ,

for a smooth function F5. Replacing into (3.5), it reduces to
(3.7)

2 ∂2G2 (x2, x4)− 2x1∂
2
22G4 (x2, x4)− 2x3∂

2
22G3 (x2, x4) + 2x3∂2G4 (x2, x4)− λ = 0,

−2x1∂
2
24G4 (x2, x4) + ∂2F1 (x2, x3, x4) − x23 ∂222G3 (x2, x4) + x3∂2G2 (x2, x4)

−1
2 x

2
3 ∂4H (x4)− x3∂224G3 (x2, x4) + ∂4G2 (x2, x4) + x1H (x4) +G3 (x2, x4)

+x3∂4G4 (x2, x4)− 1
2 λx3 = 0,

(∂2G4 (x2, x4) + 2∂4H (x4))x1 + ∂3F1 (x2, x3, x4)− x3∂2G3 (x2, x4) + x23H (x4)

+ ∂4G3 (x2, x4) = 0,

x1x3∂
2
44H (x4)− 2x1∂

2
44G4 (x2, x4) + 2 ∂4F1 (x2, x3, x4) + x33

d
dx4

H (x4)

−2x23 ∂
2
24G3 (x2, x4) + 2x3∂4G2 (x2, x4) + 1

2 = 0.

The third equation in (3.7), holding for all values of x1, implies that

∂2G4 (x2, x4) + 2∂4H (x4) = 0.

Integrating, we then find

G4 (x2, x4) = −2x2H
′ (x4) +H4 (x4) .

The third equation in (3.7) now reduces to

∂3F1 (x2, x3, x4)− x3∂2G3 (x2, x4) + x23H (x4) + ∂4G3 (x2, x4) = 0

and integrating we get

F1 (x2, x3, x4) = −1
3x

3
3H (x4) + 1

2 x
2
3 ∂2G3 (x2, x4)− x3∂4G3 (x2, x4) +G1 (x2, x4) .

Substituting the above expressions of F1 and G4 into (3.7), it becomes
(3.8)

2 ∂2G2 (x2, x4)− 2x3∂
2
22G3 (x2, x4)− 4x3H

′ (x4)− λ = 0,

4x1H
′′ (x4)− 1

2 x
2
3 ∂

2
22G3 (x2, x4)− 2x3∂

2
24G3 (x2, x4) + ∂2G1 (x2, x4)

+ x3∂2G2 (x2, x4)− 1
2 x

2
3H
′ (x4) + ∂4G2 (x2, x4) + x1H (x4) +G3 (x2, x4)

− 2x2x3H
′′ (x4) + x3H

′
4 (x4)− 1

2 λx3 = 0,

2x1x3H
′′ (x4) + 4x1x2H

′′′ (x4)− 2x1H
′′
4 (x4) + 1

3 x
3
3H
′
1 (x4)− x23∂224G3 (x2, x4)

− 2x3∂
2
44G3 (x2, x4) + 2 ∂4G1 (x2, x4) + 2x3∂4G2 (x2, x4) + 1

2 = 0.
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Since the first equation in (3.8) must hold for all values of x3, it is equivalent to requiring
that

∂222G3 (x2, x4) + 2H ′ (x4) = 2 ∂2G2 (x2, x4)− λ = 0.

Thus, integrating we obtain

G3 (x2, x4) = −x22H ′ (x4) + U3 (x4)x2 +W3 (x4) ,

G2 (x2, x4) = 1
2 λx2 +H2 (x4) .

We then replace into (3.8) and it gives
(3.9)

4x1H
′′ (x4) + 1

2 x
2
3H
′ (x4) + 2x2x3H

′′ (x4)− 2x3U
′
3 (x4) + ∂2G1 (x2, x4) +H ′2 (x4)

+ x1H (x4)− x22H ′ (x4) + U3 (x4)x2 +W3 (x4) + x3H
′
4 (x4) = 0,

2x1x3H
′′ (x4) + 4x1x2H

′′′ (x4)− 2x1H
′′
4 (x4) + 1

3 x
3
3H
′ (x4) + 2x2x3

2H ′′ (x4)

−x23 U ′3 (x4) + 2x22 x3H
′′′ (x4)− 2x2x3U

′′
3 (x4)− 2x2x3W

′′
3 (x4)

+2 ∂4G1 (x2, x4) + 2x3H
′
2 (x4) + 1

2 = 0.

By the same argument already used several times, collecting the terms with x1 in the
second equation of (3.9), we find that necessarily

2x3H
′′(x4) + 4x2H

′′′(x4)− 2H ′′4 (x4) = 0,

and the above equation must hold for all values of x2 and x3. Henceforth, it yields
H ′′(x4) = H ′′4 (x4) = 0 and integrating we get

H(x4) = C1x4 + P1, H4(x4) = a4x4 + b4,

for some real constants C1, P1, a4, b4. We replace into system (3.9) and it reduces to

(3.10)


∂2G1 (x2, x4)− 2x3U

′
3 (x4) + 1

2 C1 x3
2 +H ′2 (x4) + C1 x1x4 + P1x1

− C1 x2
2 + x2U3 (x4) +W3 (x4) + a4x3 = 0,

1
3 C1 x

3
3 − U ′3 (x4)x

2
3 − 2 (x2U

′′
3 (x4)− 2W ′′3 (x4) + 2H ′2 (x4))x3

+2 ∂4G1 (x2, x4) + 1
2 = 0.

We wrote the last equation in (3.10) as a polynomial in x3. Since this equation must hold
for any value of x3, it yields

C1 = 0, U ′3 (x4) = 0, x2U
′′
3 (x4)− 2W ′′3 (x4) + 2H ′2 (x4) = 0, 2 ∂4G1 (x2, x4) + 1

2 = 0,

which, integrating, gives

C1 = 0, U3 (x4) = a3, H2 (x4) = W ′3 (x4) + b2, G1 (x2, x4) = −1
4x4 +H1(x2) = 0.

Replacing the above expressions into (3.10), it reduces to

(3.11) H1
′ (x2) +W ′′3 (x4) + P1x1 + a3 x2 +W3 (x4) + a4x3 = 0.

From (3.11) we get at once P1 = a4 = 0 and the equation becomes

H1
′ (x2) +W ′′3 (x4) + a3 x2 +W3 (x4) ,
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which, since H1 and W3 only depend on x2 and x4 respectively, yields

H1 (x2) = −1
2a3x

2
2 +Kx2 + b2, W3 (x4) = a3 sin(x4) + b3 cos(x4)−K,

for some real constant K. Now, all equations in (3.1) are satisfied. Replacing the functions
we found by integration into Xi, we explicitly get
(3.12)

X1 = λx1 + 1
2 a3x3

2 − a3x3 cos (x4) + b3x3 sin (x4)− 1
4 x4 −

1
2 a3x2

2 +K x2 + b2,

X2 = −a3x3 + 1
2 λx2 + a3 cos (x4)− b3 sin (x4) + b2,

X3 = a3 x2 + a3 sin (x4) + b3 cos (x4)− 1
2Kλx3,

X4 = b4.

As a check, if we compute LXg0, where X = Xi∂i with Xi described by (3.12), we find
that LXg0 is completely determined by the following possibly non-vanishing components
(LXg0)ij = LXg0(∂i, ∂j), i ≤ j:

(LXg0)14 = (LXg0)22 = (LXg0)33 = λ, (LXg0)24 = λx3, (LXg0)44 = −1
2 ,

which, by (2.5) and (2.7), ensures that the Ricci soliton equation (1.1) is satisfied. Writing
X = uiei as a linear combination of left-invariant vector fields {ei} and using (2.9), we
conclude that X cannot be left-invariant, as X1 + x3X

2 cannot be a real constant for any
choice of λ,K, b2, a3, b3.

Finally, we check that the above Ricci soliton is not a gradient one, that is, there does
not exist a smooth function f(x1, x2, x3, x4), such that X = grad(f) =

∑
i,j g

ij ∂f
∂xi
∂xj ,

except in the steady case. In fact, suppose that such a function exists. Then, by (3.12),
we have

(3.13)



x23∂1f − x3∂2f + ∂4f = λx1 + 1
2 a3x3

2 − a3x3 cos (x4) + b3x3 sin (x4)− 1
4 x4

−1
2 a3x2

2 +K x2 + b2,

−x3∂1f + ∂2f = −a3x3 + 1
2 λx2 + a3 cos (x4)− b3 sin (x4) + b2,

∂3f = a3 x2 + a3 sin (x4) + b3 cos (x4) + 1
2λx3 −K,

∂1f = b4.

Integrating the fourth equation in (3.13), we obtain

f(x1, x2, x3, x4) = b4 x1 + Q (x2, x3, x4)

for some smooth function Q. Replacing into the third equation in (3.13), it gives

∂3Q (x2, x3, x4) = 1
2 λx3 + a3 x2 + a3 sin (x4)− b3 cos (x4)−K

and integrating we obtain

Q (x2, x3, x4) =
1

4
λx3

2 + (a3 x2 + a3 sin (x4) + b3 cos (x4) −K)x3 +W (x2, x4) ,
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where W is a smooth function. The second equation in (3.13) then reduces to

∂2W (x2, x4) = (b4 − 2a3)x3 +
1

2
λx2 + a3 cos (x4)− b3 sin (x4) + b2,

which must hold for all values of x3. Hence, b4 = 2a3 and integrating the above we get

W (x2, x4) =
1

4
λx22 +

(
a3 cos (x4)− b3 sin (x4) + b2

)
x2 + S (x4) ,

where S is a smooth function. Finally, replacing into the first equation in (3.13) and
writing it as a polynomial in x3, we find

(3.14)
a3

1
2 x

2
3 +

(
−b2 + cos (x4) a3 − sin (x4) b3 − 1

2 λx2
)
x3 − λx1

− a3x2 sin (x4)− b3x2 cos (x4) + d
dx4

S (x4)− b2 + 1
4 x4 + 1

2 a3 x2
2 −K x2 = 0

for all values of x3. Therefore, a3 = 0 and (3.14) reduces to(
−b2 − sin (x4) b3 − 1

2 λx2
)
x3 − λx1 − b3x2 cos (x4) + d

dx4
S (x4)− b2 + 1

4 x4 −K x2 = 0.

The coefficient of x3 in the above equation must vanish for all values of x2 and x4 and so,
b2 = b3 = 0 and λ = 0, that is, the Ricci soliton is necessarily steady. The above equation
now reduces to

S ′ (x4) +
1

4
x4 −K x2 = 0,

which must hold for all values of x2 and so, it yields K = 0 and S (x4) = −1
8 x

2
4 + R,

where R is a real constant. All equations in (3.13) are now satisfied. Therefore, this Ricci
soliton is gradient only when λ = 0. Replacing into f(x1, x2, x3, x4) we then explicitly
have X = grad(f), where

X1 = −1

4
x4, X2 = X3 = X4 = 0 and f(x1, x2, x3, x4) = −1

8
x24 +R.

Thus, we have the following result, which proves part (a) of Theorem 1.1.

Theorem 3.1. The bi-invariant metric g0 is a Ricci soliton, which satisfies equation (1.1)
for any real value of λ, where X = Xi∂i is a smooth vector field, whose components Xi

with respect to {∂i} are described by (3.12). This vector field X is never left-invariant,
and the Ricci soliton is gradient only in the steady case.

The bi-invariant metric g0 gives rise to an algebraic Ricci soliton only when λ = 0 [21].
On the other hand, we proved that g0 satisfies equation (1.1) for any value of λ. As a
consequence, g0 also gives rise to a Yamabe soliton. In fact, for any distinct real constants
λ1, λ2, let us consider two smooth vector fields Xλ1 , Xλ2 , with components of the form
(3.12) for λ = λ1 and λ = λ2 respectively. Since Xλ1 , Xλ2 satisfy the Ricci soliton equation
(1.1), vector field Y = Xλ1 −Xλ2 then satisfies

LY g0 = LXλ1g0 − LXλ2g0 = (λ1 − λ2)g0.
Since the scalar curvature of g0 vanishes and λ1−λ2 6= 0, Y is a nontrivial solution of the
Yamabe soliton equation (1.2). This proves Corollary 1.2.



OSCILLATOR SPACETIMES ARE RICCI SOLITONS 14

4. The solutions for ga, a 6= 0

We now restart from (3.1) and determine solutions to the Ricci soliton equation under
the assumption that a 6= 0. As we already observed, equations (3.2) are valid for any
admissible value of a. Since a 6= 0, equation (3.3) now gives at once

X2 (x1, x2, x3, x4) = 1
a (∂1F3 (x1, x2, x4) + ∂3F4 (x2, x3, x4)) .

Hence, multiplying by a when needed, system (3.1) now becomes

(4.1)

2∂211F3 (x1, x2, x4) + a3x3 + 2 a2F3 (x1, x2, x4) + 2 a∂2F4 (x2, x3, x4) = 0,

4 a3∂1X
1 − 4 a∂1X

1 − 4x3∂
2
11F3 (x1, x2, x4) + 4 a2x3 ∂

2
11F3 (x1, x2, x4)

− 4 a∂4F4 (x2, x3, x4) + a4 − 2 a2 − 2 a3 λ+ 4a λ = 0,

4 ∂212F3 (x1, x2, x4) + 4 ∂223F4 (x2, x3, x4) + 2 a3x3
2 + 4 a2x3F3 (x1, x2, x4)

+4a x3∂2F4 (x2, x3, x4)− a2 − 2λ a = 0,

∂233F4 (x2, x3, x4) + a∂2F3 (x1, x2, x4)− ax3 ∂1F3 (x1, x2, x4) = 0,

4 a3∂2X
1 − 4 a∂2X

1 − 4x3∂
2
12F3 (x1, x2, x4)− 4x3∂

2
23F4 (x2, x3, x4)− 4 ∂214F3 (x1, x2, x4)

− 4 ∂234F4 (x2, x3, x4)− 3 a2x3 + 2λ ax3 − 4 aF3 (x1, x2, x4) + 4 a2x3∂
2
12F3 (x1, x2, x4)

+ 4 a2x3∂
2
23F4 (x2, x3, x4)− 4 a2∂2F4 (x2, x3, x4)− 4a x3∂4F4 (x2, x3, x4) = 0,

a3∂3X
1 − a∂3X1 − x3∂233F4 (x2, x3, x4)− a∂4F3 (x1, x2, x4) + a2∂1F3 (x1, x2, x4)

+ a2x3∂
2
33F4 (x2, x3, x4) = 0,

4 a3∂4X
1 − 4 a∂4X

1 − 4x3∂
2
14F3 (x1, x2, x4) − 4x3∂

2
34F4 (x2, x3, x4)− 4 a2∂4F4 (x2, x3, x4)

+ 4 a2x3 ∂
2
14F3 (x1, x2, x4) + 4 a2x3 ∂

2
34F4 (x2, x3, x4)− a+ 2λ a2 = 0.

The argument we follow is then similar to the one used in the previous Section for the case
a = 0, that is, we integrate the equations in (4.1) one by one and each time we replace
the corresponding solutions into the system. For this reason, we shall skip a few details.

Integrating the first equation of (4.1) (in which we observe that F3 depends on
(x1, x2, x4) while F4 depends on (x2, x3, x4)), by a standard calculation we find

F3 (x1, x2, x4) = sin (ax1)G3 (x2, x4) + cos (ax1)H3 (x2, x4)− 1
a∂2G4(x2, x4),

F4 (x2, x3, x4) = G4 (x2, x4) +H4 (x3, x4)− 1
2 a

2x2x3,

for some smooth functions G3, G4, H3, H4. We now substitute the above expressions to F3

and F4 into (4.1) and it becomes
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(4.2)

∂1X
1 − a2∂1X1 − ax3 sin (ax1)G3 (x2, x4)− ax3 cos (ax1)H3 (x2, x4)

+ a3x3 sin (ax1)G3 (x2, x4) + a3x3 cos (ax1)H3 (x2, x4)

− 1
4 a

3 + 1
2 λ a

2 + ∂4G4 (x2, x4) + ∂4H4 (x3, x4) + 1
2 a− λ = 0,

2 cos (ax1) ∂2G3 (x2, x4)− 2 sin (ax1) ∂2H3 (x2, x4)− 3
2 a+ 2 ax3 sin (ax1)G3 (x2, x4)

+ 2 ax3 cos (ax1)H3 (x2, x4)− λ = 0,

∂233H4 (x3, x4) + a sin (ax1) ∂2G3 (x2, x4) + a cos (ax1) ∂2H3 (x2, x4)− ∂222G4 (x2, x4)

− a2x3 cos (ax1)G3 (x2, x4) + a2x3 sin (ax1)H3 (x2, x4) = 0,

4 a3∂2X
1 − 4 a∂2X

1 − a2x3 + 2λ ax3 + 4 a3x3 cos (ax1) + ∂2G3 (x2, x4)

− 4 a3x3 sin (x1a) ∂2H3 (x2, x4)− 4 a sin (ax1)G3 (x2, x4)− 4 a cos (ax1)H3 (x2, x4)

+ 4 ∂2G4 (x2, x4)− 4 ax3 cos (x1a) ∂2G3 (x2, x4) + 4 ax3 sin (x1a) ∂2H3 (x2, x4)

+ 4 a sin (ax1) ∂4H3 (x2, x4)− 4 a cos (ax1) ∂4G3 (x2, x4)− 4 ∂234H4 (x3, x4)

− 4 a2∂2G4 (x2, x4)− 4 ax3 ∂4G4 (x2, x4)− 4 ax3 ∂4H4 (x3, x4) = 0,

a3∂3X
1 − a∂3X1 − x3 ∂233H4 (x3, x4)− a sin (ax1) ∂4G3 (x2, x4)− a cos (ax1) ∂4H3 (x2, x4)

+ ∂224G4 (x2, x4) + a3 cos (ax1)G3 (x2, x4)− a3 sin (ax1)H3 (x2, x4) + a2x3 ∂
2
33H4 (x3, x4) = 0,

4 a3∂4X
1 − 4 a∂4X

1 − 4 ax3 cos (ax1) ∂4G3 (x2, x4) + 4x3 sin (ax1) ∂4H3 (x2, x4)

− 4x3∂
2
34H4 (x3, x4) + 4 a3x3 cos (x1a) ∂4G3 (x2, x4)− 4 a3x3 sin (ax1) ∂4H3 (x2, x4)

+4 a2x3∂
2
34H4 (x3, x4)− 4 a2∂4G4 (x2, x4)− 4 a2∂4H4 (x3, x4)− a+ 2λ a2 = 0.

The second equation in the above system (4.2) is a linear combination of functions cos(ax1),
sin(ax1) and x01, with coefficients independent of variable x1, that is,

2
(
∂2G3

(
x2, x4

)
+ ax3H3 (x2, x4)

)
cos (ax1)− 2

(
∂2H3 (x2, x4)− ax3G3 (x2, x4)

)
sin (ax1)

− 3
2 a− λ = 0.

Since this equation must hold for any value of x1 (and x3), it then easily implies λ = −3
2a

and G3 (x2, x4) = H3 (x2, x4) = 0. Therefore, system (4.2) reduces to
(4.3)

∂1X
1 − a2∂1X1 − a3 + ∂4G4 (x2, x4) + ∂4H4 (x3, x4) + 2 a = 0,

∂222G4 (x2, x4)− ∂233H4 (x3, x4) = 0,

a3∂2X
1 − a∂2X1 − a2x3 − ∂234H4 (x3, x4)− a2∂2G4 (x2, x4) − ax3 ∂4G4 (x2, x4)

− ax3 ∂4H4 (x3, x4) + ∂2G4 (x2, x4) = 0,

a3∂3X
1 − a∂3X1 − x3∂233H4 (x3, x4) + ∂224G4 (x2, x4) + a2x3 ∂

2
33H4 (x3, x4) = 0,

4 a3∂4X
1 − 4 a∂4X

1 − 4x3∂
2
34H4 (x3, x4) + 4 a2x3∂

2
34H4 (x3, x4)

− 4 a2∂4G4 (x2, x4)− 4 a2∂4H4 (x3, x4)− a− 3 a3 = 0.
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Integrating the first equation of (4.3), we find

X1 = 1
a2−1x1

(
∂4G4 (x2, x4) + ∂4H4 (x3, x4) + 2 a− a3

)
+ F1 (x2, x3, x4)

and substituting the above into system (4.3), it becomes
(4.4)

∂222G4 (x2, x4)− ∂233H4 (x3, x4) = 0,

a3∂2F1 (x2, x3, x4)− a2∂2G4 (x2, x4)− a2x3 − a∂2F1 (x2, x3, x4) + ax1 ∂
2
24G4 (x2, x4)

− ax3 ∂4G4 (x2, x4)− ax3 ∂4H4 (x3, x4) + ∂2G4 (x2, x4)− ∂234H4 (x3, x4) = 0,

a3∂3F1 (x2, x3, x4) + a2x3 ∂
2
33H4 (x3, x4) + ax1 ∂

2
34H4 (x3, x4)− a∂3F1 (x2, x3, x4)

− x3∂233H4 (x3, x4) + ∂224G4 (x2, x4) = 0,

4a3∂4F1 (x2, x3, x4)− 3 a3 − 4 a2∂4G4 (x2, x4) + 4 a2x3∂
2
34H4 (x3, x4)

− 4 a2∂4H4 (x3, x4)− a+ 4ax1 ∂
2
44H4 (x3, x4) + 4ax1 ∂

2
44G4 (x2, x4)

− 4 a∂4F1 (x2, x3, x4)− 4x3∂
2
34H4 (x3, x4) = 0.

By the second equation of system (4.4) (which must hold for any value of x1), we have
∂224G4 (x2, x4) = 0 and integrating we obtain

G4 (x2, x4) = U4 (x2) + V4 (x4) .

Replacing into the first equation of (4.4), it gives

∂233H4 (x3, x4)− U ′′4 (x2) = 0,

where H4 only depends on (x3, x4) and U4 only on x2. Therefore, there exists some real
constant H1, such that

∂233H4 (x3, x4) = U ′′4 (x2) = H1.

Integrating, we get

H4 (x3, x4) = 1
2H1 x3

2 + x3 P4 (x4) +Q4 (x4) , U4 (x2) = 1
2H1 x2

2 + a4 x2 + b4,

for some smooth functions P4, Q4 and real constants a4, b4. Replacing the above expres-
sions of G4, H4 and U4, system (4.4) becomes

(4.5)



−a3∂2F1 (x2, x3, x4) + a2x3 + a2H1 x2 + a4a
2 + a∂2F1 (x2, x3, x4) + ax3V

′
4 (x4)

+ ax3
2P ′4 (x4) + ax3Q

′
4 (x4) + P ′4 (x4)−H1 x2 − a4 = 0,

a3∂3F1 (x2, x3, x4) + a2H1x3 − a∂3F1 (x2, x3, x4) + ax1P
′
4 (x4)−H1 x3 = 0,

4a3∂4F1 (x2, x3, x4)− 3 a3 − 4 a2Q′4 (x4)− 4 a2V ′4 (x4) + 4 ax1x3 P
′′
4 (x4)

+ 4 ax1Q
′′
4 (x4)− a+ 4 ax1V

′′
4 (x4)− 4 a∂4F1 (x2, x3, x4)− 4x3 P

′
4 (x4) = 0.

In the second equation of (4.5), the only term involving x1 is ax1P
′
4 (x4), and a 6= 0.

Henceforth, P ′4 (x4) = 0, that is, P4 (x4) = c4, for some real constant c4. The second
equation in (4.5) then reduces to

a(a2 − 1)∂3F1 (x2, x3, x4) + (a2 − 1)H1x3 = 0,
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which, by integration, gives

F1 (x2, x3, x4) = − 1
2aH1 x3

2 +G1 (x2, x4) ,

so that (4.5) now reduces to

(4.6)


a∂2G1 (x2, x4)− a3∂2G1 (x2, x4) + a2H1 x2 + a2x3 + a2a4
+ ax3V

′
4 (x4) + ax3Q

′
4 (x4)−H1 x2 − a4 = 0,

2 ∂4G1 (x2, x4)− 2 a2∂4G1 (x2, x4) + 1
2 + 2 aQ′4 (x4) + 2 aV ′4 (x4)− 2x1Q

′′
4 (x4)

+ 3
2 a

2 − 2x1V
′′
4 (x4) = 0.

The first equation in (4.6) is determined by a polynomial in the variable x3, where the
coefficients of x13 and x03 must vanish, that is,

a2 + aV ′4 (x4) + aQ′4(x4) = 0,

a∂2G1 (x2, x4)− a3∂2G1 (x2, x4) + a2H1 x2 + a2a4 −H1 x2 − a4 = 0.

Taking into account that a(a2 − 1) 6= 0 and integrating, we then get

Q4 (x4) = −V4 (x4)− ax4 + r4, G1 (x2, x4) = 1
2aH1 x2

2 + a4
a x2 + P1 (x4) ,

for some smooth function P1 and a real constant r4. Replacing the above into system (4.6),
it reduces to the only equation

1
2 (1− a2) + 2(1− a2)P ′1 (x4) = 0,

which, since a2 − 1 6= 0, yields

P1 (x4) = −1
4 x4 + s4,

for some real constant s4. All equations in (3.1) are now satisfied. We replace the functions
we found above into Xi and we find

(4.7)


X1 = 1

4a

(
−4a2 x1 + 2H1 x2

2 + 4 a4 x2 − 2H1 x3
2 − ax4 + 4 as4

)
,

X2 = 1
2a

(
2H1 x3 − a2x2 + 2 c4

)
,

X3 = − 1
2a

(
2H1 x2 + a2x3 + 2 a4

)
,

X4 = −3
4ax4 − as4 + b4 + r4.

Computing LXg0, where X = Xi∂i with Xi given by (4.7), we find that LXg0 is
completely determined by the following possibly non-vanishing components (LXg0)ij =
LXg0(∂i, ∂j), i ≤ j:

(LXg0)11 = −2a2, (LXg0)12 = −2a2x3, (LXg0)14 = −2a,

(LXg0)22 = −2a2x23 − a, (LXg0)24 = −2ax3, (LXg0)33 = −a,
(LXg0)44 = −3

2a
2 − 1

2 .

Therefore, by (2.5) and (2.7), the Ricci soliton equation (1.1) is satisfied.
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It easily follows from equations (2.9) (4.7) that X is never left-invariant. In fact, writing
X = uiei as a linear combination of left-invariant vector fields {ei}, we see that u4 = X4 =
−3

4ax4 − as4 + b4 + r4 cannot be constant, since a 6= 0.
We now prove that this Ricci soliton is never a gradient one. In fact, suppose that there

exists a smooth function f(x1, x2, x3, x4), such that X = grad(f). Then, (4.7) yields

(4.8)



1
a2−1

(
a ∂1f + (a2 − 1)x23 ∂1f − (a2 − 1)x3 ∂2f − ∂4f

)
= 1

4a

(
−4a2 x1 + 2H1 x2

2 + 4 a4 x2 − 2H1 x3
2 − ax4 + 4 as4

)
,

−x3∂1f + ∂2f = 1
2a

(
2H1 x3 − a2x2 + 2 c4

)
,

∂3f = − 1
2a

(
2H1 x2 + a2x3 + 2 a4

)
,

− 1
a2−1 (∂1f − a ∂4f) = −3

4ax4 − as4 + b4 + r4.

Integrating the third equation in (4.8), we find

f(x1, x2, x3, x4) = −1
4ax3

2 − 1
a (H1x2 + a4)x3 +Q(x1, x2, x4),

for some smooth function Q. We replace into the second equation in (4.8) and obtain

(4.9) −x3∂1Q(x1, x2, x4)− 1
aH1x3 + ∂2Q(x1, x2, x4) = 1

2a

(
2H1 x3 − a2x2 + 2 c4

)
.

Since (4.9) must hold for all values of x3, in particular it implies ∂1Q(x1, x2, x4) = − 2
aH1,

which, integrated, gives

Q(x1, x2, x4) = −2

a
H1x1 +W (x2, x4).

Replacing into (4.9), it now reduces to ∂2W (x2, x4) = 1
2a

(
−a2x2 + 2 c4

)
, which by inte-

gration yields

W (x2, x4) = −1

4
ax22 +

1

a
c4x2 + S(x4),

for some smooth function S. Finally, replacing into the first equation of (4.8), we have

− 1
a(a2−1)

(
2aH1 + (a2 − 1)H1 x

2
3 + (a2 − 1)

(
c4 − 1

2a
2x2
)
x3 + aS ′(x4)

)
= 1

4a

(
−4a2 x1 + 2H1 x2

2 + 4 a4 x2 − 2H1 x3
2 − ax4 + 4 as4

)
.

The above equation is polynomial in x2 and x3, and the coefficient of x2x3 is a
2 6= 0.

Therefore, the above equation cannot hold for all values of x2 and x3 and so, the Ricci
soliton cannot be gradient. The above results, which prove part (b) of Theorem 1.1, are
summarized as follows.

Theorem 4.1. The (non-isometric) left-invariant metrics ga, for any value of a ∈ ]−1, 1[,
a 6= 0, are Ricci solitons, which satisfy equation (1.1), where X = Xi∂i is a smooth vector
field, whose components Xi with respect to {∂i} are described by (4.7), and λ = −3

2a. In
particular, this Ricci soliton is either expanding or shrinking, depending on whether a > 0
or a < 0. This vector field X is never left-invariant, and the Ricci soliton is not gradient.
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