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Abstract

This paper introduces a new class of copulas and shows its relevance for the applications.
In particular, a stochastic interpretation in terms of a system of dependence components
affected by a global shock is given. As a main feature of the model, the global shock has
an opposite effect on the different components of the system. Copulas generated by this
mechanism are characterized in the bivariate case and their main properties are illustrated.
Connections with concepts like semilinear copulas and conic aggregation functions are also
highlighted. Moreover, a high dimensional extension is presented.
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1. Introduction

Dependence concepts play a crucial role in multivariate statistical literature since it was
recognized that the independence assumption cannot describe conveniently the behavior of
a stochastic system. Since then, different attempts have been made in order to provide more
flexible methods to describe the variety of dependence-types that may occur in practice.
Copula models have become popular in different applications in view of their ability to
describe the relationships among random variables in a flexible way. To this end, several
families of copulas have been introduced, motivated by special needs from the scientific
practice (see, for instance, [17, 20, 33]).

Consider, for instance, the case when one wants to build a stochastic model for describing
the dependence among two (or more) lifetimes, i.e. positive random variables. In engineering
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Omladič), nina.ruzic@mf.uni-lj.si (Nina Ružić)
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applications, joint models of lifetimes may serve to estimate the expected lifetime of a system
composed by several components. In a related situation like portfolio credit risk, instead,
the lifetimes may have the interpretation of time-to-default of firms, or generally financial
entities, while a stochastic model may estimate the price/risk of a relate derivative contract
(e.g. CDO). In both cases, it is of interest to estimate the probability of the occurrence of a
joint default, which means, in the case of a bivariate random vector (X, Y ), the probability
of the event {X = Y }, or more generally {f(X) = g(Y )} for some measurable functions f
and g. Obviously, if one requires the event {f(X) = g(Y )} to have non-zero probability,
then the copula for (X, Y ) must have a singular component, as described in [10, 28].

The generation of convenient statistical distribution for modeling such situations orig-
inated from the seminal paper by Marshall-Olkin [30]; see [2] for an up-to-date overview.
In [12], a general framework was introduced for such constructions, which is briefly recalled
here.

Let (Ω,F ,P) be a given probability space. For d > 2, consider a system composed by
d components whose behavior is described by the continuous random variables (=r.v.’s)
X1, . . . , Xd such that each Xi is distributed according to a continuous distribution function
Fi, Xi ∼ Fi. The r.v. Xi can be interpreted as a shock that effects only the i-th component of
the system, i.e. the idiosyncratic shock. Let S 6= ∅ be a collection of subsets S ⊆ {1, 2, . . . , d}
with at least 2 elements. For each S ∈ S consider the random variable ZS with probability
distribution function GS. These r.v.’s ZS can be interpreted as an (exogenous) shock that
may affect the stochastic behavior of all the system components with index i ∈ S, i.e. the
systemic shock. Furthermore, we assume a given dependence among the introduced random
vectors X and Z. To this end, according to Sklar’s theorem [35], we assume that there exists
a copula C such that

(X,Z) ∼ C((Fi)i=1,...,d, (GS)S∈S).

The copula C hence describes how the shocks X and Z are related. Finally, for i = 1, . . . , d,
assume the existence of a linking function Ψi that expresses how the effects produced by
the shock Xi and all the shocks ZS with i ∈ S are combined together and act on the i-
th component. Given the previous framework, the d-dimensional stochastic model Y =
(Y1, . . . , Yd) can be constructed by setting, for i = 1, . . . , d,

Yi = ψi(Xi, ZS:i∈S).

Interestingly, under suitable assumptions on the d.f. s Fi’s and GS’s, the d.f. of Y is given
by a copula (for more details, see [11]). Several families of copulas can be interpreted by
using the previous stochastic mechanism.

• If (X,Z) is a vector of independent components, then the resulting copula is of
Marshall-Olkin type, according to different generalizations provided by [29, 30, 31]
and by [4, 6, 15, 16] for the exchangeable case.

• If X and Z are independent vectors, but there is some dependence among the compo-
nents of X, then the resulting copula has been described in [11, 12] in the case only
one exogenous shock affects the system.
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• Furthermore, if a specific dependence is assumed between X and Z, then several con-
structions have been provided in [32] (see also [8]) and [3].

Actually, in all previously cited examples, the linking function ψi does not change with i,
i.e. the exogenous shocks affect all the components of the system in the same way. One
attempt to weaken this assumption has been provided in [34]. Here, the main idea is to
consider three independent r.v.’s X1, X2 and Z that are used to construct the bivariate
vector (Y1, Y2) such that Y1 = max{X1, Z} and Y2 = min{X2, Z}. The resulting copula has
been characterized in [34, Theorem 9], and is also called maxmin copula, since it considers
maximum and minimum as linking functions.

Various interpretations of this model can be found, since it is possible in many practical
situations that the common exogenous shock will produce different effects on different system
components. For instance, we may think of X1 and X2 as r.v.’s representing the respective
wealth of two groups of people, and the exogenous shock Z is interpreted as an event that
is beneficial to the first group and detrimental to the second one. Analogously, X1 and X2

can be thoughts as a short and a long investment, respectively, while Z is beneficial only to
one of this type of investment.

One of the main goals of this paper is to extend the latter model in order to allow the
two underlying system variables X1 and X2 to be dependent. In particular, the dependence
is assumed to be governed by a general copula, while the third variable Z is assumed to
be independent of both X1 and X2. Specifically, we prove that joint d.f. arising from the
previously described stochastic mechanism is actually a copula (section 2) and we illustrate
some of its main features (section 3). Finally, we discuss possible multivariate generalizations
(section 4).

As a matter of fact, the obtained class of copulas may have some properties that are
appealing in various contexts related to fuzzy set theory and multicriteria decision making.
First, it includes non-exchangeable copulas, which are used for instance as more general fuzzy
connectives. See, for instance, [1, 14]. Then, its associated measure may have a singular
component, a fact of potential use in various copula-based integrals. See, for instance,
[25, 26]. Finally, the main idea of the class originated from a probabilistic extension of
semilinear copulas, which have been generalized in various directions in the recent literature
(see among others [21, 22]).

2. Maxmin copulas generated by dependent shocks

Here, we present and discuss the generalization of maxmin copulas in the two-dimensional
case. For the definition of a copula and other basic notions from the theory of copulas we
refer the reader to [17, 20, 33]. Given the endogenous shocks X1 and X2 and an exogenous
shock Z, we assume that Z has opposite effects to the two components X1 and X2 of the
system, i.e. it has a beneficial effect on one component (as interpreted by the linking function
max) and detrimental effect on the other one (as interpreted by the linking function min).
Specifically, we will consider the distribution of

(Y1, Y2) = (max{X1, Z},min{X2, Z}), (2.1)
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which can be easily described in view of the following preliminary result.

Lemma 2.1. Let (X1, X2, Z) be distributed according to C(F1, F2, G) and (Y1, Y2) be defined
as in (2.1). Then the distribution function H of (Y1, Y2) is equal to

H(y1, y2) = C(F1(y1), 1,min{G(y1), G(y2)})
+ max{C(F1(y1), F2(y2), G(y1))− C(F1(y1), F2(y2), G(y2)), 0}

(2.2)

for all y1, y2 ∈ R. Additionally, we have that FY1 ≤ min{F1, G} and FY2 ≥ max{F2, G}.

Proof. A short computation reveals that H(y1, y2) is equal to

P (max{X1, Z} ≤ y1,min{X2, Z} ≤ y2, Z ≤ y2) + P (max{X1, Z} ≤ y1,min{X2, Z} ≤ y2, Z > y2)

= P (X1 ≤ y1, Z ≤ min{y1, y2}) + P (X1 ≤ y1, X2 ≤ y2, y2 < Z ≤ y1)

= C(F1(y1), 1, G(min{y1, y2})) + max{C(F1(y1), F2(y2), G(y1))− C(F1(y1), F2(y2), G(y1)), 0}.

Since distribution functions are increasing, we have thatG(min{y1, y2}) = min{G(y1), G(y2)}
and therefore we have proven (2.2). The last part of the lemma follows from FY1(y1) =
P (X1 ≤ y1, Z ≤ y1) and 1− FY2(y2) = P (X2 > y2, Z > y2). �

In order to get more insight into this model, let us now state some definitions and
notations. Throughout the paper, denote by I the interval [0, 1], id the identity function on
[0, 1] and set imF := {F (x)|x ∈ R} for a real function F . For a distribution function F
the quasi-inverse of F is the function F−1 : I −→ [−∞,∞], defined by F−1(u) = inf{x ∈
R|F (x) ≥ u}, where the infimum of an empty set is equal to infinity. Observe that F−1(u) =
∞ if and only if u = 1 /∈ imF , and F−1(u) = −∞ if and only if u = 0. Let us also fix the
notation f(x−), respectively f(x+), for the left, respectively right, limit of the function f at
x, if it exists. For u /∈ imF ∪ {0, 1} denote u = F (F−1(u)) and u = F (F−1(u)−). Note that
u ∈ imF , and that either u ∈ imF or u /∈ imF but u− ε ∈ imF for every ε > 0. Although
introducing these notions needs only elementary calculus, Figure 1 may be helpful to many
readers.

Following the procedure described in [34], we define the functions φ : I −→ I and
ψ : I −→ I in order to derive a convenient expression for the copula of (2.1). The important
part of the definition of φ, respectively ψ, is the one on imFY1 , respectively imFY2 . On
the remaining part of the domain, we define φ and ψ so that they satisfy certain technical
conditions which will be needed in the future and are not important for understanding.
Define

φ(u) =


0, if u = 0,

F1(F
−1
Y1

(u)), if u ∈ imFY1\{0, 1},
1, if u = 1,
φ(u)−φ(u−)

u−u (u− u) + φ(u−), if u /∈ imFY1 ∪ {0, 1},

where we obey the following convention: if u ∈ imFY1 , then φ(u−) means φ(u); and if u = 0,
then φ(u−) means 0. Observe that for u /∈ imFY1 ∪ {0, 1} the function φ is defined simply
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Figure 1: Graphical presentation of a distribution function, its quasi-inverse, and their properties.

as linear interpolation between (u, φ(u−)) and (u, φ(u)). Define

ψ(v) =


0, if v = 0,

F2(F
−1
Y2

(v)), if v ∈ imFY2\{0, 1},
1, if v = 1,
ψ(v)−ψ(v−)

v−v (v − v) + ψ(v−), if v /∈ imFY2 ∪ {0, 1},

where we obey similar convention as with φ. A straightforward proof gives F1(y1) =
φ(FY1(y1)) for all y1 ∈ R with FY1(y1) > 0, and F2(y2) = ψ(FY2(y2)) for all y2 ∈ R with
FY2(y2) < 1 (for details see the proof of Theorem 9 in [34]). Using this, Eq. (2.2) becomes

H(y1, y2) = C(φ(FY1(y1)), 1,min{G(y1), G(y2)})
+ max{C(φ(FY1(y1)), ψ(FY2(y2)), G(y1))− C(φ(FY1(y1)), ψ(FY2(y2)), G(y2)), 0}.

Now, contrarily to the case presented in [34], it is not possible to recover G(yi) in terms of
φ, ψ, FY1 and FY2 , since we allow dependence between shocks X1, X2 and Z, i.e. we can
express the distribution functions FY1 and FY2 only as

FY1(y1) = H(y1,∞) = C(F1(y1), 1, G(y1)) + max{C(F1(y1), 1, G(y1))− F1(y1), 0}
= C(F1(y1), 1, G(y1)) = C(φ(FY1(y1)), 1, G(y1)),

FY2(y2) = H(∞, y2) = G(y2) + F2(y2)− C(1, F2(y2), G(y2))

= G(y2) + ψ(FY2(y2))− C(1, ψ(FY2(y2)), G(y2)).

Therefore, in order to get a closed form expression, we consider the special case of the
model (2.1) when the exogenous shock Z is independent of endogenous shocks (X1, X2), i.e.
we assume that the d.f. of (X1, X2, Z) can be expressed as C(F1, F2) ·G. In such a case, the
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distribution functions of (Y1, Y2), Y1 and Y2 are equal, respectively, to

H(y1, y2) = F1(y1)min{G(y1), G(y2)}+ C(F1(y1), F2(y2))max{(G(y1)−G(y2)), 0},
FY1(y1) = F1(y1)G(y1),

FY2(y2) = G(y2) + F2(y2)− F2(y2)G(y2) = 1− (1− F2(y2))(1−G(y2)).

Now, if we define φ and ψ as before, G(y1) and G(y2) can be expressed as follows:

G(y1) =
FY1(y1)

φ(FY1(y1))
,

G(y2) =
FY2(y2)− ψ(FY2(y2))

1− ψ(FY2(y2))
.

Thus, we can deduce the copula associated with the random pair (Y1, Y2) derived from (2.1),
where Z is independent of (X1, X2), in terms of the copula C of (X1, X2), and the two
functions φ and ψ.

To this end, let F1 be the class of increasing functions φ : I −→ I such that φ(0) = 0,
φ(1) = 1 and the function φ∗ := id/φ is increasing on (0, 1]. Furthermore, let F2 be the
class of increasing functions ψ : I −→ I such that ψ(0) = 0, ψ(1) = 1 and the function

ψ∗(v) :=

{
v−ψ(v)
1−ψ(v) , if v ∈ [0, 1),

1, if v = 1,

is increasing. The functions belonging to the classes F1 and F2 satisfy the following prop-
erties (we refer the reader to [34] for proofs and some other related properties).

Proposition 2.2. For all φ ∈ F1 and ψ ∈ F2 it holds that

(i) ψ ≤ id ≤ φ and ψ∗ ≤ φ∗,

(ii) if there exists u ∈ (0, 1] such that φ(u) = u, then φ is equal to the identity function on
the interval [u, 1],

(iii) if there exists v ∈ [0, 1) such that ψ(v) = v, then ψ is equal to the identity function on
the interval [0, v],

(iv) φ is continuous on the interval (0, 1] and ψ is continuous on the interval [0, 1).

Remark 2.3. Notice that in [34], the function φ∗ (respectively ψ∗) is defined in a different
way, i.e. it corresponds to 1/φ∗ (respectively 1/ψ∗) in the present context. We have changed
the notation for the sake of simplicity, since the new notation can give directly G(y1) =
(φ∗ ◦ FY1)(y1) and G(y2) = (ψ∗ ◦ FY2)(y2).

In the next proposition, we give sufficient conditions on φ and ψ that guarantee φ ∈ F1

and ψ ∈ F2, respectively.
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Proposition 2.4. Let φ, ψ : I −→ I be increasing functions satisfying φ(0) = ψ(0) = 0 and
φ(1) = ψ(1) = 1.

(i) If φ is a concave function, then φ ∈ F1.

(ii) If ψ is a convex function, then ψ ∈ F2.

Proof. The claim (i) follows easily from the fact that, if φ is concave, then it is anti-
star-shaped (see, e.g., [12]). For the sake of completeness we present also the following
straightforward proof. Since φ is a concave function, we have that φ(u) ≥ φ(a) + (u −
a) (φ(b)− φ(a))/(b− a) for all u ∈ [a, b] and arbitrary 0 ≤ a < b ≤ 1. Take u1 < u2 and set
a = 0, b = u2 and u = u1. Since φ(0) = 0, we get φ∗(u1) ≤ φ∗(u2), i.e. φ∗ is increasing and
by that φ ∈ F1.

Claim (ii): If ψ is a convex function, it holds that ψ(v) ≤ ψ(a)+(v−a) (ψ(b)−ψ(a))/(b−
a) for all v ∈ [a, b] and arbitrary 0 ≤ a < b ≤ 1. Now take v1 < v2 and set a = v1 b = 1
and v = v2. Using ψ(1) = 1 we derive ψ∗(v1) ≤ ψ∗(v2). So, ψ∗ is increasing and therefore
ψ ∈ F2. �

Remark 2.5. Notice that functions from classes F1 (respectively, F2) need not be concave
(respectively, convex). Consider, for instance, the following piecewise linear functions

φ(u) =


b
a
u, if u ∈ [0, a],

b, if u ∈ (a, b],

u, if u ∈ (b, 1];

ψ(v) =


v, if v ∈ [0, c),

c, if v ∈ [c, d),
1−c
1−d v −

d−c
1−d , if v ∈ [d, 1],

with parameters 0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ d ≤ 1, respectively.

Now, let C be the set of all bivariate copulas. For all φ ∈ F1, ψ ∈ F2 and C ∈ C define

T (φ, ψ, C)(u, v) := φ(u)min{φ∗(u), ψ∗(v)}+ C(φ(u), ψ(v))max{φ∗(u)− ψ∗(v), 0}
= φ(u)

(
φ∗(u)−max{φ∗(u)− ψ∗(v), 0}

)
+ C(φ(u), ψ(v))max{φ∗(u)− ψ∗(v), 0}

= max{φ∗(u)− ψ∗(v), 0}
(
C(φ(u), ψ(v))− φ(u)

)
+ u. (2.3)

In order to prove that (2.3) defines a bona fide copula, we will use the characterization of
bivariate copulas provided in [13].

To this end, we recall some definitions and results which will be essential in the proof of
the next theorem. Let a, b ∈ R, a < b, and let f : [a, b]→ R be a continuous function. Let
x be a point in [a, b). The limits

D+f(x) = lim sup
h→0+

f(x+ h)− f(x)

h
, D+f(x) = lim inf

h→0+

f(x+ h)− f(x)

h
,

are called, respectively, rightside upper and lower Dini derivatives of f at x. Note that the
rightside Dini derivatives take values in [−∞,+∞].
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Lemma 2.6. A function C : I2 → I is a copula if and only if C satisfies the following
conditions:

(C1) C(u, 0) = C(0, v) = 0 for all u, v ∈ I, i.e. C is grounded;

(C2) C(u, 1) = u and C(1, v) = v for all u, v ∈ I;

(C3) C is continuous;

(C4) there exists a countable set Z ⊂ I such that for every u ∈ I\Z the following conditions
hold:

(i) D+Cv(u) is finite for every v ∈ I,
(ii) D+Cv(u) 6 D+Cv′(u) whenever 0 6 v < v′ 6 1.

Here, Cv(u) denotes the function u 7→ C(u, v) for a fixed v ∈ I.

We can now prove the main result of this section.

Theorem 2.7. For all φ ∈ F1, ψ ∈ F2 and C ∈ C , the function T (φ, ψ, C) given by (2.3)
is a copula.

Proof. The proof is based on the characterization provided in Lemma 2.6. Conditions (C1)
and (C2) can be easily verified. In order to show that Condition (C3) holds true we only
need to prove continuity of T at the points u = 0 and v = 1 by Proposition 2.2 (part (iv)).
First, consider the point u = 0 and assume that φ∗ has a limit 0 at this point. Then, the
first term of (2.3) is a product of a function whose limit is zero and a bounded function;
hence, it is continuous at u = 0. In case that 0 is not the limit of φ∗ at u = 0, finite limit
at u = 0 still exists since φ∗ is increasing. In turn, φ is continuous at u = 0 and, hence, the
first term of (2.3) is a product of a bounded function and a function whose limit is zero; so
it is continuous at u = 0. The case v = 1 goes similarly.

It remains to prove Condition (C4). For a fixed v ∈ I the differential quotient

D(u, h; v) :=
1

h
[T (φ, ψ, C)(u+ h, v)− T (φ, ψ, C)(u, v)]

can be written as 1 +D1(u, h; v) +D2(u, h; v) where

D1(u, h; v) :=
1

h

(
max{φ∗(u+h)−ψ∗(v), 0}−max{φ∗(u)−ψ∗(v), 0}

)(
C(φ(u+h), ψ(v))−φ(u+h)

)
(2.4)

and

D2(u, h; v) :=
(
max{φ∗(u)−ψ∗(v), 0}

)1

h

(
C(φ(u+h), ψ(v))−C(φ(u), ψ(v))−φ(u+h)+φ(u)

)
.

(2.5)
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We first consider the case φ∗(u) < ψ∗(v). This implies that φ∗(u+h) < ψ∗(v) for a sufficiently
small h > 0, so that D1(u, h; v) = D2(u, h; v) = 0 and D(u, h; v) = 1. On the other hand, if
φ∗(u) > ψ∗(v), then φ∗(u+ h) > ψ∗(v) since φ∗ is increasing. Therefore, (2.4) becomes

D1(u, h; v) =
φ∗(u+ h)− φ∗(u)

h

(
C(φ(u+ h), ψ(v))− φ(u+ h)

)
. (2.6)

Let us now turn to the proof of the two statements of Condition (C4) and let us start by
item (ii). It will turn out that inequality in (ii) actually holds for all u ∈ I. Since C is a
copula, it follows that

C(z + k, w)− C(z, w)

k
is a positive increasing function of w, so that it attains its maximum at w = 1 which is equal
to 1. After introducing the notation w = ψ(v), z = φ(u) and k = φ(u + h) − φ(u) we can
rewrite Eq. (2.5) into

D2(u, h; v) = max{φ∗(u)− ψ∗(v), 0}φ(u+ h)− φ(u)

h

(
C(z + k, w)− C(z, w)

k
− 1

)
. (2.7)

Thus D2 (regarded as a function of v when all the other variables are held fixed) is a product
of a positive decreasing function, a positive constant, and a negative increasing function. So,
it is a negative increasing function with maximum 0 at v = 1. Similarly, from Eq. (2.6), D1

can be seen as a product of a positive constant and a negative increasing function. Recall
that D(u, h; v) = 1 +D1(u, h; v) +D2(u, h; v), so that it is an increasing function of v.

Choose 0 6 v < v′ 6 1 and observe that

sup
0<h<ε

D(u, h; v) 6 sup
0<h<ε

D(u, h; v′),

so that

lim sup
h↓0

D(u, h; v) = lim
ε↓0

sup
0<h<ε

D(u, h; v) 6 lim
ε↓0

sup
0<h<ε

D(u, h; v′) = lim sup
h↓0

D(u, h; v′).

Note that the quantities in the inequality above may not be finite. Nevertheless, the in-
equality holds for all u ∈ I. It remains to show item (i) of Condition (C4) and, in view
of the remark above, we only need to consider the case that φ∗(u) > ψ∗(v), which implies
that D1(u, h; v) can be expressed as (2.6). Let Z0 denotes the set of all z ∈ I for which the
upper Dini derivative of Cw(z) is not finite at least for some w ∈ I. Let Z1 be the set of all
u ∈ I such that φ(u) ∈ Z0. Moreover, let Z2 and Z3 be sets of all points of I for which the
upper Dini derivative of φ, respectively φ∗, is not finite. Consequently, the limit superior of
D1(u, h; v) is finite for all u ∈ I \ Z3 by Eq. (2.6). The limit superior of D2(u, h; v) is finite
for all u ∈ I \ (Z1 ∪ Z2) by equations (2.5) (D2(u, h; v) = 0 if there exists h > 0 such that
k = φ(u + h) − φ(u) = 0) and (2.7). Finally, item (i) of Condition (C4) is fulfilled with
Z = Z1 ∪ Z2 ∪ Z3.

It remains to prove that the set Z is countable. Since C is a copula, Z0 is countable by
Lemma 2.6 which implies that Z1 is countable. In order to finish the proof of this theorem
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we only need to show that the sets Z2 and Z3 are also countable. To this end introduce
H(u, v) = min{φ(u)v, u} for u, v ∈ I, and observe that this is a copula by, say, the fact
that it is the maxmin copula (page 3) and using results of [34]. So, by Lemma 2.2 of [13]
there exists a countable set ZH such that for every u ∈ I \ ZH it holds that Dini derivatives
D+Hv(u) and D+Hv(u) are finite for all v ∈ I. Let Zφ be a possible set such that D+φ(u)
and D+φ(u) are finite for all u ∈ I \ Zφ. It is clear that

D+Hv(u) =

{
1, if φ∗(u) 6 v;
vD+φ(u), otherwise.

A similar expression can be obtained for D+Hv(u). Thus, Zφ = ZH is countable and
consequently Z2 ⊆ Zφ is countable. Next, observe that φ · φ∗ = id and therefore

(φ · φ∗)(u+ h)− (φ · φ∗)(u)

h
= 1.

After a short straightforward computation, it can be seen that

φ(u+ h)
φ∗(u+ h)− φ∗(u)

h
= 1− φ∗(u)

φ(u+ h)− φ(u)

h
.

We take limit superior on both sides of this latter expression to conclude that

φ(u)D+φ∗(u) = 1− φ∗(u)D+φ(u),

so that Z3 ⊆ Zφ proving that Z3 is countable and consequently Z is countable. �

Example 2.8. In model (2.1) assume that X1, X2 and Z are identically distributed with a
common distribution function G. In this case, functions φ and ψ have to satisfy φ◦FY1 = G
and ψ ◦ FY2 = G. Since FY1 = G2 and FY2 = 2G− G2, we define φ(u) =

√
u for u ∈ I, and

ψ(v) = 1−
√

1− v for v ∈ I. In Figures 2 and 3 we present scatterplots of copulas T (φ, ψ, C)
of this type. Specifically, when C is the independence copula Π, we get maxmin copula
from [34]. From these figures, some features of the obtained copulas can be easily visualized,
namely the asymmetry, the presence of singular component, and also the support of the
copula measure (which often has an obvious non-empty complement in the unit square). All
these aspects will be discussed in Section 3.

3. Properties and examples of maxmin copulas with dependent shocks

Here we discuss some properties of the proposed general class of copulas.
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Figure 2: Scatterplots of 2000 points generated from the copula T (φ, ψ,C) of Example 2.8, where C is equal
to (from left to right) the independence copula Π, the comonotonicity copula M and the countermonotonicity
copula W .

C1 = Marshall−Olkin(0.5,0.9)
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C3 = Clayton(5)
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Figure 3: Scatterplots of 2000 points generated from the copula C (first row) and T (φ, ψ,C) of Example 2.8
(second row), where C is equal to (from left to right) Marshall-Olkin copula with parameters (α, β) =
(0.5, 0.9), (α, β) = (0.9, 0.5), and Clayton copula with parameter θ = 5.

3.1. Exchangeability
One of the properties that are shared by numerous constructions of copulas is the ex-

changeability (or symmetry). We say that a bivariate copula C is exchangeable if C(u, v) =
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C(v, u) for all (u, v) ∈ I2. In some situations exchangeability is a desirable property; con-
sider, for instance, the case of an engineering system composed by two identical components.
However, in many other cases this assumption is somehow too restrictive, as discussed for
instance in [19].

In the case of copulas of type (2.3), in general, it is hard to expect exchangeability, in
view of the very stochastic interpretation of the family. However, notice that, if we take
φ = ψ, then φ = ψ = id as a consequence of the first statement in Proposition 2.2, we get
T (id, id, C) = C.

3.2. Dependence properties

In the next theorem we investigate which dependence properties of a copula C are pre-
served under the application of transformation (2.3). Consider a random vector (Y1, Y2) with
continuous marginal distribution functions FY1 and FY2 , and associated copula CY1,Y2 . Ran-
dom vector (Y1, Y2) (or copula CY1,Y2) is positively quadrant dependent, PQD, if CY1,Y2(u, v) ≥
Π(u, v) for all u, v ∈ I. The lower tail dependence coefficient λL of random vector (Y1, Y2)
(or copula CY1,Y2) is the following limit (if it exists):

λL(CY1,Y2) = lim
t ↓ 0

P (Y2 ≤ F−1Y2
(t)|Y1 ≤ F−1Y1

(t)) = lim
t ↓ 0

CY1,Y2(t, t)

t
.

For further explanation of the property PQD and tail dependence coefficients we refer the
reader to [33, Chapter 5].

Theorem 3.1. Let C be an arbitrary copula, φ ∈ F1, ψ ∈ F2, and (Y1, Y2) a random vector
with continuous marginal distribution functions and associated copula T (φ, ψ, C). Then it
holds that:

(i) if C is PQD, then T (φ, ψ, C) is PQD,

(ii) if φ is continuous at 0, then

λL(T (φ, ψ, C)) = lim
t ↓ 0

C(φ(t), ψ(t))

φ(t)
,

otherwise we have λL(T (φ, ψ, C)) = φ(0+)(1− ψ′(0+)).

Proof.

(i) If φ∗(u) ≤ ψ∗(v), then T (φ, ψ, C)(u, v) = u ≥ uv and the thesis follows. So, we
consider the case φ∗(u) > ψ∗(v) and prove that (T (φ, ψ, C) − Π)(u, v) ≥ 0. Since
C(u, v) ≥ uv, we have that

(T (φ, ψ, C)− Π)(u, v) = u− (φ∗(u)− ψ∗(v))
(
φ(u)− C(φ(u), ψ(v))

)
− uv

≥ u(1− v)− (φ∗(u)− ψ∗(v))φ(u)(1− ψ(v))

= φ(u)
(
φ∗(u)(1− v)− (φ∗(u)− ψ∗(v))(1− ψ(v))

)
= φ(u)

(
− φ∗(u)(v − ψ(v)) + v − ψ(v)

)
= φ(u)(v − ψ(v))(1− φ∗(u))

≥ 0.
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(ii) By item (i) of Proposition 2.2 we have

T (φ, ψ, C)(t, t) = (φ∗(t)− ψ∗(t))(C(φ(t), ψ(t))− φ(t)) + t

= C(φ(t), ψ(t))(φ∗(t)− ψ∗(t)) + φ(t)ψ∗(t).

So, we get

T (φ, ψ, C)(t, t)

t
=
C(φ(t), ψ(t))

φ(t)

(
1− ψ∗(t)

φ∗(t)

)
+
ψ∗(t)

φ∗(t)
.

In order to compute the lower tail dependence coefficient we take the limit of the
above expression as t approaches 0. Using ψ(0+) = 0 and L’Hôpital’s rule on the
limit of the function (t− ψ(t))/t we compute that the limit of ψ∗(t)/φ

∗(t) is equal to
φ(0+)(1− ψ′(0+)). This implies

λL(T (φ, ψ, C)) =
(
1− φ(0+)(1− ψ′(0+))

)
lim
t ↓ 0

C(φ(t), ψ(t))

φ(t)
+ φ(0+)(1− ψ′(0+)),

from which (ii) follows. To conclude, let us emphasize that ψ′(0+) exists and is between
zero and one.

�

If we keep applying recursively the transformation (2.3), many different copulas are
obtained with a variety of forms of dependence.

For a copula C, and fixed functions φ and ψ, denote T 2C := T (φ, ψ, T (φ, ψ, C)) and
T nC := T (φ, ψ, T n−1C).

Example 3.2. Given α, β ∈ (0, 1) define φα(u) = u1−α, u ∈ I, and ψβ(v) = 1− (1− v)1−β,
v ∈ I. For all α, β ∈ (0, 1) it holds that φα ∈ F1 and ψβ ∈ F2 by Proposition 2.4.

Let α = β = 0.5, i.e. functions φ and ψ are as in Example 2.8. In Figures 4 and 5
we present scatterplots of copula T nC, where C is equal to Clayton copula with parameter
θ = −0.7 and the countermonotonicity copula W . In both cases, the transformation is
applied to symmetric copula, but produces asymmetric copulas. Moreover, in both cases
the support of the copula measure (and of its singular component) changes.

Expression (2.3) makes it difficult to compute Spearman’s rho and Kendall’s tau of
T (φ, ψ, C) even for simple choice of functions φ and ψ, and copula C. We refer the reader
to [33, Chapter 5] for definitions and explanation of Spearman’s rho and Kendall’s tau. In
the paper [34], Spearman’s rho and Kendall’s tau for C = Π, φ = φα and ψ = ψβ are given
for all α, β ∈ (0, 1). In order to check how ρ and τ change with multiple applications of trans-
formation T , we simulate 104 points from a given copula C, recursively apply transformation
T for functions φ = φα and ψ = ψβ with fixed α and β, and compute the approximated
values of ρ and τ on each step. In Tables 1, 2 and 3 we present these calculations, where the
copula C is equal to Π, M and W , respectively, showing possible changes in the strength of
dependence. In the case of Π, respectively W , one can notice that the recursive application
of the transformation plays in favor of an increase in the strength of positive dependence,
respectively changes the negative dependence into a positive one. In the case of M, however,
the values of the measures of association decrease, but still remain positive.

13



C  = Clayton(−0.7)
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Figure 4: Scatterplots of 2000 points generated from the copulas C, TC, and T 2C (from left to right) of
Example 3.2, where C is equal to Clayton copula with parameter θ = −0.7, φ = φ0.5 and ψ = ψ0.5.
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Figure 5: Scatterplots of 2000 points generated from the copulas T 2W , T 3W , and T 5W (from left to right)
of Example 3.2, where φ = φ0.5 and ψ = ψ0.5.

3.3. Support and singular components

As clarified in Example 2.8, copulas generated by shock models are, in general, not
absolutely continuous and have a support that is strictly contained in I2. We refer the
reader to [33, Section 2.4] and [9] for basic notions on support of a copula, and singular and
absolutely continuous components of a copula.

In fact, if φ and ψ are strictly increasing, then the support of the copula given by (2.3)
lies in the set {(u, v) ∈ I2 |φ∗(u) ≥ ψ∗(v)}, i.e. below the curve {(u, v) ∈ I2 |φ∗(u) = ψ∗(v)}.
If, in addition, the functions φ∗ and ψ∗ are strictly increasing and C is absolutely continuous,
then this curve is the support of the singular part of T (φ, ψ, C). Notice that the presence
of singular components of a copula along different curves is also relevant to detect various
paths of tail dependence, as recently stressed in [18].

Now, if we consider the flipping transformation [5] of T (φ, ψ, C) given by u−T (φ, ψ, C)(u, 1−
v), the resulting copula has a zero set below the curve

Γφ,ψ := {(u, v) ∈ I |φ∗(u) = ψ∗(1− v)}.
14



α β ρ(Π) ρ(T 1Π) ρ(T 2Π) ρ(T 3Π) ρ(T 4Π) τ(Π) τ(T 1Π) τ(T 2Π) τ(T 3Π) τ(T 4Π)

0.1 0.1 -0.008 -0.011 -0.004 0.006 0.018 -0.006 -0.007 -0.003 0.004 0.012
0.1 0.5 -0.005 0.051 0.059 0.088 0.076 -0.003 0.034 0.040 0.059 0.051
0.1 0.9 -0.012 0.102 0.144 0.137 0.120 -0.008 0.071 0.098 0.094 0.083
0.5 0.1 0.017 0.057 0.080 0.077 0.081 0.011 0.038 0.054 0.051 0.054
0.5 0.5 0.005 0.295 0.323 0.330 0.333 0.004 0.211 0.228 0.233 0.235
0.5 0.9 0.002 0.552 0.543 0.558 0.558 0.001 0.445 0.440 0.447 0.449
0.9 0.1 0.022 0.129 0.116 0.133 0.143 0.015 0.089 0.080 0.091 0.098
0.9 0.5 0.004 0.540 0.560 0.550 0.549 0.003 0.434 0.449 0.441 0.441
0.9 0.9 0.021 0.852 0.863 0.866 0.871 0.014 0.794 0.805 0.806 0.815

Table 1: Each row presents approximated values of Spearman’s rho and Kendall’s tau of the copula T kΠ
for k ∈ {0, 1, 2, 3, 4}, where functions φ = φα and ψ = ψβ are fixed with parameters α and β specified at
the first two columns (see also Example 3.2).

α β ρ(M) ρ(T 1M) ρ(T 2M) ρ(T 3M) ρ(T 4M) τ(M) τ(T 1M) τ(T 2M) τ(T 3M) τ(T 4M)

0.1 0.1 1.000 0.860 0.734 0.617 0.510 1.000 0.800 0.641 0.510 0.400
0.1 0.5 1.000 0.554 0.301 0.178 0.121 1.000 0.442 0.212 0.120 0.081
0.1 0.9 1.000 0.207 0.140 0.138 0.134 1.000 0.144 0.096 0.095 0.092
0.5 0.1 1.000 0.556 0.301 0.167 0.128 1.000 0.445 0.212 0.114 0.086
0.5 0.5 1.000 0.480 0.369 0.337 0.339 1.000 0.344 0.261 0.238 0.240
0.5 0.9 1.000 0.564 0.558 0.556 0.549 1.000 0.451 0.448 0.445 0.445
0.9 0.1 1.000 0.209 0.137 0.154 0.133 1.000 0.145 0.094 0.105 0.091
0.9 0.5 1.000 0.561 0.548 0.555 0.563 1.000 0.444 0.437 0.446 0.448
0.9 0.9 1.000 0.871 0.877 0.856 0.862 1.000 0.814 0.819 0.798 0.802

Table 2: Each row presents approximated values of Spearman’s rho and Kendall’s tau of the copula T kM
for k ∈ {0, 1, 2, 3, 4}, where functions φ = φα and ψ = ψβ are fixed with parameters α and β specified at
the first two columns (see also Example 3.2).

The obtained copula is hence given by

T2(φ, ψ, C)(u, v) = u− T (φ, ψ, C)(u, 1− v)

= max{φ∗(u)− ψ∗(1− v), 0}
(
φ(u)− C(φ(u), ψ(1− v))

)
.

Thus, the introduced copulas of type (2.3) can provide a useful class of copulas when the
zero set is known; a question connected with the study of conic aggregation functions (see,
for instance, [23, 24]).

Example 3.3. For a function φ ∈ F1 set ψφ(t) = 1− φ(1− t). Then ψφ ∈ F2 and

T3(φ,C)(u, v) = T2(φ, ψφ, C)(u, v) = W (φ∗(u), φ∗(v))
(
φ(u)− C(φ(u), 1− φ(v))

)
,

where W is the countermonotonicity copula. This construction can be seen as a transfor-
mation T3 : F1 × C −→ C . Observe that F1, equipped with the function composition, is a
semigroup with identity. However, the transformation T3 restricted to F1 is not a semigroup
homomorphism or anti-homomorphism.

Let us explore the properties of the zero set of the copula in this case. Assume that the
functions φ and φ∗ are strictly increasing and that Γ = {(u, γ(u)) |u ∈ I} for some function
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α β ρ(W ) ρ(T 1W ) ρ(T 2W ) ρ(T 3W ) ρ(T 4W ) τ(W ) τ(T 1W ) τ(T 2W ) τ(T 3W ) τ(T 4W )

0.1 0.1 -1.000 -0.853 -0.724 -0.624 -0.528 -1.000 -0.798 -0.644 -0.533 -0.437
0.1 0.5 -1.000 -0.490 -0.222 -0.071 0.007 -1.000 -0.402 -0.169 -0.053 0.003
0.1 0.9 -1.000 -0.019 0.144 0.118 0.112 -1.000 -0.010 0.099 0.082 0.077
0.5 0.1 -1.000 -0.520 -0.249 -0.084 -0.003 -1.000 -0.421 -0.186 -0.060 -0.003
0.5 0.5 -1.000 0.018 0.194 0.265 0.302 -1.000 0.027 0.148 0.194 0.218
0.5 0.9 -1.000 0.470 0.529 0.539 0.536 -1.000 0.403 0.430 0.433 0.431
0.9 0.1 -1.000 0.005 0.139 0.129 0.131 -1.000 0.005 0.096 0.089 0.090
0.9 0.5 -1.000 0.466 0.538 0.562 0.563 -1.000 0.403 0.434 0.451 0.451
0.9 0.9 -1.000 0.828 0.867 0.865 0.866 -1.000 0.801 0.812 0.806 0.810

Table 3: Each row presents approximated values of Spearman’s rho and Kendall’s tau of the copula T kW
for k ∈ {0, 1, 2, 3, 4}, where functions φ = φα and ψ = ψβ are fixed with parameters α and β specified at
the first two columns (see also Example 3.2).

γ : I −→ I. We will derive some properties of γ if Γ = Γφ,ψφ = {(u, v) ∈ I |φ∗(u)+φ∗(v) = 1}.
From the symmetry of the copula, it follows that γ ◦γ = id. Since γ(u) = (φ∗)−1(1−φ∗(u)),
γ is a strictly decreasing function.

We observe that T3(φ,C) actually belongs to constructions considered in [7, 27]. In
particular, Corollary 3 in [7] states that, if C1 and C2 are bivariate copulas, and f, g ∈ F1,
then

(C1 � C2)(u, v) := C1(f
∗(u), g∗(v))C2(f(u), g(v))

is a copula. So, T3(φ,C) = W � C̃ for C̃(u, v) = u − C(u, 1 − v) where operation � is used
with respect to f = g = φ.

Curiously, if we set W 2 � C̃ = W � (W � C̃), W k � C = W � (W k−1 � C̃) for k ≥ 3, the
following recursive formula holds

(W n � C̃)(u, v) =
n∏
k=1

W

(
φk−1(u)

φk(u)
,
φk−1(v)

φk(v)

)
C(φn(u), ψn(v)).

where φk denotes the k-fold composition of φ with itself.

4. Extensions to higher dimensions

In this section we propose an extension of maxmin copulas to higher dimensions. We
start with the description of the generating mechanism and, to this end, we consider n
r.v.’s X1, X2, ..., Xn divided into two groups, one consisting of p r.v.’s and the other one of
the remaining q r.v.’s, where n = p + q. The dependence of these r.v.’s is described by
a copula C. Furthermore, there is a r.v. Z, independent of all of them, that may effect
the behavior of the system in two different ways. To interpret this we introduce p random
variables Yi = max {Xi, Z} for i = 1, 2 . . . , p and q random variables Yi = min {Xi, Z} for
i = p+1, p+2, . . . , n. Having our application in mind we can think of the first p components
of the vector Y as default times of the companies with recovery option (this means that we
assume these companies to have a spare component which absorbs the first shock that arrives
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and consequently they default only on the second one), and of the remaining q components
to represent the respective default times of companies defaulting on the first shock.

Our aim is to give a closed expression for the distribution function of the r.v. Y =
(Y1, Y2, ..., Yn) via the high-dimensional extension of our copula. Unfortunately, the expres-
sion given in Eq. (4.4) is quite involved. In order to provide a more readable formula we
introduce vector notation for the r.v.’s as well as for their joint and/or marginal distribu-
tion functions (d.f.’s) and finally also for the distortion functions. Furthermore, we need
to introduce notation for subvectors written as subscripts of the vectors in order to express
actions on them and relations between them. The following few paragraphs serve to develop
Eq. (4.4) together with the sketch of the proof of Theorem 4.1.

First we introduce vector notation for the underlying r.v.’s X = (X1, X2, ..., Xn). We
will understand relations between (random) vectors 6 componentwise. Similarly, operations
on vectors (like max and min) will be understood to be done componentwise and, in case
of random vectors, they are assumed to hold almost surely. We will denote Xp+1:n =
(Xp+1, Xp+2, ..., Xn) or, more generally, XK = (Xk)k∈K⊆{1,2,...,n}.

Using these notations, the vector Y of Eq. (2.1) may be extended to higher dimensions as
Y1:p = max{X, Z}1:p and Yp+1:n = min{X, Z}p+1:n. This means that for indices 1 6 i 6 p
we have that Yi = max{Xi, Z}, while for indices p+1 6 i 6 n we have that Yi = min{Xi, Z}
which corresponds to the definition loosely given above.

Next let us explain the main idea of our proof. For every y ∈ Rn the joint probability
distribution of Y can be rewritten as

H(y) = P
(

max {X, Z}1:p 6 y1:p,min {X, Z}p+1:n 6 yp+1:n

)
= P

(
X1:p 6 y1:p, Z 6 min{y1:p},min {X, Z}p+1:n 6 yp+1:n

)
. (4.1)

Now we try to get components of the subvector Xp+1:n, roughly speaking, out of the minimum
condition above which will be achieved one by one. On each step we may use the identity

P (min {Xi, Z} 6 yi) = P (Z ≤ yi) + P (Z > yi, Xi 6 yi) (4.2)

for i = p + 1, . . . , n. In order to see how it works apply this rule for i = p + 1 on Eq. (4.1)
to get

H(y) = P
(
X1:p 6 y1:p, Z 6 min{y1:p}, Z 6 yp+1,min {X, Z}p+2:n 6 yp+2:n

)
+ P

(
X1:p 6 y1:p, Z 6 min{y1:p}, Z > yp+1, Xp+1 6 yp+1,min {X, Z}p+2:n 6 yp+2:n

)
.

Note that, in the first of the two summands of the latter expression, the r.v. Xp+1 does not
appear (we shall say, just during the development of our formula, that in an expression like
that index p+ 1 is of the first kind), while in the second summand the r.v. Xp+1 appears in
relation of the form Xp+1 6 yp+1 (in which case we shall say that index p+1 is of the second
kind). We continue by deciding on the type of index p+ 2 yielding two new summands from
each of existing ones by applying (4.2). On this step we get 4 summands and we proceed
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in a similar way through all the indices of S := {p + 1 : n}. At the end of this procedure
we are faced with a disjoint set of 2q events. Let K ⊆ S denote the set of indices of the
first type, while Kc = S \ K represents the opposite event, i.e. the set of indices of the
second type. Since all the events K are disjoint, they yield a partition of our universe. So,
the rightmost probability of (4.1) can be written as a sum of probabilities each under the
additional assumption that exactly the indices of K are of the first type.

Now is the time to give the actual development of the formula. For a fixed K we will
denote by C(FX(y){1:p}∪Kc) the value of copula C at the vector point u in which uj is set
to FXj(yj) for all j ∈ {1 : p} ∪Kc, while uj = 1 otherwise. The final formula becomes

H(y) =
∑
K⊆S

P
(
X{1:p}∪Kc 6 y{1:p}∪Kc , Z 6 min

{
y{1:p}∪K

}
, Z > max {yKc}

)
which can be expressed in terms d.f.’s as

H(y) =
∑
K⊆S

C(FX(y){1:p}∪Kc) max
{

0, FZ
(
min

{
y{1:p}∪K

})
− FZ (max {yKc})

}
. (4.3)

In order to get the corresponding copula we have to introduce appropriate distortion
functions. To this end, we will use similar approach as in Section 2. First, we observe that
FY(y)1:p = FX(y)1:pFZ(y)1:p and 1 − FY(y)p+1:n = (1 − FX(y)p+1:n)(1 − FZ(y)p+1:n). We
then define Φ = (φ1, φ2, . . . , φn), so that FX = Φ(FY) on all indices {1 : n}. Furthermore,
we introduce

Φ∗1:p(u) =
u

Φ1:p(u)
and Φ∗p+1:n(u) =


u−Φp+1:n(u)

1−Φp+1:n(u)
, for u < 1;

1, for u = 1.

Obviously, it holds that FZ = Φ∗(FY) on all indices 1, . . . , n. Using these functions and
the fact that FZ is an increasing function, we can translate formula (4.3) for distribution
functions into the desired copula of our model, which becomes

T (Φ, C)(u) =
∑
K⊆S

C(Φ(u){1:p}∪Kc) max
{

0,min
{
Φ∗(u){1:p}∪K

}
−max {Φ∗(u)Kc}

}
. (4.4)

Here again, similarly as above, in the copula C the values of all entries with missing indices
are set equal to 1 (thus, they are actually the related lower-dimensional margins of C). Let
us also recall that S = {p + 1 : n} and Kc = S\K for K ⊆ S. Summarizing, the following
result can be formulated.

Theorem 4.1. Under the previous assumptions, the function given by (4.4) is a copula.

In order to further clarify the notation used in the definition of T (Φ, C), let us write
(4.4) without the vector notation in case that n = 3 and p = 1 (cf. Example 4.2):

T (φ1, φ2, φ3, C)(u1, u2, u3) = C(φ1(u1), φ2(u2), φ3(u3))max{0, φ∗1(u1)−max{φ∗2(u2), φ∗3(u3)}}
+ C(φ1(u1), 1, φ3(u3))max{0,min{φ∗1(u1), φ∗2(u2)} − φ∗3(u3)}
+ C(φ1(u1), φ2(u2), 1)max{0,min{φ∗1(u1), φ∗3(u3)} − φ∗2(u2)}
+ φ1(u1) min{φ∗1(u1), φ∗2(u2), φ∗3(u3)}.
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Example 4.2. In Figure 6, respectively Figure 7, we present scatterplots of multivariate
maxmin copulas for the dimension n = 3 and p = 1, respectively p = 2, where C = Π,
φi(u) =

√
u for i ≤ p and φi(u) = 1−

√
1− u for i > p. Note that the cases p = 0 and p = 3

reduce to the Marshall-Olkin copulas. Related to the graph presented in Figure 6 we also
show its bivariate marginal distributions; Figure 8, respectively Figure 9, shows scatterplot
with respect to axes Y1 and Y2, respectively axes Y2 and Y3. The marginal distribution with
respect to axes Y1 and Y3 is the same as the one with respect to axes Y1 and Y2.

Figure 6: Scatterplot of 2000 points generated from
a copula T (Φ, C) of type (4.4), where C = Π, Φ as
in Example 4.2 and p = 1.

Figure 7: Scatterplot of 2000 points generated from
a copula T (Φ, C) of type (4.4), where C = Π, Φ as
in Example 4.2 and p = 2.

5. Conclusions

The present work explores a possible specification in the general framework of copula
models that can be interpreted in terms of shock models (also called Marshall-Olkin mecha-
nism). The main idea of the proposed model is that a given dependence structure is modified
by the presence of an exogenous shock that has opposite effects on the involved variables.
In a stochastic setting, the proposed methodology can be used, for instance, to show how a
given dependence may react to a “stress scenario” (or to a multiple application of the same
stress scenario).

At a more theoretical level, the copula of Eq. (2.3) can be seen as a way to transform a
given copula C into another copula by means of auxiliary functions. As such, it generates
copulas that may exhibit some desirable properties like asymmetries, singularities and non-
trivial tail behavior. Interestingly, Eq. (2.3) is related to various semilinear-type families of
copula that have been recently introduced.

As a take-home message for the readers with interest in aggregation functions and multi-
criteria decision making, the present work suggests that it may be convenient to consider
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Figure 8: Bivariate marginal scatterplot of
2000 points generated from a copula T (Φ, C) of
type (4.4), showing axes Y1 and Y2, where C = Π,
Φ as in Example 4.2 and p = 1.

Figure 9: Bivariate marginal scatterplot of
2000 points generated from a copula T (Φ, C) of
type (4.4), showing axes Y2 and Y3, where C = Π,
Φ as in Example 4.2 and p = 1.

transformation methods for aggregation functions that act differently on the involved vari-
ables, especially when some input values need to have a “prominent role” in the aggregation
process. In this respect, we think that the present methodology can be also modified in
such a way that the transformation acts “with a different degree” on the various inputs (and
not just with a positive/negative effect). Future investigations will be devoted to this latter
extension.
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