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Abstract. The identification of defects in real components made in composite material assumes 

considerable importance in the aeronautical field, as irregularities in the material can 

compromise its functionality. Also, the possibility (NDT) to verify the effectiveness of repairing 

on the component during exercise through non-destructive testing techniques has great 

importance. 

The goal of the present study is the application of the ultrasound and thermographic techniques 

for the identification of defects in a repaired component and the evaluation of the damage caused 

by the application of cyclical fatigue loads. All the important factors were studied, improving 

ultrasound scanning and allowing evaluating the effectiveness of the techniques used. In this 

paper, one case of study was proposed for non-destructive damage evaluation employing Phased 

Array ultrasonic and thermographic methods on aeronautical CFRP component. The structural 

element analysed is a spar with a double-T section with a hole and presents a repair by scarfing 

and hot bond process. The experimental results obtained shown the validity of the ultrasonic and 

thermographic technique for the sensitivity in detecting defects on full-scale aeronautical 

components with short execution and scan times. 

Keywords: CFRP, aeronautical component, fatigue, ultrasonic phased array, 

thermography. 

1.  Introduction 

Continuous carbon fiber composite with polymeric resin matrix (CFRP) provides lighter structural 

designs in both secondary and primary structural components, achieving lower fuel consumption and 

thus reduced emissions in aerospace applications [1]. The main mechanical characteristics of these 

materials could be briefly scheduled such as high strength-to-weight ratio, high stiffness-to-weight ratio, 

improved fatigue tolerance, corrosion resistance, formability and low thermal expansion [1]. Therefore, 

from a structural efficiency and safety viewpoint, the improvement of repair technologies for composite 

materials represents a recent research of industrial interest in order to ensure certified manufacturing 

quality (i.e. repeatable and defect-free processes) and verified mechanical properties of repaired 

structural parts [1, 2]. In fact, in a report of the US Government Accountability Office, the limited 

standardization of composite materials and repair techniques are identified as one of several important 

aviation safety-related issues [3]; therefore, the standardization of aeronautical repaired composite parts 

represents one of the major challenges for the aeronautical industry. During service life, damage 

mechanisms could occur in composite structure under static and dynamic loads and damage evolution 

process requires a suitable monitoring strategy by means of non-destructive techniques [2]. 
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The optimization of damage detection techniques, in terms of resolution and costs, would enhance 

the performance of the structures. The most common investigation techniques are radiographic and 

ultrasonic techniques (immersion techniques, contact techniques and water jet techniques to transmit the 

ultrasonic signal from the probe to the material). Inspection techniques such as the phased array for 

ultrasonic investigations and thermography have a great potential in accelerating inspection processes 

[4, 5]. Several authors [4, 6, 7] make use of ND ultrasound systems using the modern phased array probe 

[6], for the reliable and effective detection of delaminations, which is the main damage modality for 

aeronautical components [8]. Therefore, recent research shows possibility of combining IRT technique 

with most accurate UT method for a complete characterization of real damage on CFRP parts after 

production issues, since IRT controls on relatively thin structural components were verified with 

consolidated ultrasound scanning [9], while ultrasonic systems are employed for the reliable and 

effective detection of in-depth composite delaminations [8, 10, 11] that are the main damage mode that 

occurs due to fatigue or impact phenomena [9]. 

In this work, ultrasonic with phased array technology and thermographic controls were performed 

on an aeronautical CFRP laminated component that has been subjected to a repair process. In particular, 

the structural component analysed is a spar with a double T-section that forms a part of the tail stabilizer 

of an aircraft. In order to validate the repair procedure, the beam has been tested according to a test 

protocol for the aeronautical sector, which has provided for fatigue tests, static tests and NDT to 

highlight any damage that occurred in correspondence of the repair. The ultrasonic controls to verify the 

quality of the repair with patches and the presence of any defects were carried out before performing the 

mechanical tests and after a certain number of cycles, in order to highlight defects induced by fatigue 

stresses. The results confirm the validity of the ultrasonic and thermographic inspection techniques for 

the sensitivity and the speed in detecting and characterizing defects in the repaired area of large-scale 

aeronautical components before the fatigue test and to in-situ fatigue monitoring: These techniques 

guarantee short execution and scan times and are in good agreement with the results provided by strain 

gages and rosettes, presented by the authors in previous works [12-16]. 

2.  Materials and methods 

2.1.  CFRP aeronautical component 

The test article is essentially a double T-section in CFRP, having upper and lower skins co-cured on the 

cap and a hole of about 100 mm in diameter on the core (Figure 1). Around hole, it has been simulated 

the presence of a damage, which has been repaired by scarfing and hot bond process to restore the 

structural integrity of the part. This technique is based on the application of a certain number of sub-

laminates (called patches) that are polymerized and subsequently superimposed on the part to be 

repaired, interposing layers of adhesive [1]. 

 

 
 

(a) (b) 

Figure 1. Aeronautical spar: location of the repair (a) and geometry (b) (dimensions in mm). 
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The spar was subjected to random fatigue test. The ultrasonic control for checking the quality of the 

repair and detecting any defects was carried out before performing the mechanical test and during the 

fatigue test, in order to highlight any damage. The spar is principally constituted of two parts, the spar 

cap and the spar web. The cap part is realized with 10 plies, while the web part is built with 20 plies. 

Each ply has a nominal thickness of 0.186 mm. On spar cap a skin with a variable number from 50 to 

28 additional plies were co-cured. This structural component is equipped at the two ends with aluminium 

supports fixed by rivets in Ti6Al4V that are used to constraint and load the spar during test. The 

information in terms of lamina properties constituents are shown in Table 1. Detailed information 

regarding materials and production processes are covered by a confidentiality agreement signed with 

the industrial partner of the research project. 

 

Table 1. Number of plies and staking sequence for the constituent spar parts. 

Part Spar Cap Spar Web Skin Thin Skin Big 

Number 

of plies 
10 20 28 50 

Staking 

sequence 

[45/-

45/90/0/90/45/ 

-45/45/-45/0] 

([45/-45/90/0/90/45/ 

-45/45/-45/0] s 

([45/-45/0/45/-

45/90/45/ 

-45/0/-

45/0/90/45/90] s 

[45/-45/0/45/-45/0/90/45/-

45/45/-45/45/0/45/90/0/-45/0/-

45/0/-45/0/90/45/90] S 

2.2.  Pre-testing ultrasonic and thermographic controls 

Preliminary ultrasonic and thermographic controls were carried out on repaired zone before fatigue and 

static test in order to evaluate the quality of the repair. UT phased array instruments (Olympus MX2 and 

MX) and an infrared camera (FLIR 7500M) were used to analyse the defects before performing the 

fatigue test and to monitor any damage caused by the subsequent fatigue cycles. Figures 2a and 2b show 

respectively the experimental set-ups with UT contact method and pulsed thermography before the 

mechanical tests. As shown in Figure 2b, the IR camera is positioned in front of the repaired patch as 

region of interest for the IRT controls and a suitable comparison with ultrasonic pre-test data. The spar 

width requires a camera-object distance of 410 mm for a correct thermographic evaluation. 

 

  
 

(a) (b) 

Figure 2. (a) Experimental ultrasonic (a) and thermographic (b) set-up for the spar in pre-test control. 
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The phased array system consists in array transducers that physically use progressive waves, 

opportunely coordinated and shifted each other’s. The wave-front generated by each element of the array 

at slightly different times combines with the impulses of the other elements to direct and shape the beam, 

in order to obtain a sharp focus and a different beam direction [4-6]. The Olympus OmniScan MX is 

used to perform the ultrasound analysis on the spar with the phased array technology, before fatigue test. 

It is equipped with an innovative probe of 64 elements that presents a frequency of 2.25 MHz. The probe 

is fixed on a plexiglass wedge. 

The thermographic equipment consists of four halogen lamps, each with 1000 W power, controlled 

by a signal generator with single square wave of amplitude set to maximum lamp power and period 

calculated on the base of established heating time to synchronize thermal pulse and recording data. The 

adopted thermal camera is a FLIR 7500M IR camera , with a FPA cooled detector, endowed with NETD 

25 mK In-Sb sensor and image resolution of 320 × 256 pixels; a processing data software ALTAIR 

provides thermal data in a ‘ptw’ video file and allows to convert the same to another format for custom 

processing [12]. All acquired thermal sequences are converted in ‘ascii’ files for a custom processing in 

Matlab environment. Previous experimental campaigns [12, 13] have defined optimal set-up for a better 

characterization of defects on similar CFRP plates, suitable thermographic parameters in terms of 

heating times in the range 12–40 s, capable to better identify defect depths in 2–6 mm range, 

experimental configuration distance, frame rate acquisition and lamps configuration. 

 

2.3.  Experimental set-up and fatigue test of composite patch/spar 

Fatigue experimental activity has been scheduled by custom aeronautical company in order to evaluate 

a fatigue and static behaviour of the repaired component, validating its design and repair. Therefore, 

after preliminary Non-Destructive controls, the spar component has been equipped with 32 strain gauges 

and 10 rosettes with grids at 0° / 45° / 90°, as illustrated in Figure 3a. The strain gauges and rosettes 

were arranged in selected points of spar and a preliminary static test was conducted in order to verify 

the correct application of loads and constraints and to evaluate the resulting strain state, comparing the 

numerical results [14]. 

 

 
 

(a) (b) 

Figure 3. (a) Front view of aeronautical spar with strain gauges and rosettes; (b) experimental set-up 

for spar’s fatigue test with anti-buckling structure. 
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Mechanical tests and ND monitoring activities were carried out in the Structural Test Laboratory 

EMILIA of University of Salento (Casarano, Lecce (IT)). A spar extremity was fixed at a large cubic 

structure and transversally pin-loaded in bending at the other extremity by a hydraulic MTS actuator 

(maximum load capacity of 250 kN). As in Figure 3(b), a rigid metallic structure is used to avoid local 

buckling phenomena at the spar middle length. 

Subsequently, the CFRP component was subjected to fatigue cycles that simulate the alternation 

between periods of flights, in which the spar works in the standard design conditions, and aerodynamic 

loads with totally absent wind or more turbulent winds [14]. Fatigue loads were scheduled by 

aeronautical company in order to evaluate the dynamic behaviour of a composite repaired spar 

representative of an aeronautical stabilizer. The fatigue cycles were carried out in load control using a 

test frequency of 0.5 Hz. Load history was obtained assembling six different load blocks of cycles for a 

total number of 90000 blocks and about 106 fatigue load cycles. During the load cycles, all strain gauges 

and rosettes data were recorded, measuring constant deformation amplitude for fatigue test duration. As 

a result, it was possible to verify the absence of expected changes in the structural behaviour of spar due 

to the applied load cycles. 

 

2.4.  UT and IRT monitoring of composite patch/spar during fatigue 

In-situ ultrasonic and real-time thermographic monitoring was carried out on the patch to monitor any 

internal damage due to the application of the load cycles. Both acquisitions are recorded at 

predetermined intervals as 1000, 2000, 30000, 60000 block cycles and at the end of the fatigue test at 

90000 block cycles with ultrasonic system OmniScan MX2 and FLIR 7500M thermal camera 

respectively. Figures 4a and 4b show the NDT configurations.  

Whilst, the IRT monitoring controls requires a 45° angle for thermal camera on tripod due to steel 

anti-buckling support that interposed between thermal camera focus and region of interest (repaired 

patch, near the spar hole). 

A manual ultrasound control was performed with phased array technique in reflection, optimizing 

the control parameters and using processing software for image analysis. 

The ultrasonic control of the component was carried out manually by means of a system consisting 

of the OmniScan MX2 Olympus ultrasonic pulser and a 3.5 MHz and 64 elements phased array flat 

probe equipped with a suitable wedge, using a coupling gel between the probe and the sample surface. 

The axial resolution of the PA probe used is about 0.3 mm, comparable with 1/3 of the ultrasonic 

wavelength in the investigated material, while the lateral resolution is 1 mm, since the probe's pitch is 1 

mm. 

The areas of interest investigated were those considered most critical both for the production process 

used and for subsequent mechanical tests. The analysed area is therefore the repaired zone and that 

adjacent to it. 

Reference areas have been traced on the zone of interest in order to define numbered areas that can 

be easily identified from the position when the controls are carried during the mechanical test progress. 

The size of each rectangular area is equal to that of the probe endowed with wedge (approximately 35 x 

66 mm2). 

Before performing the NDT on the component, it was necessary to perform a preventive calibration 

to establish the ultrasonic speed in the material (3030 m /s), the position of the back-wall echo and the 

wedge delay. The same gain value has been set for all ultrasonic inspections. 

The ultrasound data were acquired, stored and processed by the MX2 instrument, which returns various 

graphic images of the examined part. The presence of strain gages and electrical strain rosettes on the 

test article, positioned to monitor the deformations during the execution of mechanical tests, it has 

significantly reduced the surface that can be investigated by ultrasonic inspection, respect to the 

inspection carried out prior to mechanical testing. In particular, the areas that could be inspected close 

to the repair were basically two: at the top and to the right of the hole on the web (Fig. 5). In detail, the 

surface at the top has been analysed with both horizontal and vertical scans. For the ND monitoring 



The 49th AIAS Conference (AIAS 2020)
IOP Conf. Series: Materials Science and Engineering 1038  (2021) 012027

IOP Publishing
doi:10.1088/1757-899X/1038/1/012027

6

 

 

 

 

 

 

performed at each interruption of the mechanical test, the same areas to be analysed were chosen, in 

order to define 11 areas that can be easily correlated with the position in which the check is carried out 

and compared with the progress of the fatigue test (Figure 5). 

 

 
 

(a) (b) 

Figure 4. (a) Experimental UT and (b) thermographic set-ups for the monitoring fatigue test of CFRP 

spar. 

 

 
(a) (b) 

Figure 5.  Locations of monitored horizontal (a) and vertical (b) areas. 

 

3.  Results and discussion 

The strain data have been acquired during bending fatigue cycles from strain gauges and rosettes 

positioned at the different zones. Strain analysis has assessed at the load values by the different strain 

gauges; strain data were almost constant during all sequence of fatigue cycles, suggesting the absence 

of damage [14]. ND investigation with UT and IRT techniques promise additional information on 

structural integrity of the spar before and during the fatigue tests. 
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The following sections describe detailed pre-test controls and monitoring results of both selected ND 

procedures, highlighting the effective correspondence of final data and the suitable strategy of 

combination controls. 

3.1.  UT and IRT pre-test analysis of the repaired spar 

For the UT analysis of the spar, defects were firstly localized on the basis of cartesian coordinates and 

secondly characterized with the best probe in contact method. Cartesian coordinates are defined 

according to the inspection lines on the plane of the hole, one parallel to the spar longitudinal axis and 

the other normal. The inspection lines are equally spaced of 20 mm. The grayscale image was 

"rasterized" indicating the positions of the defects with a red square and the inspection lines with blue 

lines, as seen in Figure 6.  

 

 

 

(a) (b) 

Figure 6. Absolute and relative coordinate system (a); Defects detected with the grid of inspection 

lines near the patch around the hole (b). 

 

The position of the potential defects detected in the relative reference system was subsequently 

associated with an absolute coordinate system taking into account the real dimensions of the component, 

as seen in Figure 6a. Twenty-seven defects have been identified at different depths between 0.7 and 2 

mm, which can be characterized as micro-delaminations and voids in the patch. Figures 7 and 8 show 

some examples of defects found on the spar and marked in red. 

 

  

(a) (b) 

Figure 7. (a) A-scan and S-scan (0°) for defect 6 and (b) A-scan and S-scan (0°) for defect 7. 
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The characterization of the detected defects was performed by recording the value of the amplitude, 

defined as the ratio between the defect’s amplitude and that of the background echo, and the depth data, 

both obtained from the A-Scan. The advantage of the phased array probe lies in the immediate 

achievement of the sectorial scan that allows to better evaluating the shape of the defect compared to 

conventional probes. Table 2 summarizes some of the main significant defects found on the spar’s repair. 

 

  

(a) (b) 

Figure 8. A-scan and S-scan (0°) for defect 7 (a) and defect 11 (b). 

 

Table 2. Summary table of the indications detected on the patch before the fatigue. 

ID 

Defect 

Relative coordinate 

[x, y] 

Absolute 

coordinate [x, y] 

Normalized amplitude 

[A/A (Bach-wall echo)] 

Depth 

[mm] 

1 (140, 164) (140, 434.7) 38 0.9 

2 (86.3, 164) (86.3, 434.7) 45 0.85 

3 (66.2, 164) (66.2, 414.7) 68 1.1 

4 (80.9, 148.6) (80.9, 419.3) 82 0.8 

5 (97.5, 144.4) (97.5, 415.1) 54 0.8 

6 (125, 139.9) (125, 410.6) 78 0.95 

7 (134.7, 136.2) (134.7, 406.9) 90 0.8 

8 (148, 136.2) (148, 406.9) 56 0.9 

9 (149.8, 136.2) (149.8, 406.9) 68 1.3 

10 (149.8, 131.8) (149.8, 402,5) 64 1.8 

11 (145, 131.8) (154, 402.5) 99 0.8 

12 (134.8, 131.8) (134.8, 402.5) 95 0.7 

13 (120.4, 131.8) (120.4, 402.5) 82 0.9 

14 (108.8, 131.8) (108.8, 402.5) 66 1 

15 (95.4, 131.8) (95.4, 402.5) 47 1.55 

16 (83.9, 135.8) (83.9, 406.5) 76 1 

17 (78.2, 135.8) (78.2, 406.5) 56 1.3 

18 (75.9, 129.8) (75.9, 400.5) 72 1 

19 (76.3, 130.2) (76.3, 400.9) 66 1 

20 (63.8, 113.5) (63.8, 384.2) 40 2.5 

 
The second pre-test control is conducted employing the Pulsed Thermography technique in reflection 

mode. Four tests are performed with 3, 5, 10, 15s heating times on the same region of interest of the 
scarfing repaired part, acquiring the thermal sequence with a frame rate of 5 Hz. The obtained heating 
of the surface’s part was not uniform in all tests, due to the non-planarity of the scarfing repaired surface 
that presents a ‘rectangular grid pattern’ introduced by the repair technology, as shown in Figure 9a 
where the interwoven texture of the repair is thermally marked. 
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A qualitative thermal profile along the line ‘d1’ is selected in the thermogram of maximum heating 

time, as seen in Figure 9a; along the example thermal profile of Figure 9b, the temperature data show a 

curve variation around of 0.7 °C, detected symptomatic of the presence of defects. 

 

  

(a) (b) 

Figure 9. (a) Thermal image employing a heating time of 5s; (b) thermal profile through the 

horizontal red line ‘d1’. 

 

Therefore, the normalized contrast Cn is selected for the thermographic analysis, in order to evaluate 

thermal data of selected zones minimizing thermal heating non-homogeneities along texture grid pattern.  

A Matlab algorithm was employed for Cn computation between the free- defect and the damaged zones, 

defined by the equation (1): 

 

Cn(t) = 
Td(t)̅̅ ̅̅ ̅̅ ̅

Td(t0)
- 

Ti(t)̅̅ ̅̅ ̅̅

Ti(t0)
 (1) 

 

where T̅ represent the average temperature value of selected zones, t0 is the maximum heating time, 

t is the time instant and d and i subscripts represent respectively the defective and free-defect areas.  

Figure 10a presents the selected Regions of Interest (ROIs) for normalized contrast evaluation of 

representative 3s heating time test because a low heating time provides both suitable information on 

possible presence of superficial defects and a useful comparison between IRT and UT results. 

 

  

(a) (b) 

Figure 10. (a) Thermogram with selected ROIs employing a heating time of 3s; (b) normalized 

contrast profile of selected ROIs. 
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Specifically, the odd numbers ROIs indicate the defective regions, while the near even numbers indicate 

the relative intact areas for the normalized contrast’s calculation. Subsequently, the Matlab routine 

provides the normalized contrast diagrams of ROIs obtained during the thermal acquisition, as shown 

in Figure 10b for the chosen ROIs. Contrast profiles present similar trends tending initially towards zero 

at the maximum heating time (at 19th frame in this case) and then decreasing trend up to a constant 

equilibrium phase. The ROI-1 could be identified as the defect-1 by UT, although the other sub-

superficial ROI-3, ROI-5 and ROI-7 defects seems not associable with previous detected defects. 

3.2.  Ultrasonic and thermographic monitoring results 

Non-destructive tests (NDT) with ultrasound were carried out at intervals of 2000, 30000, 60000 and 

90000 cycles. In order to monitor the test, the A-Scan and S-Scan (0 °) display modes were considered 

the most significant; in particular the S-Scans allow you to quickly compare the possible evolution of 

damage during the fatigue test. It can be seen from Figures 11 and 12 that the thickness of the patch is 

very irregular, as shown in the preliminary UT tests, but in correspondence with the Patch/beam 

bonding, of the area that has undergone the repair, there are no significant defects, not even as the fatigue 

test proceeds.  

The gates have been positioned so that gate I is placed at the gel / material interface, gate B on the 

background echo and gate A inside the material, moving it according to the needs to display in the B-

scan the particular investigated. 

Higher signals (greater peak amplitude in A-scan) are revealed in B-scan with colours shifted towards 

yellow-red, while more attenuated signals (low signal amplitude in A-scan) with colours shifted towards 

green-blue. 

The ultrasound representation reported in the results is the B-scan, as it is considered more significant 

to visualize any delaminations, voids or detachments of the patches. 

OmniPC software allows offline processing of .opd data saved with the OmniScan MX2 system. 

The application of the phased array reflection technique with a 64 elements 3.5 MHz flat probe 

represents a good monitoring technique to verify the adhesion of the repair to the component, as it has 

demonstrated the full control ability of a component in CFRP repaired with patch after scarfing.  

It was possible to detect the presence of geometric irregularities of the patch surface and the absence 

of defects inside it and to verify the adhesion of the patch in service conditions. 

In fact, this study shows that the irregular geometry of the patch material did not affect the strength of 

the component. 

The irregularities reported could be the result of the production process of the beam or of the same 

material of which the patch is made. Figure 11 show as an example the ultrasound results relating to 

sector N ° 5 for each step of the fatigue test. 

 

  

(a) (b) 

Figure 11. Phased array results (A-scan and S-scan (0°)) at different fatigue cycles on the sector 

monitored N° 5. (a) 2000 cycles and (b) 60000 cycles. 
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Thermographic control consists on cycle-to-cycle monitoring near the hole zone with the repaired 

scarfing part, where the final failure should occur, acquiring the thermal data at each 1500 cycles with 

a frame rate of 100 Hz. Figure 12 shows two example thermograms relating to the initial and final cycle 

for the first load blocks; the surface heating obtained in all tests was not uniform, not only for the non-

planarity of the blade surface, but also for the presence of strain gauges and related cables, which acts 

as thermal sources during measurement. 

  

  

(a) (b) 

Figure 12. Thermographic analysis of one loads’ block at 3000 cycles (a) and 90000 cycles (b) on the 

monitored sector. 

 

The thermal evaluation gives unsatisfactory information of internal spar structure and defective areas 

were not detected during fatigue test even after load cycles. As expected, the average temperature of the 

spar scarfing zone first undergoes a slow increase, then stabilizing around a constant value (Figure 12b). 

 

4.  Conclusions 

The application of the infrared thermography and ultrasonic provide a suitable data comparison and 

useful ND strategy both for the preliminary controls and for experimental monitoring technique in the 

presented case of study. The superficial and in-depth structural integrity of the repaired component has 

been verified both in the preliminary pre-testing controls and during fatigue tests. Phased array 

ultrasonic technique allows the detection of small anomalies on scarfing patch’s part of CFRP 

component; IRT controls presents a different distribution of sub-superficial defects except ROI-1, 

although the ‘rectangular grid pattern’ introduced by the repair technology. It was possible to monitor 

selected zones of the patch and to verify the adhesion integrity of the patch over time in service operating 

conditions. The combination of both ultrasonic and thermographic checks shows that the defects’ 

presence within the patch material did not affect the strength of the component because the damage 

absence of structure is confirmed by both ND procedures during fatigue test. 
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