
Received August 19, 2017, accepted September 21, 2017, date of publication October 31, 2017,
date of current version November 28, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2757238

On Frequency Estimation and Detection of
Frequent Items in Time Faded Streams
MASSIMO CAFARO 1,2, (Senior Member, IEEE), ITALO EPICOCO1,2, MARCO PULIMENO3,
AND GIOVANNI ALOISIO1,2
1Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
2Euro-Mediterranean Center on Climate Change, 73100 Lecce, Italy
3Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy

Corresponding author: Massimo Cafaro (massimo.cafaro@unisalento.it)

ABSTRACT We deal with the problem of detecting frequent items in a stream under the constraint
that items are weighted, and recent items must be weighted more than older ones. This kind of problem
naturally arises in a wide class of applications in which recent data is considered more useful and valuable
with regard to older, stale data. The weight assigned to an item is, therefore, a function of its arrival
timestamp. As a consequence, whilst in traditional frequent item mining applications we need to estimate
frequency counts, we are instead required to estimate decayed counts. These applications are said to work
in the time fading model. Two sketch-based algorithms for processing time-decayed streams have been
recently published independently near the end of 2016. The Filtered Space Saving with Quasi-Heap (FSSQ)
algorithm, besides a sketch, also uses an additional data structure called quasi-heap to maintain frequent
items. Forward Decay Count-Min Space Saving (FDCMSS), our algorithm, cleverly combines key ideas
borrowed from forward decay, the Count-Min sketch and the Space Saving algorithm. Therefore, it makes
sense to compare and contrast the two algorithms in order to fully understand their strengths and weaknesses.
We show, through extensive experimental results, that FSSQ is better for detecting frequent items than for
frequency estimation. The use of the quasi-heap data structure slows down the algorithm owing to the huge
number of maintenance operations. Therefore, FSSQ may not be able to cope with high-speed data streams.
FDCMSS is better suitable for frequency estimation; moreover, it is extremely fast and can be used in
the context of high-speed data streams and for the detection of frequent items as well, since its recall is
always greater than 99%, even when using an extremely tiny amount of space. Therefore, FDCMSS proves
to be an overall good choice when considering jointly the recall, precision, average relative error and the
speed.

INDEX TERMS Data stream mining, time fading model, frequency estimation, frequent items.

I. INTRODUCTION
In streaming applications we deal with a data stream σ which
consists of a sequence of n items drawn from a universe
set U . We assume, without loss of generality, that the num-
ber of distinct items in σ is D (i.e., U = {1, 2, . . . ,D}).
The nature of items is strictly dependent on the particular
application: indeed, items can be IP addresses, graph edges,
points, numbers etc. When the stream size n is reasonably
small, an application can store all of the items. However,
in typical streaming applications it is generally assumed that
n is so large that the items can not be stored and must instead
be processed upon their arrival: just one pass over the data
stream is allowed. The interested reader may refer to [1],
a comprehensive survey of streaming algorithms.

We are interested in the problem of mining frequent
items in a data stream. Frequent items, also called
heavy hitters, have been extensively studied and investigated
as witnessed by the huge number of papers published on this
interesting topic. Informally, the problem requires determin-
ing those items in a stream occurring most frequently. From
a practical perspective, given a user’s support threshold φ,
this entails finding all of the items in the input stream whose
frequency exceeds φn. In the literature, the problem is also
referred to as market basket analysis [2], hot list analysis [3]
and iceberg query [4], [5].

Mining frequent items is important not only from a
theoretical perspective, but also for its many practical
applications, e.g. analysis of web logs [6], computational

24078
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

https://orcid.org/0000-0003-1118-7109

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

and theoretical linguistics [7] and the analysis of network
traffic [8]–[10].

In order to formally state the problem, let fi be the fre-
quency of the item i ∈ U (i.e., its number of occurrences in the
stream σ), f = (f1, . . . , fm) the frequency vector, 0 < φ < 1
a support threshold and ||f ||1 the 1-norm of f (i.e., the total
number of occurrences of all of the stream items). Then,
an approximate solution to the problem requires determining
all of the items i such that fi > φ||f ||1. Moreover, letting
0 < ε < 1 (with ε < φ) denote the tolerance on the error
committed, an algorithm must not return any item i such that
fi ≤ (φ − ε)||f ||1.
Different algorithms for detecting frequent items have

been designed, and can be broadly classified as being either
counter or sketch based. In practice, the main difference
lies in the data structure used. Counter–based algorithms are
deterministic and exploit a fixed number of counters, used
to keep track of the items. In this context, a counter is an
object storing at least the identity of an item and its asso-
ciate estimated frequency. The minimum number of counters
required to track all of the possible frequent items, expressed
as a function of the support threshold φ is 1/φ. However,
taking into account the error bound tied to the ε tolerance,
the minimum number of counters required is 1/ε > 1/φ.
Sketch–based algorithms are randomized and provide a prob-
abilistic guarantee. The sketch data structure is usually a
bi-dimensional array of cells. Each cell contains a counter
variable and stream items are mapped, through pairwise inde-
pendent hash functions, to their corresponding cells in the
sketch.

We deal with the specific streaming model we have
described so far. It is commonly referred to in the liter-
ature as either cash register or strict turnstile model [1];
in particular, only insertions are allowed (i.e., the weight
associated to an item can only be positive). The more general
turnstile model, also allows deletions (i.e. items with a
negative weight).

Misra and Gries [11] designed the first sequential,
counter–based algorithm. Interestingly, this algorithm was
independently rediscovered more than twenty years later by
both Demaine et al. [8] (this algorithm is now known as
the Frequent algorithm) and Karp et al. [12]. Among the
other counters–based algorithms it is worth recalling here
Sticky Sampling, Lossy Counting [13] and Space Saving [14],
which is widely regarded as the best algorithm in this class.
Regarding sketch–based algorithms, notable examples are
CountSketch [6], Count-Min [15], Group Test [16], and
hCount [17].
The need to accelerate the processing of large datasets

led to the design and development of many parallel algo-
rithms. The message-passing based algorithms described
in [18], [19], and [20] provide parallel versions of Frequent
and Space Saving. Shared-memory algorithms have also
been designed, including parallel versions of Frequent [21],
Lossy Counting [22], and Space Saving [23]–[25]. Novel
shared-memory algorithms are described in [26]. GPU

(Graphics Processing Unit) based parallel algorithms
include [27], [28].

In this paper, we deal with the problem of detecting
frequent items in a stream under the constraint that items
are weighted, and recent items must be weighted more than
former items. This kind of problem naturally arises in a
wide class of applications in which recent data is considered
more useful and valuable with regard to older, stale data.
The weight assigned to an item in the stream is therefore
a function of the item’s arrival timestamp. As a conse-
quence, whilst in traditional frequent item mining applica-
tions we need to estimate frequency counts (i.e., the weight
of an item is unitary and the corresponding model is the
so-called strict turnstile), we are instead required to estimate
decayed counts. These applications are said to work in the
time fading model. A different model, called sliding win-
dow model [1], [29] has been proposed and investigated as
well.

In the time fading model [30]–[32], freshness of more
recent items is achieved by fading the estimated frequency
of older items. A decaying factor 0 < λ < 1 is used to
compute an item’s decayed count (or decayed frequency)
by means of a decay function assigning greater weight to
more recent elements. By using an appropriate decay func-
tion, the older an item is, the lower its decayed count shall
be. A commonly used decay function provides exponential
decay, i.e., the weight of an item occurred n time units in
the past is set to λn, which is an exponentially decreasing
quantity.

Two sketch-based algorithms for mining frequent items
in time-decayed streams have been recently proposed and
published independently near the end of 2016. The Fil-
tered Space Saving with Quasi-Heap (FSSQ) algorithm [33],
besides a sketch, also uses an additional data structure
called Quasi-Heap to maintain frequent items. Forward
Decay Count-Min Space Saving (FDCMSS) [34], our algo-
rithm, cleverly combines key ideas borrowed from for-
ward decay [35], the Count-Min sketch and the Space
Saving algorithm. Therefore, it makes sense to com-
pare and contrast the two algorithms in order to fully
understand their strengths and weaknesses with regard
to frequency estimation, detection of frequent items and
speed.

In order to formally state the problem we are dealing with,
we need the following definitions. We assume a stream with
discrete time steps labeled as 0, 1, 2, 3, . . . and only one item
i arrives at time step t = 1, 2, 3,
Definition 1 (Exponentially Decayed Count of an Item):

Given a time decaying factor 0 < λ < 1, the exponentially
decayed count of an item i at time t is Ct (i) = Cut (i) ×
λ(t−i.ut) + α, where i.ut is the last update time for the item
i and Cut (i) is the exponentially decayed count of the item i at
time i.ut and α is equal to 1 when the item i arrives at time t
and is equal to zero otherwise.
Definition 2 (Total Decayed Count of the Stream σ): The

Total Decayed Count of a stream σ of size n evaluated at

VOLUME 5, 2017 24079

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

time t = n is defined as the sum of the exponentially decayed
count of all of the items of the stream: C =

∑
i∈U

Ct (i).

We note here that the Total Decayed Count of the stream
σ is such that C = (1− λn)/(1− λ), a quantity approaching
1/(1− λ) for n→∞.
Definition 3 (Frequent Item Under Decayed Count):

Given a stream σ of size n and a support threshold 0 < φ < 1,
an item i is frequent under decayed count if Cn(i) > φC.
We are now ready to formally state the problem of

ε-Approximate Frequent Items under decayed count.
Problem 1 (ε-Approximate Frequent Items Under

Decayed Count): Given an error tolerance ε and a threshold
φ, determine all of the items i satisfying Cn(i) > φC, and
report no items with Cn(i) ≤ (φ − ε)C.

The rest of this paper is organized as follows. We describe
the FSSQ and FDCMSS algorithms respectively in
Section II and III. We compare and contrast the two algo-
rithms from a theoretical perspective in Section IV, and
present experimental results in Section V. We draw our
conclusions in Section VI.

II. THE FSSQ ALGORITHM
As its name suggests, the FSSQ algorithm is heavily inspired
by the Filtered Space Saving algorithm [36], which uses a
bitmap data structure to filter unfrequent items and a list
of monitored items to keep track of frequent items. Instead,
FSSQ uses a traditional Count-Min based sketch data struc-
ture with width w and depth d to filter unfrequent items,
and a data structure called Quasi-Heap containing m nodes
to monitor frequent items. The Quasi-Heap is still based on
the notion of heap property for a min-heap, i.e., the key
value of a node must be less than or equal to the keys of its
children nodes. However, in a Quasi-Heap the heap property
is relaxed and does not need to always hold. For instance,
if two nodes are swapped the data structure is not maintained
as usual by means of the standard heapify function. The aim
is to avoid running an heapify operation whose worst-case
computational complexity when run on m nodes is O(logm).
The Quasi-Heap therefore postpones sorting operations when
the decayed count of an existing item is increased; of course,
this may result in an inconsistent heap, i.e., the heap property
may be violated by some nodes. The delayedSorting function,
whose pseudocode is shown as Algorithm 1, executes heapify
on the Quasi-Heapwith the aim of identifying the nodewhose
key is minimum.

A counter object c related to an item stores the item’s
identity c.item, its decayed count c.cnt , error c.error and
update time c.ut . Additionally, assuming that c is not a leaf
node, the boolean flag c.delay determines whether or not after
updating the node the rest of the operations in delayedSorting
must be executed: if the delayed flag of an item is not marked,
then its count must be the minimum count of its subtree (cfr.
[33, Lemma 1]); otherwise, the heap property may be vio-
lated. In this case, the function is recursively called on both
the children nodes of c and, if the decayed count of the root

node is larger than the children, the root node is swapped with
its child node whose decayed count is smaller. In the case of
identical decayed counts, the root node is swapped with its
child only when the child has larger estimated error.

In practice, instead of running heapify for maintenance of
the heap structure, items are simply marked as delayed since
they are the old items in the Quasi-Heap. Upon arrival of a
new item, delayedSorting runs heapify on the delayed nodes,
starting from the root.

Algorithm 1 FSSQ Delayedsorting
Require: Qh, a Quasi-Heap; c, a counter (node) in Qh; t ,

the current time
Ensure: a Quasi-heap Qh
1: procedure FSSQ-delayedSorting(c, t)
2: c.error ← c.error×λt−c.ut ; c.cnt ← c.cnt×λt−c.ut ;
c.ut ← t

3: if c.delay = 0 then
4: return
5: if c is a leaf node then
6: return
7: FSSQ-delayedSorting(the left node of c, t)
8: FSSQ-delayedSorting(the right node of c, t)
9: let sml be the smaller of the two child nodes
10: if (c.cnt > sml.cnt) OR (c.cnt = sml.cnt AND

sml.error > c.error) then
11: swap c and sml; sml.delay← 1
12: c.delay← 0

Each cell in the sketch data structure stores a decayed count
and the latest update time. The sketch dimensions d andw are
initialized as follows: letting 0 < δ ≤ 1 be a probability of
failure, d = dln δe is the number of rows in the sketch and
w = de/εe the number of columns.
Assuming that the number of distinct items in the

stream σ is D ≤ n, the sketch cells are updated using
d pairwise independent hash functions h1, . . . , hd , where
hi : [D]→ [w], i = 1, . . . , d maps D distinct items into w
cells.

FSSQ works as shown in the pseudocode of Algorithm 2.
For each incoming item i with timestamp t , if the item is in
the Quasi-Heap its error, decayed count and update time are
updated as needed. The delay flag is also set. Otherwise (the
item is not in the Quasi-Heap), the algorithm determines
whether the Quasi-Heap is full or not.

If the Quasi-Heap is not full, a new node c is created to
store the item i and the item error, decayed count and update
time are set respectively to zero, one and t . The delay flag is
set to false. Then, the node is inserted into the Quasi-Heap,
with the insertion maintaining the heap property. Otherwise,
the delayedSorting operation is invoked on the root node,
and the sketch cells corresponding to the item i are updated.
Then, the algorithm determines est , which is the minimum
decayed count among the d cells in the sketch that have been
just updated. If est is greater than the decayed count of the

24080 VOLUME 5, 2017

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

Algorithm 2 FSSQ Update
Require: s, a sketch;Qh, a Quasi-Heap; i, an item; t , the cur-

rent time
Ensure: a Quasi-Heap Qh containing frequent items
1: procedure FSSQ-update(s,Qh, i, t)
2: if i is tracked by Qh then
3: let c be the node monitoring i
4: c.error ← c.error × λt−c.ut ; c.cnt ← c.cnt ×
λt−c.ut + 1; c.delay← 1; c.ut ← t

5: else F i is not tracked by Qh
6: if Qh is full and r is the root node of Qh then
7: FSSQ-delayedSorting(r, t)
8: for j = 1 to d do
9: s[j, hj(i)] ← s[j, hj(i)].cnt ×
λt−s[j,hj(i)].ut + 1

10: s[j, hj(i)].ut ← t

11: est ← min1≤j≤d s[j, hj(i)].cnt
12: if est > r .cnt then
13: for j = 1 to d do
14: s[j, hj(r .item)]← r .cnt × λt−r .ut

15: s[j, hj(r .item)].ut ← t

16: r .item← i
17: r .error ← r .cnt × λt−r .ut ; r .cnt ←

r .cnt × λt−r .ut + 1; r .delay← 1; r .ut ← t
18: else F Qh is not full
19: create a new counter c
20: c.item ← i; c.error ← 0; c.cnt ← 1;

c.delay← 0; c.ut ← t
21: insert and maintain c in Qh

root node r , the sketch is updated again, considering the item
monitored by the root node. Then, the root node is updated
as well, and the identity of its monitored item is changed
to reflect the fact that the node is now tracking the item i.
Moreover, the root node delay flag is set to true and its update
time is set to t .
Frequent items are retrieved by posing a query to the

Quasi-Heap. For frequency estimation, if an item is not in the
Quasi-Heap, then the sketch is queried as in Count-Min.

III. THE FDCMSS ALGORITHM
FDCMSS cleverly combines key ideas borrowed from for-
ward decay, the Count-Min sketch and the Space Saving
algorithm. We begin by noting that, even though FDCMSS
is based on the concept of forward decay instead of back-
ward decay, which is used in FSSQ, we can nonetheless
compare the algorithms owing to the fact that backward and
forward exponential decay coincide [35]. In the following,
we provide a description of FDCMSS based on backward
exponential decay; details related to forward decay can be
found in [34]. FDCMSS uses an augmented sketch data
structure, in which each cell contains a Space Saving stream
summary with two counters. The key idea is to work as in
the Count-Min sketch algorithm, but to rely on the Space

Algorithm 3 Space Saving Update
Require: S, a stream summary; j, an item; w, the weight of

item j
Ensure: a stream summary S containing frequent items
1: procedure SpaceSavingUpdate(S, j,w)
2: if j is monitored then
3: let cl be the counter monitoring j
4: cl .f ← cl .f + w
5: else
6: if there is a counter cr which is not monitoring

any item then
7: cr .i← j
8: cr .f ← w
9: else
10: let cs be the counter monitoring the item with

least hits
11: cs.i← j
12: cs.f ← cs.f + w

Algorithm 4 FDCMSS Update
Require: i, an item; ti, timestamp of item i;
Ensure: update of sketch related to item i
1: procedure FDCMSS-update(i, ti)
2: x ← λ−ti F compute the decayed weight of item i

and update the sketch
3: count ← count + x F update the total decayed

count of the stream
4: for j = 1 to d do
5: S ← s[j][hj(i)]
6: SpaceSavingUpdate(S, i, x)

Saving stream summary to allow for simultaneous better fre-
quency estimation and tracking of frequent items. Therefore,
FDCMSS does not need any additional data structure to keep
track of frequent items. We now describe how FDCMSS
works.

FDCMSS initializes its sketch data structure s[x, y] by
setting the dimensions d and w as follows: d = dln 1/δe is
the number of rows in the sketch and w = d e2ε e the number
of columns.

Each of the sketch cells available stores a Space Saving
stream summary, i.e., a data structure S with two counters c1
and c2. Given a counter cj, j = 1, 2, let cj.i and cj.f be respec-
tively the counter’s item and its estimated decayed count.
We use d pairwise independent hash functions h1, . . . , hd ,
where hi : [D]→ [w], i = 1, . . . , d maps D distinct items
into w cells, and initialize the count variable, representing
the total decayed count of all of the items in the stream (see
Definition 2) to zero.

The sketch is updated upon arrival of an item i with
timestamp ti; the corresponding pseudo-code is shown as
Algorithm 4. We compute x, the forward decayed weight of
the item, and increment count by x. Then, the d cells in which
the item is mapped to by the corresponding hash functions are

VOLUME 5, 2017 24081

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

Algorithm 5 Query
Require: t , query time; count , total decayed count;
Ensure: set of frequent items
1: procedure query(t)
2: R = ∅
3: for i = 1 to d do
4: for j = 1 to w do
5: S ← s[i][j]
6: let c1 and c2 be the counters in S , and cm the

counter with maximum decayed count
7: cm← argmax(c1, c2)
8: if cm.f > φ × count then
9: p← PointEstimate(cm.i, t)

10: if p > φ × count × λt then
11: R← R ∪ {(cm.i, p)}
12: return R

updated by using the well-known Space Saving item update
procedure (shown as Algorithm 3).

To retrieve the frequent items, a query can be posed to the
sketch. Let t be the query time. The query, shown in pseudo-
code as Algorithm 5, initializes R, an empty set, and then
it inspects each of the cells in the sketch. For a given cell,
we determine cm, the counter in the data structure S with
maximum decayed count. We compare the decayed count
withφ×count . If the decayed count is greater, we pose a point
query for the item cm.i, shown in pseudo-code as Algorithm 6.
If p, the returned value, is greater than φ × count , then we
insert in R the pair (cm.i, p).

The point query for an item j returns its estimated decayed
count. We inspect each of the d cells in which the item is
mapped to by the corresponding hash functions, to determine
the minimum decayed count of the item. In each cell, if the
item is stored by one of the Space Saving counters, we set
answer to the minimum between answer and the correspond-
ing counter’s decayed count. Otherwise (none of the two
counters monitors the item j), we set answer to the minimum
between answer and the minimum decayed count stored in
the counters. Finally, we return answer.
From the previous discussion it is clear that our algorithm

also solves the decayed count estimation problem for arbi-
trary items. Indeed, given an item, it suffices to pose a point
query for that item.

IV. THEORETICAL COMPARISON
In this Section, we compare FSSQ and FDCMSS from a
theoretical perspective. We begin by analyzing the worst case
computational complexity. For FSSQ with m nodes in the
Quasi-Heap and a sketch of dimensions d andw, the delayed-
Sorting function requires in the worst case O(m), because
it may traverse the entire tree. Assuming that searching for
an item in the Quasi-Heap is done by using an auxiliary
hash table (incurring the expense of additional space), then
the search requires O(1) constant time; otherwise, it requires
O(m) time since the heap property does not provide any useful
information and one must check both subtrees of every node.

Algorithm 6 PointEstimate
Require: j, an item; t , query time
Ensure: estimation of item j decayed count;
1: procedure pointestimate(j, t)
2: answer ←∞
3: for i = 1 to d do
4: S ← s[i][hi(j)]
5: let c1 and c2 be the counters in S
6: if j == c1.i then
7: answer ← min(answer, c1.f)
8: else
9: if j == c2.i then

10: answer ← min(answer, c2.f)
11: else
12: m← min(c1.f , c2.f)
13: answer ← min(answer,m)
14: return answer × λt

Regarding the FSSQ update, there are three cases to con-
sider. If the incoming item is in the Quasi-Heap, updating
the corresponding node requires O(1) time. If the item is not
in the Quasi-Heap and the Quasi-Heap is not full, inserting
a new node corresponding to the item requires O(logm).
Finally, if the item is not in the Quasi-Heap and the Quasi-
Heap is full, the following operations are done. The delayed-
Sorting function is invoked, requiring O(m), and the sketch
is updated in O(d) time. Computing the minimum value in
the sketch associated to the incoming item i requires O(d).
The conditional update of the sketch requires again O(d),
and replacing the root node in the Quasi-Heap with the new
node corresponding to i can be done in O(1) time. Overall,
the worst case computational complexity of FSSQ update
is therefore O(m + d). Since d = dln δe, the worst case
computational complexity can be rewritten as O(m+ ln 1/δ).

For FDCMSS with a sketch of dimensions d and w,
the worst case computational complexity is simply O(d).
Taking into account that d = dln δe, we can rewrite it as
O(ln 1/δ). It is clear that FDCMSS has a better worst case
computational complexity with regard to FSSQ, and we shall
see in the next Section reporting the experimental results
that, in the majority of the cases, FDCMSS outperforms
FSSQ with regard to speed, measured as the number of
updates/ms.

We now analyze the space required. FSSQ uses a sketch
of dimensions d = dln δe and w = de/εe. Each cell of the
sketch stores a decayed count and the cell update time.
Assuming 8 bytes for each field, the sketch requires a
total of 16

⌈ e
ε

⌉ ⌈
ln 1

δ

⌉
bytes. The Quasi-Heap data struc-

ture stores in the worst case m nodes, and each node
stores the item identity, its decayed count, error, update
time and a delayed flag. We assume 4 bytes for the
item identity (in our C++ implementation the item is
stored as an unsigned int), 8 bytes for each of the other
fields (decayed count is a double, error is a double, update
time is a long) and 4 bytes for the boolean delayed flag.

24082 VOLUME 5, 2017

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

Therefore, we assume a total of 32 bytes for each node.
It follows that the Quasi-Heap requires 32 m bytes. Finally,
the hash table data structure needed to search for an item
in the Quasi-Heap requires 3m × 8 + 32m = 56 m bytes.
Indeed, given m counters, 3m buckets are allocated, each
storing a 8 bytes pointer to a hash table data structure which
holds a key, its value and two pointers (required to nav-
igate the bucket list in case of collisions). Given an item
as key, we store as its value the corresponding pointer to
a Quasi-Heap node (8 bytes). The whole structure requires
32 bytes (8 for the key, 8 for the value and 8 for each
pointer). In the worst case we insert all of them items into the
hash table, each one requiring 32 bytes (the size of the hash
table data structure for an element). The choice of allocating
3m buckets is arbitrary, but is commonly used in practice.
There is a tradeoff between the buckets allocated and the
number of collisions: the more the buckets, the less are the
collisions and vice-versa. In total, FSSQ needs in the worst
case 16

⌈ e
ε

⌉ ⌈
ln 1

δ

⌉
+ 88m bytes.

On the other hand, FDCMSS uses a sketch of dimensions
d = dln 1/δe and w = de/(2ε)e, and each cell stores 2 Space
Saving counters. Each counter requires 4 bytes to track the
identity of an item and 8 bytes for its decayed count (in our
implementation the item is an unsigned int and the decayed
count a double). Therefore, a counter requires 12 bytes and
a sketch cell therefore requires 24 bytes. It follows that the
space used by FDCMSS in the worst case is 12

⌈ e
ε

⌉ ⌈
ln 1

δ

⌉
bytes. Comparing the space required by the two algorithms,
again FDCMSS proves to be better than FSSQ.

We now compare the error bounds provided by the two
algorithms. For FSSQ, given the sketch dimensions d and w,
the real error guaranteed by the algorithm is ε̂ < e/w with
probability 1 − e−d (cfr. [33, Lemma 5]). The error bound
guarantee for FDCMSS is the following: ε̂ < e/(2w) with
probability 1 − e−d (cfr. [34, Th. 1]), and therefore, our
guaranteed bound is obviously better. It follows immediately,
that FDCMSS provides overall better frequency estimation
than FSSQ. Indeed, we shall see in the experimental results
reported in the next Section that, given the same amount of
space, FDCMSS outperforms FSSQ with regard to overall
accuracy, measured in terms of the mean relative error com-
mitted.

Finally, we discuss the recall of the two algorithms. Recall
is the total number of true frequent items reported over the
number of true frequent items given by an exact algorithm.
Therefore, an algorithm is correct iff its recall is equal to 1
(or 100%). For FSSQ, recall is guaranteed iff m, the number
of counters in the Quasi-Heap data structure is such that
m ≥ 1/φ. For FDCMSS, we guarantee the recall with
probability greater than or equal to 1− (1

2φw)
d subject to the

constraint 2φw ≥ 1 (cfr. [34, Th. 2]).

V. EXPERIMENTAL RESULTS
We present and discuss experimental results on both synthetic
and real datasets, thoroughly comparing FDCMSS against
FSSQ with regard to several metrics.

FDCMSS and FSSQ have been implemented in C++. Since
in [33] there is no mention of the hash functions used for
the sketch data structure, for fairness we use the xxhash hash
function used by FDCMSS, and reuse as much as possible
the same source code related to the sketch data structure.
Moreover, we also implemented in FSSQ the search for an
item in the Quasi-Heap by using a hash table in order to make
it faster.

The source code has been compiled using the latest version
of the Intel c++ compiler v17.0.4 on linux CentOS 7 with
the following flags: -O3 -std=c++11. The tests have been
carried out on a workstation equipped wth 64 GB of RAM
and two 2.0 GHz exa-core Intel Xeon CPU E5-2620 with
15 MB of level 3 cache. The source code is freely available
for inspection and for reproducibility of results contacting the
authors by email.

A. SYNTHETIC DATASETS
Regarding synthetic datasets, the input distribution used in
our experiments is the Zipf distribution. For each differ-
ent value of n (number of items), φ (support threshold), ρ
(skew of distribution), λ and budgeted memory, the algo-
rithms have been run 20 times using a different seed for the
pseudo-random number generator associated to the distribu-
tion (using the same seeds in the corresponding executions of
different algorithms). For each input distribution generated,
the results have been averaged over all of the runs. The input
elements are 32 bits unsigned integers.

In order to provide a fair comparison of the algorithms,
we make sure that the decayed frequencies computed by both
algorithms are equal. To this end, we use in FDCMSS the
same exponential decay function and the same λ parameter.
This way, for a given input stream, the decayed counts of the
input items and the set of frequent items computed by an exact
algorithm are the same for both algorithms.

We compare our algorithm against FSSQ taking into
account the following standard metrics: recall, precision,
mean absolute error and updates per millisecond. For each
metric, we plot the values (mean and confidence intervals)
obtained varying n, φ, ρ, λ and the budgeted memory.

In our implementation, as already discussed in Section IV,
FSSQ requires a total amount of bytes given by S1 =
16 d1 w1 + 32m + 56m where d1 and w1 are the sketch
dimensions and m is the number of nodes in the Quasi-Heap,
so that 32m is the space required by the Quasi-Heap and
56m the space required by the hash table. On the other hand,
FDCMSS requires S2 = 24 d2 w2 bytes, where d2 and w2
are the sketch dimensions. We set d1 = d2 = 4 since this
value is already enough to amplify the probability of success
as needed. Therefore, FSSQ requires a number of bytes equal
to S1 = 64 w1 + 32m + 56m, whilst FDCMSS requires
S2 = 96 w2 bytes. Therefore, we need to equate S1 to S2
and to determine the correct values to be assigned to w1 and
m for FSSQ and to w2 for FDCMSS.
Since FSSQ is based on FSS, this is achieved as explained

in [36], i.e., the space assigned to the sketch and the

VOLUME 5, 2017 24083

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

FIGURE 1. Results varying λ decaying factor (mean and confidence interval). (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 2. Results varying φ support threshold (mean and confidence interval). (a) Recall. (b) Precision. (c) Average Relative Error.
(d) Updates/ms.

Quasi-Heap is the same: 64 w1 = 32 m. It follows that
m = 2 w1, therefore we need to compare S1 = 64 w1 +

32m + 56m = 240 w1 versus S2 = 96 w2. From S1 = S2
we derive immediately the final relation w2 = 240/96 w1 =

5/2 w1. Therefore, fixing the dimension w1 in FSSQ we
obtain immediately the corresponding values for m and w2
that provide the same amount of budgeted memory for both
algorithms.

Without the hash table, FSSQ can use more space for both
its sketch and Quasi-Heap data structures; however, the speed
of FSSQ, measured in terms of updates/ms, is always at least
an order of magnitude worse than FDCMSS (in all of the
experiments carried out, for both synthetic and real datasets),
reaching at most a few hundreds of updates/ms. In practice,
without the hash table FSSQ can only process relatively slow
data streams; for this reason, we do not report the experimen-
tal results related to the implementation of FSSQ without the
hash table.

Finally, from a practical perspective, taking into account
that w2 = 5/2 w1, the theoretical bound on the error related
to our experiments is therefore for FSSQ ε̂ < e/w1 with
probability 1 − e−d and for FDCMSS is the following:
ε̂ < e/(2w2) < e/(5w1) with probability 1 − e−d , i.e., the
theoretical error bound of FDCMSS is 1/5 of FSSQ.

Table 1 reports the parameters’ values and their default in
the experiments carried out on synthetic zipf datasets.

Recall is the total number of true frequent items reported
over the number of true frequent items given by an exact

TABLE 1. Synthetic data: experiments carried out.

algorithm. Therefore, an algorithm is correct iff its recall is
equal to 1 (or 100%).

Precision is defined as the total number of true frequent
items reported over the total number of items reported.
As such, this metric quantifies the number of false positives
outputted by an algorithm. It follows that, from this point of
view, an algorithm’s precision should ideally be 1 (or 100%).

Denoting with f the true decayed frequency of an item and
with f̂ the corresponding decayed frequency reported by an
algorithm, then the absolute error is, by definition, the dif-
ference

∣∣∣f − f̂ ∣∣∣. The (absolute) total error is then defined
as the sum of the absolute errors. Similarly, the absolute

relative error is defined as 1f =

∣∣∣f−f̂ ∣∣∣
C , where C is the total

decayed count of the stream, and the average relative error is
derived by averaging the absolute relative errors over all of
the measured decayed frequencies.

Figures 1, 2, 3, 4 and 5 depict the experimen-
tal results obtained on synthetic datasets when varying
respectively λ, φ, the budgeted memory space, the skew ρ

24084 VOLUME 5, 2017

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

FIGURE 3. Results varying the budgeted space (mean and confidence interval). (a) Recall. (b) Precision. (c) Average Relative Error.
(d) Updates/ms.

FIGURE 4. Results varying the skew ρ (mean and confidence interval). (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 5. Results varying the stream size n (mean and confidence interval). (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

and the stream size n. In our experiments related to synthetic
datasets, FSSQ always reached 100% recall and precision.
As shown by Figure 3a, FDCMSS requires slightly more
space than FSSQ to reach 100% recall. Nonetheless, by using
the default space of 64 KB, FDCMSS reaches more than
99.8% of recall, and in all of the cases in which the recall
is slightly below 100%, FDCMSS loses at most one frequent
item. Regarding precision, FDCMSS always reaches 100%
except when the skew is low (ρ = 0.7), as shown in Figure 4b.
Regarding the average relative error (henceforth called

ARE), FDCMSS clearly outperforms FSSQ, exhibiting
smaller values of ARE throughout all of the experiments
carried out.

Finally, FDCMSS outperforms FSSQwith regard to speed,
measured in terms of updates/ms in all of the experiments
in which we vary λ, φ, n and the budgeted memory space
used. Regarding the experiment in which we vary the skew
parameter ρ, FSSQ is faster starting from ρ = 1.7. The
reason for this behaviour is strictly related to the maintenance
of the Quasi-Heap data structure, i.e., the higher the skew,
the lesser the number of heapify operations required. In par-
ticular, FSSQ speed depends heavily on the fraction of items
which are not monitored by the Quasi-Heap and that are pro-
cessed when the Quasi-Heap is full. In this case, a delayed-
Sorting operation is required, slowing down the algorithm’s
execution.

VOLUME 5, 2017 24085

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

FIGURE 6. Running time varying several parameters (mean and confidence interval). (a) λ. (b) φ. (c) Budgeted space. (d) ρ.

TABLE 2. Synthetic datasets: number of delayedSorting operations over
the total number of item’s updates. Default values have been used for
those parameters which are not reported in the table.

We have experimentally measured the number of times
that the delayedSorting is invoked over the total number of
updates. Table 2 reports the percentage of delayedSorting
invocations with regard to the total number of updates varying
the skewness of the Zipfian distribution in the case of syn-
thetic datasets; default values have been used for all of the
parameters, except when explicitly specified. The third col-
umn of the table refers to the algorithm speed. As expected,
the results unequivocally point out that the speed of the FSSQ
algorithm is heavily influenced by the number of invocations
of delayedSorting.

Even though the updates/ms metric is the standard way
to measure the performance of this kind of algorithms, for
completeness we report in Figure 6 the running times of
both FSSQ and FDCMSS when varying respectively λ, φ,
the budgeted memory and ρ. We note here that the running
time of an algorithm (in ms) is easily derived from the corre-
sponding updates/ms value, since n, the length of the stream,
is also known. Indeed, letting v be the updates/ms value,
the corresponding running time is given by n/v. We report
the running time in seconds, except when the running time is
below one second, in which case we report it in milliseconds.

Finally, Figure 7 depicts the running time of both FSSQ and
FDCMSS when varying n, the length of the stream. There-
fore, this plot clearly shows the scalability of the algorithms
under test. As can be seen, both algorithms scale linearly, with
FDCMSS clearly outperforming FSSQ.

B. REAL DATASETS
The real datasets we used come from different domains. All of
the datasets are publicly available, and two of them (Kosarak
and Retail) have been widely used and reported in the data
mining literature. Overall, the four datasets are characterized

FIGURE 7. Scalability of algorithms: running time varying n (mean and
confidence interval).

TABLE 3. Statistical characteristics of the real datasets.

by a diversity of statistical characteristics, which we report
in Table 3.

1) KOSARAK
This is a click-stream dataset of a Hungarian online news
portal. It has been anonymized, and consists of transactions,
each of which is comprised of several integer items. In the
experiments, we have considered every single item in serial
order.

2) RETAIL
This dataset contains retail market basket data coming from
an anonymous Belgian store. Again, we consider all of the
items belonging to the dataset in serial order.

3) Q148
Derived from the KDD Cup 2000 data, compliments of Blue
Martini, this dataset contains several data. The ones we use
for our experiments are the values of the attribute Request

24086 VOLUME 5, 2017

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

FIGURE 8. Kosarak results varying λ decaying factor. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 9. Kosarak results varying φ support threshold. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 10. Kosarak results varying the budgeted memory. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

Processing Time Sum (attribute number 148), coming from
the ‘‘clicks’’ dataset. A pre-processing step was required,
in order to obtain the final dataset. We had to replace all of
the missing values (appearing as question marks) with the
value of 0.

4) NASA
Compliments of NASA and the Voyager 2 Triaxial Flux-
gate Magnetometer principal investigator, Dr. Norman F.
Ness, this dataset contains several data. We selected the
Field Magnitude (F1) and Field Modulus (F2) attributes
from the Voyager 2 spacecraft Hourly Average Interplanetary
Magnetic Field Data. A pre-processing step was required
for this dataset: having selected the data for the years
1977-2004, we removed the unknown values (marked as
999), and multiplied all of the values by 1000 to convert them

TABLE 4. Real datasets: experiments carried out.

to integers (since the original values were real numbers with
precision of 3 decimal points). The values of the two attributes
were finally concatenated. In our experiments, we read all of
the values of the attribute F1, followed by all of the values of
the attribute F2.

Table 4 reports the parameters value and their default in the
experiments carried out on the real datasets.

Regarding Kosarak, as shown by Figures 8, 9 and 10,
both FSSQ and FDCMSS reach 100% precision and recall.
However, FDCMSS outperforms FSSQ with regard to both

VOLUME 5, 2017 24087

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

FIGURE 11. Kosarak running time varying several parameters. (a) λ. (b) φ. (c) Budgeted space.

FIGURE 12. Nasa results varying λ decaying factor. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 13. Nasa results varying φ support threshold. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

ARE and speed in all of the experiments carried out.
Figure 11 depicts the running time varying λ, φ and the
budgeted memory.

For the Nasa dataset, as shown by Figures 12, 13 and 14,
again both FSSQ and FDCMSS reach 100% precision and
recall. FDCMSS outperforms FSSQ with regard to ARE,
whilst FSSQ outperforms FDCMSS with regard to speed in
all of the experiments carried out. Figure 15 depicts the run-
ning time varying λ, φ and the budgeted memory. As already
pointed out in Section V-A, this behaviour is strictly related to
the number of times that the delayedSorting is invoked over
the total number of updates. In particular, Table 5 reports the
percentage of delayedSorting invocations with regard to the
total number of updates for all of the real datasets under test.

TABLE 5. Real datasets: number of delayedSorting operations over the
total number of item’s updates. Default values have been used for those
parameters which are not reported in the table.

We now analyze the results obtained for the q148 dataset,
depicted by Figures 16, 17 and 18. FSSQ always provide
100% recall, whilst FDCMSS reaches 100% recall using
slightly more space than the default 64 KB as shown in
Figure 18a; its recall is 100% or slightly below 100% in all of

24088 VOLUME 5, 2017

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

FIGURE 14. Nasa results varying the budgeted memory. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 15. Nasa running time varying several parameters. (a) λ. (b) φ. (c) Budgeted space.

FIGURE 16. q148 results varying λ decaying factor. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 17. q148 results varying φ support threshold. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

VOLUME 5, 2017 24089

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

FIGURE 18. q148 results varying the budgeted memory. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 19. q148 running time varying several parameters. (a) λ. (b) φ. (c) Budgeted space.

FIGURE 20. Retail results varying λ decaying factor. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 21. Retail results varying φ support threshold. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

24090 VOLUME 5, 2017

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

FIGURE 22. Retail results varying the budgeted memory. (a) Recall. (b) Precision. (c) Average Relative Error. (d) Updates/ms.

FIGURE 23. Retail running time varying several parameters. (a) λ. (b) φ. (c) Budgeted space.

the remaining cases. Indeed, since using the default values
of λ, φ and budgeted memory FDCMSS does not provide
100% recall, it is easy to see why it does not reaches 100%
recall in Figure 16a for λ = 0.99: when λ decreases there
are less frequent items, and the space allowed is enough
to track them. The same reasoning can be applied to the
φ parameter, as shown in Figure 17a: when φ decreases,
there are more frequent items and the budgeted memory is
a fortiori not enough to track them. Regarding the precision,
FDCMSS always reaches 100%, whilst FSSQ is below 100%
in two cases, when the budgeted memory is below the default
value. Regarding both ARE and speed, FDCMSS outper-
forms FSSQ in all of the cases. Figure 19 depicts the running
time varying λ, φ and the budgeted memory.
For the retail dataset, FSSQ provides 100% recall and

precision in all cases except that the precision is below 100%
when the budgeted memory is 32 KB; for FDCMSS, using
a default of 64 KB of space is just enough to report all
of the frequent items. Therefore, FDCMSS in some cases
does not reach 100% of recall when the number of frequent
items increases, for instance when φ decreases. Nonetheless,
FDCMSS in all of the cases loses at most one frequent item.
Regarding the precision, FDCMSS always reaches 100%.
As shown by Figures 20, 21 and 22, FDCMSS outperforms
FSSQ with regard to both ARE and speed in all of the cases.
Figure 23 depicts the running time varying λ, φ and the
budgeted memory.

VI. CONCLUSIONS
In this paper, we have compared and contrasted two recently
proposed and independently published sketch-based algo-
rithms for mining frequent items in time-decayed streams.
The FSSQ algorithm, besides a sketch, also uses an addi-
tional data structure called Quasi-Heap to maintain frequent
items. FDCMSS, our algorithm, cleverly combines key ideas
borrowed from forward decay, the Count-Min sketch and the
Space Saving algorithm. The aim was to fully understand the
strengths and weaknesses of both algorithms, with regard to
frequency estimation, detection of frequent items and speed.

On the basis of the experimental results, we can infer
the following conclusions. FSSQ is better suitable to the
detection of frequent items than to frequency estimation.
The algorithm exploits the space available very well for this
purpose. However, the use of the Quasi-Heap data structure
appears to be more a disadvantage than an advantage with
regard to the speed of the algorithm. Indeed, the number of
invocations of the delayedSorting function heavily influences
the speed. In particular, FSSQ may not be able to cope with
high-speed data streams.

FDCMSS is better suitable for frequency estimation; more-
over, it is extremely fast and can be used in the context of
high-speed data streams. Even though FDCMSS does not
exploit the space available as well as FSSQ, nevertheless,
it can be used anyway for the detection of frequent items in
the time fading model, since its recall is always greater than

VOLUME 5, 2017 24091

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

99%, even when using an extremely tiny amount of space.
Moreover, by using slightly more space (a few additional tens
of KB are enough), FDCMSS always reaches 100% recall
and precision as FSSQ does, but is much faster in processing
time faded streams and much less sensitive than FSSQ with
regard to the input distribution (for both synthetic and real
datasets). Therefore, FDCMSS proves to be an overall good
choice when considering jointly the recall, precision, average
relative error and the speed.

REFERENCES
[1] S. Muthukrishnan, ‘‘Data streams: Algorithms and applications,’’ Found.

Trends Theor. Comput. Sci., vol. 1, no. 2, pp. 117–236, 2005. [Online].
Available: http://dx.doi.org/10.1561/0400000002

[2] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, ‘‘Dynamic item-
set counting and implication rules for market basket data,’’ in Proc.
Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), 1997,
pp. 255–264.

[3] P. B. Gibbons and Y. Matias, ‘‘Synopsis data structures for massive data
sets,’’ External Memory Algorithms, vol. 50, pp. 39–70, Jan. 1999.

[4] K. Beyer and R. Ramakrishnan, ‘‘Bottom-up computation of sparse and
iceberg cubes,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1999,
pp. 359–370.

[5] M. Fang, N. Shivakumar, H. Garcia-Molina, R.Motwani, and J. D. Ullman,
‘‘Computing iceberg queries efficiently,’’ in Proc. 24th Int. Conf. Very
Large Data Bases (VLDB), 1998, pp. 299–310.

[6] M. Charikar, K. Chen, and M. Farach-Colton, ‘‘Finding frequent
items in data streams,’’ in Proc. 29th Int. Colloquium Autom.,
Lang. Program. (ICALP), 2002, pp. 693–703.

[7] A. Gelbukhl, Ed., ‘‘Computational linguistics and intelligent text process-
ing,’’ in Proc. 7th Int. Conf., Feb. 2006, pp. 1–2.

[8] E. D. Demaine, A. López-Ortiz, and J. I. Munro, ‘‘Frequency estima-
tion of Internet packet streams with limited space,’’ in Proc. ESA, 2002,
pp. 348–360.

[9] C. Estan and G. Varghese, ‘‘New directions in traffic measurement
and accounting,’’ in Proc. 1st ACM SIGCOMM Workshop Internet
Meas. (IMW), 2001, pp. 75–80.

[10] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, ‘‘Approximate fair-
ness through differential dropping,’’ SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 2, pp. 23–39, 2003.

[11] J. Misra and D. Gries, ‘‘Finding repeated elements,’’ Sci. Comput. Pro-
gram., vol. 2, no. 2, pp. 143–152, 1982.

[12] R. M. Karp, S. Shenker, and C. H. Papadimitriou, ‘‘A simple algorithm
for finding frequent elements in streams and bags,’’ ACM Trans. Database
Syst., vol. 28, no. 1, pp. 51–55, 2003.

[13] G. S. Manku and R. Motwani, ‘‘Approximate frequency counts over data
streams,’’ in Proc. VLDB, 2002, pp. 346–357.

[14] A. Metwally, D. Agrawal, and A. E. Abbadi, ‘‘An integrated efficient
solution for computing frequent and top-k elements in data streams,’’ ACM
Trans. Database Syst., vol. 31, no. 3, pp. 1095–1133, Sep. 2006. [Online].
Available: http://doi.acm.org/10.1145/1166074.1166084

[15] G. Cormode and S. Muthukrishnan, ‘‘An improved data stream summary:
The count-min sketch and its applications,’’ J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[16] G. Cormode and S. Muthukrishnan, ‘‘What’s hot and what’s not:
Tracking most frequent items dynamically,’’ ACM Trans. Database
Syst., vol. 30, no. 1, pp. 249–278, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1061318.1061325

[17] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou, ‘‘Dynamically maintaining
frequent items over a data stream,’’ in Proc. CIKM, 2003, pp. 287–294.

[18] M. Cafaro and P. Tempesta, ‘‘Finding frequent items in parallel,’’ Cur-
rency Comput., Pract. Exper., vol. 23, no. 15, pp. 1774–1788, Oct. 2011.
[Online]. Available: http://dx.doi.org/10.1002/cpe.1761

[19] M. Cafaro andM. Pulimeno, ‘‘Merging frequent summaries,’’ inProc. 17th
Italian Conf. Theor. Comput. Sci. (ICTCS), 2016, pp. 280–285.

[20] M. Cafaro, M. Pulimeno, and P. Tempesta, ‘‘A parallel space sav-
ing algorithm for frequent items and the Hurwitz zeta distribu-
tion,’’ Inf. Sci., vol. 329, pp. 1–19, Feb. 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002002551500657X

[21] Y. Zhang, Y. Sun, J. Zhang, J. Xu, and Y. Wu, ‘‘An efficient framework for
parallel and continuous frequent item monitoring,’’ Concurrency Comput.,
Pract. Exper., vol. 26, no. 18, pp. 2856–2879, 2014. [Online]. Available:
http://dx.doi.org/10.1002/cpe.3182

[22] Y. Zhang, ‘‘Parallelizing the weighted lossy counting algorithm in high-
speed network monitoring,’’ in Proc. 2nd Int. Conf. Instrum., Meas.,
Comput., Commun. Control (IMCCC), 2012, pp. 757–761.

[23] M. Cafaro, M. Pulimeno, I. Epicoco, and G. Aloisio, ‘‘Parallel
space saving on multi- and many-core processors,’’ Concurrency Com-
put., Pract. Exper., p. e4160, 2017. [Online]. Available: http://dx.doi.
org/10.1002/cpe.4160

[24] S. Das, S. Antony, D. Agrawal, and A. El Abbadi, ‘‘Thread coopera-
tion in multicore architectures for frequency counting over multiple data
streams,’’ Proc. VLDB Endowment, vol. 2, no. 1, pp. 217–228, Aug. 2009.
[Online]. Available: http://dx.doi.org/10.14778/1687627.1687653

[25] P. Roy, J. Teubner, and G. Alonso, ‘‘Efficient frequent item count-
ing in multi-core hardware,’’ in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery DataMining, 2012, pp. 1451–1459. [Online]. Available:
http://doi.acm.org/10.1145/2339530.2339757

[26] K. Tangwongsan, S. Tirthapura, and K.-L. Wu, ‘‘Parallel stream-
ing frequency-based aggregates,’’ in Proc. 26th ACM Symp. Paral-
lelism Algorithms Archit., 2014, pp. 236–245. [Online]. Available:
http://doi.acm.org/10.1145/2612669.2612695

[27] U. Erra and B. Frola, ‘‘Frequent items mining acceleration exploit-
ing fast parallel sorting on the GPU,’’ Proc. Comput. Sci., vol. 9,
pp. 86–95, Mar. 2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1877050912001317

[28] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha, ‘‘Fast and
approximate stream mining of quantiles and frequencies using
graphics processors,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2005, pp. 611–622. [Online]. Available: http://doi.acm.
org/10.1145/1066157.1066227

[29] M. Datar, A. Gionis, P. Indyk, and R. Motwani, ‘‘Maintaining stream
statistics over sliding windows: (Extended abstract),’’ in Proc. 13th Annu.
ACM-SIAM Symp. Discrete Algorithms, 2002, pp. 635–644.

[30] L. Chen and Q. Mei, ‘‘Mining frequent items in data stream using time
fading model,’’ Inf. Sci., vol. 257, pp. 54–69, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025513006403

[31] G. Cormode, F. Korn, and S. Tirthapura, ‘‘Exponentially decayed aggre-
gates on data streams,’’ in Proc. IEEE 24th Int. Conf. Data Eng. (ICDE),
Apr. 2008, pp. 1379–1381.

[32] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, ‘‘Finding
(recently) frequent items in distributed data streams,’’ in Proc. 21st Int.
Conf. Data Eng. (ICDE), Apr. 2005, pp. 767–778.

[33] S. Wu, H. Lin, Y. Gao, and D. Lu, ‘‘Novel structures for counting
frequent items in time decayed streams,’’ World Wide Web, vol. 20,
no. 5, pp. 1111–1133, 2017. [Online]. Available: http://dx.doi.org/
10.1007/s11280-017-0433-5

[34] M. Cafaro, M. Pulimeno, I. Epicoco, and G. Aloisio, ‘‘Mining frequent
items in the time fading model,’’ Inf. Sci., vols. 370–371, pp. 221–238,
Nov. 2016.

[35] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu, ‘‘Forward decay:
A practical time decay model for streaming systems,’’ in Proc. IEEE 25th
Int. Conf. Data Eng. (ICDE), Mar. 2009, pp. 138–149.

[36] N. Homem and J. P. Carvalho, ‘‘Finding top-k elements in data streams,’’
Inf. Sci., vol. 180, no. 24, pp. 4958–4974, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002002551000397X

MASSIMO CAFARO (SM’11) received the Ph.D.
degree in computer science from the University of
Bari. He is currently an Associate Professor with
the Department of Engineering for Innovation,
University of Salento, where he is also the Director
of the CINI Research Unit. He has authored over
100 refereed papers. He holds a patent on dis-
tributed database technologies. His research cov-
ers parallel and distributed computing, cloud and
grid computing, data mining, and big data. He is a

Senior Member of the IEEE Computer Society and the ACM, the vice chair
of regional centers and a Coordinator of the Technical Area on Data Intensive
Computing for the IEEE Technical Committee on Scalable Computing.
He serves as an Associate Editor of the IEEE ACCESS.

24092 VOLUME 5, 2017

M. Cafaro et al.: On Frequency Estimation and Detection of Frequent Items in Time Faded Streams

ITALO EPICOCO received the Ph.D. degree
in computational engineering from the Univer-
sity of Lecce, Italy. He is currently an Assis-
tant Professor with the University of Salento,
Lecce, Italy. He is also an Affiliate Researcher
with the Euro-Mediterranean Center on Climate
Change (CMCC). He has authored over 40 papers
in refereed books, journal, and conference pro-
ceedings. His research interests include high per-
formance, distributed, grid, and cloud computing,

with particular emphasis on parallel data mining. During his past research
activities, he addressed issues related to the optimization of numerical meth-
ods for solving PDEs applied to Earth system models and to fluid dynamics
models on high-end parallel architectures, including heterogeneous architec-
tures made of accelerators (NVIDIAGPU and IntelMIC). Relevant activities
also included optimized management of a huge amount of data produced by
the climate models.

MARCO PULIMENO received the Laurea (M.Sc.)
degree in computer engineering and the Ph.D.
degree in mathematics and computer science from
the University of Salento, Italy. He has authored
on the topic of frequent items in several refereed
journals and conference proceedings. His research
interests include high performance computing,
distributed computing, and in particular, parallel
data mining.

GIOVANNI ALOISIO is currently a Full Pro-
fessor of information processing systems with
the Department of Engineering for Innovation,
University of Salento, Lecce, Italy, where he
is leading the HPC Laboratory. He is a mem-
ber of the Governance bodies, the Director of
the Supercomputing Center, and a member of
the Strategic Council and the Executive Com-
mittee, Euro-Mediterranean Center on Climate
Change (CMCC). His expertise concerns high per-

formance computing, grid and cloud computing, and distributed data man-
agement. He has been a Co-Founder of the European Grid Forum, which then
merged into the Global Grid Forum, now Open Grid Forum. He was one of
the key experts of the International Exascale Software Project, whose main
goal was the definition of the software roadmap for scientific computing at
exascale. He was the responsible for European Network for Earth System
Modeling within the European Exascale Software Initiative. He chairs the
WCES, European working group of the EESI2 Project. He is also the respon-
sible for CMCC of the EUBrazil CC and Ofidia EU-FP7 projects. He is a
member of the ENES HPC Task Force. He has authored over 100 papers in
referred journals on parallel, grid computing, distributed data management,
and exascale computing.

VOLUME 5, 2017 24093

