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Abstract: Potatoes are a staple food with high antioxidant properties that can positively affect
population health. The beneficial effects of potatoes have been attributed to tuber quality. However,
the tuber quality related researches at genetic levels are very few. Sexual hybridization is a powerful
strategy for producing new and valuable genotypes with high quality. In this study, 42 breeding
potato genotypes in Iran were selected based on appearance characteristics such as shape, size, color,
eyes of tubers, and tuber yield and marketability. The tubers were evaluated for their nutritional
value and properties, viz. phenolic content, flavonoids, carotenoids, vitamins, sugars, proteins, and
antioxidant activity. Potato tubers with white flesh and colored skin had significantly higher levels
of ascorbic acid and total sugar. The result showed that higher phenolic, flavonoid, carotenoid,
protein concentration, and antioxidant activity were noted in yellow-fleshed. Burren (yellow-fleshed)
tubers had more antioxidant capacity in comparison to genotypes and cultivars, which did not differ
significantly with genotypes 58, 68, 67 (light yellow), 26, 22, and 12 (white). The highest correlation
coefficients in antioxidant compounds were related to total phenol content and FRAP, suggesting
that phenolics might be crucial predictors of antioxidant activities. The concentration of antioxidant
compounds in the breeding genotypes was higher than in some commercial cultivars, and higher
antioxidant compounds content and activity were detected in yellow-fleshed cultivars. Based on
current results, understanding the relationship between antioxidant compounds and the antioxidant
activity of potatoes could be very helpful in potato breeding projects.

Keywords: antioxidant; ascorbic acid; carotenoid; FRAP; soluble proteins

1. Introduction

Potato (Solanum tuberosum L.) is of the most common nutrient sources after iconic
crops such as rice, wheat and maize [1], constituting the significant rate of the food and
nutritional demand of human beings [2]. Concerning available phytochemicals, the rele-
vant crop is a source rich in vitamins A, B, and C, carbohydrates, patatin storage proteins,
fiber, antioxidant compounds (for example, caffeic acid), calcium, potassium, phosphorus,
and iron [3–6]. However, the contents of those phytochemicals exhibit critical variations
according to the potato cultivars [7]. Of the potato plants, potato tubers are the sources
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of health-promoting compounds [8]. Antioxidant activities of potatoes have been as-
sayed in very many studies [7,9–12]. In potato tubers, polyphenols [7,13], ascorbic acid,
carotenoids [14], and protein [8] are significant antioxidants. However, of those antioxi-
dants, phenolic acids are the major antioxidant compounds, as common in other crops, as
well [15,16]. Concerning phenolics available, chlorogenic acid, gallic acid, protocatechuic
acid, and caffeic acid are phenolics identified in potato skins [10]. On the other hand, rutin,
quercetin, myricetin, kaempferol, and naringenin are important flavonoids in potatoes [17].
Flavonoids in the flesh and skin cause pigmentation of cultivated potato varieties [16].
Subsequently, colored potato genotypes have significant antioxidant activity [18].

The flesh color of potato tubers is related to the accumulation of two different classes
of pigments. For instance, the accumulation of anthocyanins results in red, blue, or pur-
ple colors of the flesh and white, yellow, and orange flesh due to carotenoid levels [19].
Carotenoids are tetraterpens, and their isoprenoid structure consists of 40 carbons; they
have a long chain of double bonds [12] and exhibit similar functions to vitamin A activ-
ity [20,21]. Carotenoids are powerful antioxidants to scavenge free radicals due to their
double bonds [15]. Due to the importance of carotenoids for health [22], considerable
attention has been paid to the selection and development of food products by increasing the
concentration of total and individual carotenoids [6]. Concerning carotenoid compounds,
violaxanthin, antheraxanthin, lutein, and zeaxanthin are well-known in potatoes [23,24],
but their concentrations critically vary according to potato varieties [19].

Of the vitamins available, Vitamin C is the most abundant in potato tuber, with a range
of amounts from 10 to 40 mg per 100 g of fresh weight [18]. As a powerful antioxidant,
Vitamin C exhibits significant functions such as protective roles against oxidative stress and
involvement in a plethora of cellular activities (i.e., cell division and growth, organogenesis,
and collagen synthesis) [25]. In addition, protein constitutes one-third of the dry weight
of the potato tuber and is composed of three major groups: patatin, protease inhibitors,
and other proteins [26]. Among those major groups, patatin, as a unique potato tuber
protein, suppresses/inhibits free radicals [6,27]. The potato proteins have been classified as
“excellent” (90 out of 100) for their biological values [28]. In addition, patatin proteins have
desirable functional properties, such as foam formation and stabilization, fat emulsion, or
gelling [29].

Carbohydrates, especially starch, constitute a large portion of potato tubers [29]. After
processing the potato tubers at high temperatures, asparagine (amino acids), glucose,
or fructose (reducing sugars) can lead to the formation of acrylamide. Subsequently,
acrylamide might cause undesirable browning or bitter taste [30,31]. In this regard, the
content of sugar is of the critical parameters to be considered in the selection of new
cultivars [29].

The production or introduction of promising potato cultivars with desired phyto-
chemicals is of the major targets of agricultural systems. In this regard, some breeding
genotypes and commercial cultivars were screened for their phenolics, flavonoids, ascorbic
acid, carotenoids, proteins, and sugars, as well as antioxidant activities (DPPH and FRAP).
Furthermore, the antioxidant activities were correlated with the phytochemicals available.

2. Results and Discussion
2.1. Total Flavonoids and Phenolic Content (TFC, TPC)

TPC of yellow- or light-yellow-flesh potatoes ranged from 48.6 to 96 µg mg−1 FW,
whereas it ranged between 38 to 92 µg mg−1 FW in white-flesh potatoes (Table 1). Of the
cultivars, “Burren” had the highest content of phenolics (96 µg mg−1 FW). On the other
hand, the TFC of the cultivars varied between 1.32 and 4.6 µg of quercetin equivalent per
mg FW (Table 1). The findings of the present study are higher than cultured potato tubers’
phenolic acid and flavonoid content [32]. In addition, the colored potato cultivars had
twice the content of phenolics in relation to the white skin potato cultivars. As in the case
of TPC, the cultivar “Burren” also had the highest TFC (4.6 µg mg−1 FW). Regarding their
significance levels, the cultivar “Burren” was not statistically separated from cultivars 58,
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26 and 68. However, the cultivar “Burren” was statistically different from other cultivars in
terms of TFC (p < 0.01).

Table 1. TFC, TPC, DPPH, FRAP, TCC, TAA, TSS and TSP of 53 genotypes and cultivars of potato.
Results from Duncan’s posthoc test were reported in the table.

Sample F/S Colour TFC
(µg mg−1 FW)

TPC
(µg mg−1 FW) DPPH (%) FRAP

(µg mg−1 FW)
TCC

(µg mg−1 FW)
TAA

(µg mg−1 FW)
TSS

(µg mg−1 FW)
TSP

(µg mg−1 FW)

6 Y/Y 2.80 c–i 75.40 a–g 63.90 a–d 67.20 a–i 50.20 a 18.30 d–m 3.07 n–q 127.70 g–n

7 Y/Y 2.53 c–j 70.70 a–i 62.80 a–d 60.80 a–k 37.43 b–e 26.83 a–f 4.34 l–q 140.30f–m

8 Y/Y 2.43 d–l 71.90 a–h 62.90 a–d 60.00 a–k 44.52 ab 14.34 i–m 23.90 c 133.80 g–n

30 Y/Y 2.14 e–o 61.90 c–k 57.80 a–g 57.42 c–k 20.66 j–r 27.16 a–e 2.95 n–q 148.30 e–l

43 Y/Y 2.42 d–m 68.30 b–j 62.00 a–e 59.20 a–k 26.50 g–l 13.30 j–m 5.31 j–q 133.10 g–n

49 Y/Y 2.48 d–k 68.80 b–i 62.10 a–e 58.30 b–k 26.98 g–k 27.51 a–e 7.61 h–k 133.80 g–n

61 Y/Y 2.05 f–o 60.40 c–k 51.14 c–k 55.60 c–k 30.91 e–i 25.21 a–h 3.08 m–q 120.90 g–n

Burren Y/Y 4.61 a 96.80 a 73.50 a 89.40 a 36.81 c–e 18.60 d–m 2.82 o–q 241.30 a–d

Jelly Y/Y 3.01 c–e 76.60 a–f 68.62 ab 67.40 a–i 36.91 c–e 12.83 k–m 3.36 l–q 205.80 b–f

Impala Y/Y 2.40 d–m 67.30 b–j 61.98 a–e 58.90 a–k 26.51 g–l 13.76 i–m 15.53 de 131.40 g–n

Milva Y/Y 1.91 h–o 55.60 d–k 41.56 h–n 54.33 c–k 25.03 h–o 14.43 i–m 36.1 b 117.60 g–n

1 LY/Y 2.91 c–h 75.80 a–g 64.63 a–d 65.20 a–j 27.07 g–k 16.53 g–m 3.40 l–q 173.00 d–h

4 LY/Y 2.53 c–j 51.30 e–k 36.10 k–n 49.00 e–k 18.26 l–r 21.83 c–l 5.64 j–p 91.10 k–n

10 LY/Y 1.72 j–o 53.70 d–k 38.70 i–n 49.50 e–k 16.25 o–r 21.71 c–l 5.69 j–o 90.90 k–n

15 LY/Y 2.75 c–i 74.38 a–h 65.15 a–d 63.60 a–j 23.00 i–q 10.26 m 2.454 q 157.30 e–k

19 LY/Y 2.00 g–o 57.44 d–k 48.40 d–k 54.50c–k 26.19 g–m 20.72 c–l 6.45 i–m 95.70 i–n

20 LY/Y 2.03 f–o 58.58 c–k 49.60 c–k 54.60 c–k 21.38 j–r 14.91 i–m 9.63 gh 112.40 g–n

26 LY/Y 4.20 ab 86.10 a–c 73.17 a 84.20 a–c 44.04 a–c 18.72 d–m 3.4 l–q 261.40 ab

42 LY/Y 2.47 d–k 68.30 b–j 62.08 a–e 59.70 a–k 39.96 b–d 25.14 a–h 2.53 pq 180.90 c–g

Satina LY/Y 2.80 c–i 74.39 a–h 66.13 a–c 63.70 a–j 26.20 g–m 14.09 i–m 3.36 l–q 166.90 e–j

Maradona LY/Y 2.07 f–o 59.65 c–k 54.68 b–i 54.80 c–k 32.83 d–h 12.23 l–m 5.09 k–q 101.53 e–j

Kayzer LY/Y 1.87 i–o 53.93 d–k 38.90 i–n 53.10 d–k 18.90 k–r 18.46 d–m 11.30 fg 93.40 j–n

Khavaran LY/Y 1.81 i–o 53.92 d–k 38.40 j–n 49.90 e–k 13.84 r 23.78 b–i 4.90 k–q 93.20 j–n

javid LY/Y 2.05 f–o 58.62 c–k 54.46 b–j 54.50 c–k 21.68 j–r 18.47 d–m 5.49 j–q 165.00 e–j

12 LY/P 3.08 c–e 79.00 a–e 68.60 ab 74.80 a–g 31.07 e–i 27.83 a–d 6.23 i–m 215.20 b–e

22 LY/P 3.15 cd 79.70 a–d 68.70 ab 76.40 a–g 33.90 d–h 19.35 c–m 8.26 h–j 273.60 ab

33 LY/P–Y 1.50 k–o 48.61 g–k 31.66 l–n 45.30 g–k 16.60 o–r 11.72 l–m 12.85 ef 86.20 k–n

16 W/W 3.50 bc 79.80 a–d 69.41 ab 77.40 a–e 26.13 g–n 20.98 c–l 3.55 l–q 207.80b–f

35 W/W 1.42 m–o 43.50 i–k 28.80 mn 41.00 h–k 18.589 l–r 14.16 i–m 6.04 j–n 72.40 mn

39 W/W 1.38 no 46.84 h–k 29.65 mn 39.60 i–k 18.43 l–r 18.83 d–m 5.03 k–q 80.90 l–n

54 W/W 1.92 h–o 54.90 d–k 42.00 g–n 53.20c–k 22.016 j–r 26.87 a–e 3.34 m–q 96.50 i–n

57 W/P 2.26 d–o 66.10 b–j 61.60 a–e 57.70 c–k 25.358 h–o 29.18 a–c 5.37 j–q 123.20 g–n

68 W/P 4.03 ab 81.00 a–d 71.90 a 76.90 a–g 30.8 e–i 23.46 b–j 5.50 j–q 289.86 a

387 W/P 2.15 e–o 65.29 b–k 58.00 a–g 57.40 c–k 25.63 h–o 34.37 a 8.95 g–i 123.40 g–n

sp
11
13

W/P–W
C/P–Y
C/P–Y

1.34 o

3.08 c–e

3.09 c–e

38.10 k

77.72 a–f

75.10 a–g

28.40 mn

66.30 a–c

65.01 a–d

31.70 k

70.80 a–h

64.20 a–j

15.94 p–r

34.10 d–g

26.06 g–n

26.19 a–g

19.06 d–m

21.85 c–l

9.84 gh

21.92 c
15.20 de

64.10 n

125.60 g–n

147.01 e–l

14 W/P–Y 2.76 c–i 75.33 a–g 65.07 a–d 64.70 a–j 24.41 i–p 29.16 a–c 5.08 k–q 126.30 g–n

23 W/P–Y 1.98 g–o 57.00d–k 46.20 e–l 53.30 c–k 20.29 k–r 20.46 c–l 5.46 j–q 105.70 h–n

31 W/P–Y 2.16 d–o 64.11 c–k 59.60 a–f 57.10 c–k 25.54 h–o 17.55 e–m 3.81 l–q 120.30 g–n

36 W/P–Y 2.11 e–o 64.23 c–k 57.12 a–h 56.40 c–k 24.06 i–q 17.57 e–m 3.83 l–q 213.00 b–e

40 W/P–Y 2.56 c–j 71.90 a–h 63.30 a–d 63.40 a–j 36.4 c–f 23.33 b–j 4.86 k–q 150.50 e–l

Fontane W/P–Y 2.93 c–g 76.32 a–g 66.00 a–c 70.60 a–i 35.61 d–f 19.81 c–m 59.73 a 131.20 g–n

21 W/Y 1.50 k–o 51.25 e–k 32.30 l–n 45.50 g–k 15.42 qr 16.52 g–m 4.42 l–q 85.80 k–n

27 W/Y 1.32 o 41.10 jk 27.90 n 36.10 j–k 17.71 n–r 16.69 f–m 10.19 gh 71.90 mn
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Table 1. Cont.

Sample F/S Colour TFC
(µg mg−1 FW)

TPC
(µg mg−1 FW) DPPH (%) FRAP

(µg mg−1 FW)
TCC

(µg mg−1 FW)
TAA

(µg mg−1 FW)
TSS

(µg mg−1 FW)
TSP

(µg mg−1 FW)

28 W/Y 1.96 g–o 56.60 d–k 44.50 f–m 53.40 c–k 17.82 m–r 17.53 e–m 5.32 j–q 108.30 g–n

32 W/Y 2.63 c–i 72.40 a–h 63.44 a–d 61.70 a–k 19.76 k–r 29.27 a–c 6.47 i–l 181.50 c–g

34 W/Y 1.66 j–o 50.10 f–k 29.65 mn 46.00 f–k 14.48 r 15.81 h–m 8.21 h–j 85.40 k–n

47 W/Y 2.08 f–o 61.50 c–k 54.77 b–i 56.30 c–k 22.86 i–q 32.00 ab 16.88 d 179.80 d–g

48 W/Y 2.33 d–n 66.80 b–j 61.60 a–e 58.90 a–k 23.20 i–q 18.23 d–m 2.58 o–q 167.33 e–i

52 W/Y 1.45 l–o 47.20 h–k 35.90 k–n 42.50 h–k 16.49 o–r 18.87 d–m 12.95 ef 77.60l–n

58 W/Y 4.27 ab 92.64 ab 70.30 ab 88.60 ab 28.65 f–j 23.02 b–k 3.36 l–q 214.70 b–e

67 W/Y 3.48 bc 81.38 a–d 69.70 ab 80.90 a–d 33.90 d–g 21.39 c–l 4.68 l–q 249.70 a–c

F = flesh, S = skin, W = white, LY = light yellow, Y = yellow, P = pink, TFC = Total Flavonoids Content,
TPC = Total Phenolic Content, TCC = Total Carotenoid Content, TAA = Total Ascorbic Acid, TSS = Total Soluble
Sugar, TSP = Total Soluble Protein. Means with different letters are significantly different at p < 0.05 in the
whole table.

Overall, yellow-flesh potatoes had more TPC and TFC than light yellow- and white-
flesh genotypes. For example, the lowest amount of TFC (genotype 27) and TPC (genotype
sp) was observed in white-flesh potatoes (Table 1). The flavonoids and phenolic acid
content in purple or red flesh cultivars were twice and three to four times higher than
in white-fleshed cultivars [8,9,32]. Such a high variation can be explained by the fact
that pigmented potatoes have a high level of chlorogenic acid isomers compared to non-
pigmented potatoes. Subsequently, high levels of chlorogenic acid and its isomers, as well
as caffeic acid in red and purple potatoes, are manifested into high antioxidant activity [14].
Overall, very significant differences were noted between potato genotypes or cultivars with
respect to the TPC and TFC (p < 0.01). A plethora of reports also uttered that phenolic
compounds were very variable according to the genotypes/cultivars [7,9–12] and the
associated flesh color [33,34]. Such differences have been attributed either to phenolic
compounds’ synthesis levels or the diversification of the compounds [10]. In addition to the
effects of environmental phenomena, the level of antioxidant activity of the crop is affected
by genotype, field conditions, soil type, plant growth stage, and storage conditions [18].

2.2. Antioxidant Activity (DPPH and FRAP)

With respect to estimating the antioxidant activities of samples, there are many meth-
ods applied in potato samples (i.e., DPPH, FRAP, and ABTS) [7,9,11,35]. Each method
has a different mechanism to remove, reduce or inhibit free radicals. For that reason,
more appropriate results might be achieved with the use of at least two methods [11,15].
For that reason, potato cultivars were assayed for their potential antioxidant activities
using two methods, namely DPPH (2,2-diphenyl-1-picrylhydrazyl scavenging activity)
and FRAP (Ferric Reducing Antioxidant Power). Accordingly, FRAP values and DPPH
radical inhibitory activities ranged from 31.7 to 89.4 µg mg−1 FW and from 27.9 to 73.5%,
respectively (Table 1). Among the three color groups of potato flesh, white-flesh (genotypes
27, sp, 35, and 39) potatoes had the lowest amount of DPPH radical inhibitory activity,
and FRAP means (31.7 µg mg−1 FW) in white-flesh potatoes (genotype SP). At the same
time, yellow-flesh potatoes had the highest amount of DPPH radical inhibitory activities
and FRAP. Even though yellow-flesh potatoes have a higher antioxidant capacity than
white flesh, genotype 68 with white flesh has a higher antioxidant capacity (DPPH radical
inhibitory activities) than some yellow or light yellow flesh potatoes.

In contrast, most yellow flesh samples had higher activity than white flesh samples.
The observed differences in FRAP values were statistically significant, and the highest value
was found in the cultivar “Burren” (yellow flesh). However, the high value in “Burren”
was not statistically different from other potato cultivars (Table 1).

High antioxidant activity has been reported in purple flesh and skin potatoes, purple
flesh potatoes have more DPPH radical scavenging activity than yellow potatoes [7,9,11].
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Anthocyanins and phenolic acids are considered the main antioxidant compounds in
potatoes [9,36]. Chlorogenic acid, gallic acid, caffeic acid, and catechins are the main
contributors to the antioxidant capacity of white or yellow flesh potatoes. In contrast,
in potatoes with purple and red flesh, anthocyanins are common agents for antioxidant
activity [14].

2.3. Total Carotenoids Content (TCC)

Table 1 about total carotenoids showed that the carotenoid content obtained from
genotype 6 and other genotypes was significantly different (p < 0.01; Table 1). However,
the highest amount of TCC was reported in genotype 6 (yellow flesh) Table 1. The tubers
with yellow flesh and skin were high in carotenoids, and the results of our experiments are
consonant with the findings of other studies [12]. Statistical analysis showed that darker
yellow flesh has the highest average carotenoids, which are not significantly different
from light yellow flesh. Carotenoid content is significantly lower in potatoes with white
flesh. However, the amount of potato carotenoid with white flesh and pink skin (Fontane
and genotypes 40 and 11) does not differ from the types of yellow or light yellow flesh
(genotypes 26, 42, and 7, cultivars Jelly and Burren).

The color of potato tubers is affected by the concentration and composition of
carotenoids. Carotenoid concentration significantly correlates with the yellow color of
tuberous flesh [6]. In several studies, tuber carotenoid content and type have been measured
and identified in a wide range of potato germplasm. In crosses of Solanum stenotomum and
Solanum phureja, a population of diploid progeny was obtained with white, yellow, and or-
ange flesh colors [19]. Orange flesh contains zeaxanthin; depending on the concentration of
zeaxanthin, a dark orange-yellow color appears in the flesh of the tuber [16,37]. Zeaxanthin
and lutein are lipophilic compounds made from the precursor of isoprenoid in the plastid,
the most abundant carotenoids found in yellow and orange flesh potatoes [6]. The yellow
flesh trait results from a dominant allele (Chy2 allele3) of beta-carotene hydroxylase. The
other 10 alleles of Chy2 do not affect the character of yellow flesh [38].

2.4. Total Ascorbic Acid (TAA)

The concentration of TAA varied from 10.2 to 34.3 µg mg−1 FW, being significantly
different between 53 genotypes and cultivars (Table 1). The content of vitamin C in tubers
with colored skin and white flesh was higher than in those with light yellow flesh. The
highest levels of TAA were observed in genotype 387 (Table 1). After that, the highest
amount of vitamin C was obtained by genotypes 47, 57, 14, 32 (white), 12 (light yellow), 49,
30 (yellow), 54 (white), 7 (yellow), sp (white), 61 (yellow), and 42 (light yellow), while the
lowest amount of TAA was recorded in genotype 15 (light yellow). In general, the highest
concentration of TAA was found first in tubers with white-fleshed and colored skin, then
white-fleshed and yellow-skinned, light yellow-fleshed and colored skin, yellow-fleshed
and yellow-skinned, and light yellow-fleshed and yellow-skinned (Table 1).

Potatoes are a valuable source of ascorbic acid, so a 148 g uncooked potato provides
45% of the average adult daily value of ascorbic acid [39]. Fresh potato tubers contain up to
50 mg 100 g−1 FW of ascorbic acid, but the amount is reduced to 10 mg 100 g-1 FW during
storage time. A cultivar that stores a large amount of ascorbic acid during storage is of
value because the tubers are usually stored before consumption [40]. Vitamin C content
ranged from 15 and 25 mg 100 g−1 FW of potato North American variety and breeding
line [13]. Six European cultivars and 27 breeding lines of potato genotypes were grown in
each of the 2 years at three different European geographical sites, and the concentration of
vitamin C varied between 0.65 to 1.54 mg 100 g−1 FW [25]. Significant amounts of ascorbic
acid were detected in 12 potato cultivars with yellow-fleshed and red-fleshed, ranging
from 88.6 to 282.0 mg 100 g−1 FW. A red-fleshed cultivar showed the highest ascorbic
acid concentration [41,42]. In addition, high heritability has been reported for vitamin C
content [16].
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2.5. Total Soluble Sugars (TSS)

Table 1 shows that the total sugar contents in potato tubers with light yellow or light
yellow and white flesh are between 2.45–36.10 and 2.58–59.73 µg mg−1 FW, respectively.
The highest amount of total sugar in white flesh (59.73) was observed in the “Fontane”
cultivar, and this content was generally higher in white flesh and colored skin than in light
yellow and yellow flesh. After Fontane, the highest amount of total sugar was observed in
Milva cultivars, genotypes 8, 11, and 47, significantly different from other cultivars and
genotypes. In addition, the total sugar concentration in the samples with light yellow flesh
(2.45–12.85) was lower than in the potatoes with yellow and white flesh. The lowest sugar
content was observed in genotypes 15, 30, and 48, and cultivar Burren.

The total sugar content in potato tubers was reported from 10.30 to 47.10 mg g−1 [29].
The results of an experiment showed that the total sugar concentration in potato tubers
varies between 7.50 and 74.10 mg g−1 DW. The most common type of sugar found in tubers
is maltose, which is the reason for the sweet taste of potatoes [43]. Potatoes with high
starch and low sugar usually have better cooking and processing quality than potatoes
with low starch and high sugar content [44]. The quality of processed potatoes depends
on the activity of sucrose synthetase, which also determines yield and starch content
in potato tubers [45]. Well-processed cultivars are more capable of removing sucrose
during growth completion [30]. The different ability of clones to form reducing sugars was
probably due to vacuolar invertase activity, sucrose compartmentalization, or other, by the
competing pathways of starch synthesis and degradation [46]. Even if glucose and fructose
are produced in moderation, glucose levels are high during growth and storage at 4 ◦C
than potatoes stored at different temperatures [47].

2.6. Total Soluble Protein (TSP)

The concentration of total protein was observed in yellow flesh (117–241 µg mg−1 FW),
light yellow flesh (86–273 µg mg−1 FW), and white flesh (64.19–289 µg mg−1 FW) tubers,
respectively. However, the protein content of potatoes with light yellow flesh (genotypes
26, 22, and 12) was not significantly different from yellow flesh (Burren and Jelly; Table 1).

Soluble proteins make up about 75% of the total protein in potatoes, while approx-
imately 25% of all potato proteins are insoluble proteins that make up the cell wall of
potatoes [35]. Previous research assessed the concentration and distribution of TSP for
20 fresh and stored potato tubers. Protein concentrations were higher in the periderm (38
to 73 mg g−1 DW) compared to the cortex and pith (30 to 49 mg g−1 DW). After 6 months
of tubers storage, the protein content of 11 cultivars did not change, but some cultivars
showed a decrease and increase in protein content [48].

2.7. Correlation

Since antioxidant compounds are the strongest and final indicator to separate in
some genotypes and cultivars of potato, several multivariate analyses were performed
on the data matrix of genotypes and cultivars to evaluate the antioxidant compounds of
genotypes and cultivars of potato and establish the range of responses detectable in this
potato collection. Based on cluster analysis, clusters of some genotypes and cultivars of
potato could be identified largest distance on the dendrogram (Figure 1). Examination
of antioxidant compounds in genotypes and cultivars of potato data obtained from the
heatmap showed that the highest TSF was related to genotype 68, which is consistent with
the average comparison results (Table 1). Also, the result showed that the highest TPC
was related to genotype 58 (Figure 1), which is not consistent with the average comparison
results (Table 1).

According to the result of the Pearson correlation coefficient (PCC) in antioxidant
compounds of some genotypes and cultivars of Potato (Table 2), the highest Pearson
correlation coefficient (PCC) between TPC was related to FRAP. Also, the lowest correlation
in antioxidant compounds was associated with TSS and TAA. The result showed that the
highest correlation value occurs between DPPH and TFC (0.947).
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Table 2. Pearson correlation coefficient (PCC) and p-values link the chemical profile and antioxidant
activity of the 43 breeding potato genotypes. Statistically significant pairwise comparisons are
indicated. *** < 0.001.

TFC TPC DPPH FRAP TCC TAA TSS TSP
TFC
TPC 0.945 ***

DPPH 0.848 *** 0.947 ***
FRAP 0.961 *** 0.972 *** 0.892 ***
TCC 0.641 *** 0.712 *** 0.729 *** 0.677 ***
TAA 0.083 0.099 0.150 0.093 −0.009
TSS −0.060 −0.030 −0.033 −0.018 0.101 −0.102
TSP 0.837 *** 0.823 *** 0.800 *** 0.850 *** 0.546 *** 0.113 −0.165

The analysis of relationships occurring between variables (analyzed compounds) and
observations (sample) was deepened, according to Principal component analysis (PCA). By
looking at the data reported in Figure 2, we may observe as the first two axes accounted for
92.56% of the total variance of the system (91.79% PC1, 0.86% PC2), thus indicating that
samples can be grouped in three different clusters according to their similarities. Genotypes
and cultivars, such as 58, 23, 46, and so on, are placed in cluster A due to their similarities
(Figure 2).

3. Materials and Methods
3.1. Plant Material

During 2012, crossbreeds were made between commercial cultivars (Khavaran, Satina,
Kayzer, Javid, Agria, Milva, Jelly, Maradona, Impala, Oshina, Burren, Fontane), Stbrkaz and
Stbrp clones and clones that are in the cultivar introduction stage (S. andigena,
S. stoloniferum, and S. tuberosum). In 2019, 42 advanced clones were obtained from succes-
sive selections, and 11 commercial clones were planted in the Ardabil Agricultural Research
Center research farm. The image of some of these selected genotypes and commercial
cultivars with different skin and flesh colors is shown in Figures 3 and 4.
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After harvest, 3 tubers from each clone replicate were selected, cleaned, peeled manu-
ally, soaked with liquid nitrogen, and frozen at −80 ◦C until analyzed.
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3.2. Measurement of Flavonoids Content

The total flavonoid content was determined by the colorimetric method of aluminum
chloride [49–51]. In this method, 500µL of standard solution or extract, 2 mL H2O, and
150 µL NaNO2 5% are added to a Falcon and mixed for 5 min. Then, 150 µL of 10%
AlCl3·6H2O was added to the mixture solution, and after 5 min, 1000 µL of 1M NaOH
was added. After keeping the samples at 24 ◦C for 15 min, the absorbance of the samples
was measured at 415 nm. According to the above-mentioned method, quercetin was
used as standard at different concentrations (20–1000 µg mL−1). Finally, total flavonoid
concentration was calculated as quercetin equivalent on a basis µg mg−1 FW.

3.3. Determination of Phenolic Concentration

Total phenol content was determined by the Folin–Ciocalteu reagent [7,52–54]. Briefly,
0.1 g frozen tuber tissue was homogenized with 1 mL of 80% methanol (v/v) and then
centrifugated at 12,000 rpm for 20 min at 4 ◦C. Subsequently, 40 µL of the 5-fold diluted
extract was added to 1.5 min/mL of the 10-fold diluted Folin-Ciocalteu reagent and mixed
thoroughly. The absorbance of the reaction solution was recorded at 725 nm. Gallic acid
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solutions were prepared in different concentrations (20–1000 µg mL−1) and used as a
standard curve.

3.4. Assay of DPPH Radical Scavenging Activity

The antioxidant capacity of potato flesh extract was measured using the DPPH assay
(1,1-DiPhenyl-2-Picryl-Hydrazyl), as described [7,55]. First, DPPH (100 µM) radical solution
was prepared in methanol, and 40 µL of the 5-fold diluted supernatant was mixed with
3 mL of DPPH radical solution. After keeping the prepared solution in the dark for half
an hour at 24 ◦C, the reading was performed at 415 nm. DPPH scavenging activity was
expressed by inhibiting (percentage) DPPH absorbance.

3.5. Assay of Ferric-Reducing Antioxidant Power (FRAP)

Ferric-reducing antioxidant reagent was determined according to the method of [56]
by adding 20 mM FeCl3·6H2O, 10 mM TPTZ (2,4,6-tri (2-pyridyl)-s-triazine) and 0.3 mol/L
sodium acetate buffer (pH 3.6) with ratio 1:1:10. The FRAP reagent solution was heated
at 37 ◦C for 10 min. In summary, 60 µL of the extract was pipetted to 3 mL of the FRAP
reagent. The samples were then dark incubated for a half-hour, and then the absorbance
was recorded at a wavelength of 593 nm. Ferrous sulfate heptahydrate solution was used
for the standard curve.

3.6. Determination of Carotenoid Content

Carotenoids were performed according to Tang et al. [15] method. Briefly, 5 mL of
ethanolic butylated hydroxyl toluene (ethanol/BHT—100:1, v/w) was added to 0.5 g of the
potato flesh. Then, samples were vortexed and heated at 85 ◦C for 5 min. Subsequently,
500 µL of 80% KOH was added, and samples were vortexed again before placing them in a
water bath at 85 ◦C for 10 min. Then, samples were cooled in an ice-water bath, and 3 mL
of cold deionized water was added. After that, 3 mL of N-hexane was added to the mixture
and centrifuged (7500 rpm, 5 min). The yellow top phase was transferred to a new falcon
tube. Next, N-hexane was added 4 more times every time before sample centrifugation.
Samples absorbance was read at 450 and 503 nm using N-hexane as blank.

3.7. Determination of Ascorbic Acid (AA)

The ascorbic acid concentration was measured with the di nitro phenyl hydrazine
(DNPH) method [57,58]. Briefly, 1 g of fresh flesh potato was properly homogenized with
4 mL of 6% metaphosphoric acid. After centrifugation (15,000 rpm, 15 min, 4 ◦C), 400 µL
of the extract was added to 50 µL of 0.2% 2,6-dichlorophenolindolphenol (DCIP), and the
reaction mixtures were kept for 1 h at 24 ◦C. Then, 1 mL of thiourea 2% (w/v) and 500 µL
of DNPH 2% were poured into the mixture. Subsequently, samples were incubated in a
water bath (60 ◦C, 3 h) before being cooled in an ice bath. Finally, 2.5 mL of 85% H2SO4
was slowly added to the falcons containing the reaction mixture. The sample absorbance
was read at 540 nm against blank.

3.8. Determination of Soluble Sugars

Total soluble sugars (TSS) were extracted by adding 1000 µL of 95% ethanol to 100 mg
of fresh sample. The supernatant was then transferred into another falcon, and 1 mL of
70% ethanol was added twice to the insoluble fraction. Next, falcons containing 3 mL of
supernatant were centrifuged, and 100 µL of extract of supernatant was transferred in a
new falcon tube by adding 3 mL of anthrone. Samples were then placed in a water bath at
100 ◦C for 10 min. The amount of total soluble sugar was determined at 625 nm [59].

3.9. Determination of Total Protein Content

Briefly, 0.1 g of the sample was homogenized with 3 mL of buffer phosphate pH 7.8.
Then the samples were centrifuged at 4 ◦C for 20 min at 12,000 rpm, and sample aliquots
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were read at 595 nm. Bovine albumin serum (BSA) was used as a standard reference.
Protein contents were calculated according to Bradford [60].

3.10. Statistical Analysis

Data were statistically analyzed according to a 1-way ANOVA test. The significant
differences were then evaluated using Duncan’s posthoc test with a significance level of
p < 0.05. Pearson correlation coefficients were calculated for all the analyzed genotypes.
Data from chemical profile and antioxidant capacity were also analyzed using a PCA
(principal component analysis), and the results were graphically processed to highlight
the contribution of each variable respectively (analyzed compounds) in the samples’ dif-
ferentiation. All computations were analyzed by SAS 9 software (SAS Institute, Cary,
NC, USA).

4. Conclusions

In conclusion, this study better explains the relationship between antioxidant activity
and the compounds in potatoes with different flesh colors. These data provide opportunities
for the whole scientific community to further increase the content of phenolics, flavonoids,
and antioxidant capacity by breeding, mainly in white flesh potatoes. However, our
data indicated that some potato genotypes with light yellow flesh (genotypes: 26, 22, 12)
and white flesh (genotypes: 68, 58, 67) had significant differences in phenolic, flavonoid,
carotenoid, protein, and antioxidant activity. The results of the current experiment could
be helpful for potato breeders and, eventually, commercial potato producers, giving them
new opportunities to promote the production of promising potato cultivars with enhanced
levels of high nutrient value. Therefore, potato genotypes rich in phytochemicals represent
an important natural source of antioxidants for various applications and products with
potentially beneficial effects on human health.

Emerging research perspectives suggest that polyphenolic components are key food
constituents involved in preventing chronic diseases. Therefore, the use of phytochemicals
may reduce inflammation and the risk of cancer, cardiovascular disease, and diabetes.

Thus, increased knowledge of phenolic components and antioxidant activity of dif-
ferent potato cultivars will lead to greater awareness by the food industry and consumers
regarding potatoes as “functional foods” and possibly change food industry practices and
consumer habits regarding utilizing specific “high antioxidant” potato cultivars.
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