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Referring to fractional memristor-based discrete systems, this paper contributes to the field by presenting a 
new fourth-dimensional (4D) hyperchaotic memristor-based fractional map. The conceived system, obtained by 
combining a non-integer order discrete memristor with the Grassi-Miller map, is characterized by some special 
features, which include the absence of equilibrium point and the coexistence of various chaotic and hypechaotic 
attractors. Numerical techniques including phase plots, Lyapunov exponents and bifurcation diagrams are used 
to highlight the complex dynamic behavior of the suggested 4D fractional memristor-based Grassi-Miller map.
1. Introduction

Fractional calculus deals with fractional derivatives (for continuous-
time systems) as well as fractional difference operators (for discrete-
time systems) [1]. Starting from 1974, interest has been directed to-
wards exploring the potentials of discrete fractional calculus, so that 
several non-integer order difference operators have been proposed 
[2,3]. During the last decade, great efforts have been made to explore 
the chaotic behaviors of fractional discrete models, which are nonlinear 
maps distinguished by their heightened sensitivity to the initial condi-
tions. For example, in the pioneering references [4,5] chaotic behaviors 
in fractional logistic maps and their delayed versions were discovered. 
In [6] the chaotic fractional Hénon map has been presented, while in 
[7] an example of fractional logistic map has been explored via Julia 
sets. In [8] the chaotic dynamic of the fractional standard map and the 
fractional sine map have been studied, meanwhile, in [9], the existence 
of chaos in a discrete fractional Hénon-Lozi map has been investigated. 
In [10] the permutation entropy has been exploited to study a non-
integer order multi-cavity map, whereas in [11] control laws to stabilize 
at zero the chaotic dynamic of some fractional maps have been devel-
oped. In [12] bifurcations, phase portraits, largest Lyapunov exponent 
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and 0-1 test have been used to investigate the chaotic behavior of a 
variable-order fractional Tinkerbell map.

Recently, interest has been directed towards fractional maps with 
some special features. These maps are distinguished by particular dy-
namic behaviors (including hyperchaos) and/or specific properties re-
lated to the location of the fixed points. For instance, in [13] the dy-
namics of a simple symmetrical map, which includes only five nonlinear 
terms in its fractional model, has been studied. In [14] a chaotic discrete 
fractional map with hidden attractor has been analyzed, whereas in 
[15] the properties of some hidden attractor in a novel noninteger order 
map have been investigated. In [16] an unprecedented chaotic frac-
tional map, which is distinguished by the coexistence of several types 
of different attractors, has been presented. In [17] the properties of 
some non-integer order maps with special features have been discussed, 
whereas in [18] the chaotic behaviors of fractional maps distinguished 
by special symmetries in the fixed points have been investigated. Refer-
ring to complex dynamic behaviors, in [19] the hyperchaotic dynamics 
of the fractional double-scroll map has been explored, while in [20]
the presence of hyperchaos in the fractional generalized Hénon map 
has been discovered. In [21] the complex dynamics of the fractional 
discrete Grassi-Miller model described by the 𝜈-Caputo-like operators 
have been studied, whereas in [22] particular dynamic behaviors in the 
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Grassi-Miller discrete system described by the Caputo-like ℎ-difference 
operator have been illustrated. In [23] the hyperchaotic fractional dis-
crete Grassi–Miller system is presented. In particular, the authors of 
reference [23] have investigated the dynamics and implementation of 
an innovative version of the Grassi-Miller discrete system employing 
the Grunwald–Letnikov difference operator.

Recently, there has been limited exploration of discrete memris-
tor maps, and their chaotic and hyperchaotic behavior and charac-
teristics have not received as much attention [24–26]. Very recently, 
some attempts have been made to investigate the existence of chaos 
in fractional memristor-based discrete systems [27–29]. These non-
integer order maps originate from the concept of memristor, which 
represents a non-linear circuit element relating electric charge and 
magnetic flux linkage [30]. For example, in [27] a new fractional 
non-equilibrium point memristor-based map has been presented. In par-
ticular, in [27] hidden hyperchaotic attractors have been studied via 
Lyapunov exponents, phase attractors, bifurcation diagrams and ap-
proximation entropy. In [28] the implementation of noval fractional 
discrete memristor-based chaotic model with hidden attractors has 
been illustrated. In particular, reference [28] shows that the conceived 
memristor-based discrete model generates rich dynamical behaviors, 
such as coexisting hidden dynamic and initial offset boosting. Finally, 
in [29] some mathematical models of fractional discrete memristors 
have been illustrated. Moreover, different chaotic behaviors have been 
found, showing that the complexity of the maps is controlled within the 
memristor parameters [29]. The research underscores the complex and 
diverse dynamics of the system, underscoring the importance of frac-
tional components in contributing to the intricate nature and adaptabil-
ity of memristor-based maps. However, there is a noticeable gap in the 
existing literature regarding the exploration of hidden chaotic attractors 
in such maps. This points to an unexplored area in the discrete memris-
tor domain, especially concerning fractional memristors. Exploring the 
behavior and characteristics of fractional memristors holds valuable in-
sights and potential applications across various domains. Hence, it is 
imperative to delve deeper into this area through additional investiga-
tion and research, aiming to unveil the distinctive characteristics and 
potential advantages of fractional discrete memristors.

Based on the previous considerations regarding fractional memristor-
based discrete systems, this paper aims to provide a contribution to the 
field by presenting an innovative fourth-dimensional (4D) hyperchaotic 
memristor-based fractional map. By combining a non-integer order 
discrete memristor with the Grassi-Miller map, the conceived system 
is characterized by some special features, which include the coexis-
tence of various chaotic and hypechaotic hidden attractors. Numerical 
techniques including phase plots, Lyapunov exponents and bifurcation 
diagrams are used to highlight the complex dynamic behavior of the 
suggested 4D fractional memristor-based Grassi-Miller map. The paper 
is divided as follows. In Section 2, besides giving necessary fundamental 
concepts of fractional calculus, a non-integer order discrete memristor 
is presented. In Section 3 the equations of the proposed 4D fractional 
memristor-based Grassi-Miller map are presented, showing that the sys-
tem has no equilibrium point. In Section 4 coexistences of hyerchaotic 
attractors as well as coexistences of chaos/hyperchaos phenomena are 
illustrated. Finally, phase diagrams, bifurcation diagrams and Lyapunov 
exponents are reported to highlight the complex dynamic behavior of 
the conceived system.

2. Non-integer order discrete memristor

The memristor is recognized as the fourth fundamental circuit ele-
ment, bridging the relationship between magnetic flux and charge. The 
generalized continuous memristor is defined by{

𝑖(𝑡) =𝐺(𝑥)𝑣(𝑡),
(1)
2

𝑑𝑥

𝑑𝑡
= 𝑔(𝑥, 𝑣),
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where 𝑣 is the voltage, 𝑖 is the current, 𝐺(𝑥) denotes a function rep-
resenting the memristor value, and 𝑔(𝑥, 𝑣) is a continuous function. 
Employing the forward Ruler difference method [31], the continuous 
memristor in equations (1) can be converted into a discrete memristor. 
Let 𝑣(𝑛), 𝑖(𝑛) and 𝑥(𝑛) be the sampling values of 𝑖(𝑡), 𝑣(𝑡) and 𝑥(𝑡) at the 
𝑛-th iteration, respectively, and 𝑥(𝑛 +1) be the sampling value of 𝑥(𝑡) at 
the (𝑛 +1)-th iteration. Therefore, a discrete memristor can be modeled
by{

𝑖(𝑛) =𝐺 (𝑥(𝑛))𝑣(𝑛),
𝑥(𝑛+ 1) = 𝑥(𝑛) + ℎ𝑔 (𝑥(𝑛), 𝑣(𝑛)) ,

(2)

where ℎ = 1 is the iteration step size. The generalized fractional dis-
crete memristor is defined by incorporating the Caputo-like difference 
operator into the discrete memristor (2), as follows:{

𝑖(𝑛) =𝐺 (𝑥(𝑛))𝑣(𝑛),
𝐶Δ𝜈

𝑎
𝑥(𝑡) = 𝑔 (𝑥(𝑡+ 1 − 𝜈), 𝑣(𝑡+ 1 − 𝜈)) ,

(3)

where 𝑡 ∈ ℕ𝑎−𝜈+1, 𝜇 ∈ (0, 1] is the fractional order and ℕ𝑎 = {𝑎, 𝑎 +
1, 𝑎 + 2, ⋯} 𝑎 ∈ℝ. This paper introduces a new type of fractional-order 
discrete memristor (FODM), which is presented as follows:{

𝑖(𝑛) =
(
𝑎1 + 𝑎2𝑡𝑎𝑛ℎ

(
𝑥𝑛
))

𝑣(𝑛),
𝐶Δ𝜈

𝑎
𝑥(𝑡) = 𝑣(𝑡+ 1 − 𝜈).

(4)

Using the 𝜈-fractional sum, the equivalent discrete integral form of the 
FODM is expressed as:{

𝑖(𝑛) =
(
𝑎1 + 𝑎2𝑡𝑎𝑛ℎ

(
𝑥𝑛
))

𝑣(𝑛),
𝑥(𝑛) = 𝑥(0) + 1

Γ(𝜈)
∑𝑛−1

𝑗=0
Γ(𝑛−𝑗+𝜈)
Γ(𝑛−𝑗+1)𝑣(𝑗).

(5)

The distinctive features of the introduced mathematical model for 
memristors, such as amplitude-dependent and frequency-dependent 
pinched hysteresis loop are verified using numerical simulations. 
Pinched hysteresis loop is considered the distinctive signature for rec-
ognizing memristors [32]. In order to verify this notable feature of 
the proposed discrete memristors, we take a discrete sinusoidal voltage 
𝑣(𝑛) =𝐴𝑠𝑖𝑛(𝑓𝑛) with amplitude 𝐴 and frequency 𝑓 and system parame-
ters 𝑎1 = 2, 𝑎2 = 2, and order 𝜈 = 0.1. When the amplitude 𝐴 = 1 is held 
and 𝑓 is set to 𝑓 = 0.5, 1, 10. The 𝑣 − 𝑖 plots are depicted in Fig. 1(a). 
This figure vividly depicts 8-shaped pinched hysteresis loops with dif-
ferent input frequencies. As the excited frequencies increase from 0.5
to 10 the pinches hysteresis loop gradually decreases and shrinks into 
a single valued function. Furthermore, as the frequencies of the applied 
voltage approach infinity, the pinched hysteresis loops of the memristor 
will contract into a singlevalued function. While when the frequency is 
fixed to 𝑓 = 0.5 and 𝐴 is set to 0.5, 1 and 1.5, the corresponding 𝑣 − 𝑖

plots are depicted in Fig. 1(b). This explains that the pinched hysteresis 
is achieved irrespective of the stimulus amplitude. These numerical re-
sults presented in Figs. 1(a) and 1(b) perfectly indicate that the discrete 
memristors can emulate the behavior of memristors in the continuous 
time domain.

To investigate the effect of fractional order on the features of the 
discrete memristor, we can set parameters 𝑎2 = 0.08, 𝑎1 = 0.3, with am-
plitude 𝐴 = 0.5 and frequency 𝑓 = 0.5 with different fractional order 
values 𝜈 = 0.1, 0.4, 1. It is observed that the discrete memristors showed 
pinched hysteresis loop under various values of fractional order, as de-
picted from Fig. 2. Altering the fractional order induces variations in the 
local active properties, leading to complex dynamical behaviors when 
the discrete memristors are integrated into a discrete map [33].

3. 4D fractional memristor-based Grassi-Miller map

Grassi and Miller presented a 3-dimensional map, displaying hyper-

chaotic attractors. The state equation can be presented as
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Fig. 1. (𝑎) Frequency-dependent pinched hysteresis loops of the discrete-memristor with A = 1. (𝑏) Amplitude-dependent pinched hysteresis loops of the discrete-
memristor with f = 0.5.

Fig. 2. Frequency-dependent pinched hysteresis loops of the discrete-memristor with 𝐴 = 0.5 and 𝑓 = 0.5 for three order values.
⎧⎪⎨⎪⎩
𝑥(𝑖) = 𝛼 − 𝑦(𝑖− 1)2 − 𝛽𝑧(𝑖− 1),
𝑦(𝑖) = 𝑥(𝑖− 1),
𝑧(𝑖) = 𝑦(𝑖− 1),

(6)

where 𝛼 ≠ 0 and 𝛽 are bifurcation parameters, and 𝑥, 𝑦, 𝑧 are three state 
variables of map (6).

In this part, employing the relationship mentioned in equation (5)
a 4D fractional discrete memristor based on the Grassi-Miller is estab-
lished as follows:

⎧⎪⎪⎨⎪⎪⎩

𝑥(𝑖) = 𝛼 − 𝑦2(𝑖− 1) − 𝛽𝑧(𝑖− 1),
𝑦(𝑖) = 𝑥(𝑖− 1),
𝑧(𝑖) = 𝑦(𝑖− 1) + (𝑎1 + 𝑎2𝑡𝑎𝑛ℎ (𝑤(𝑖− 1))𝑧(𝑖− 1),
𝑤(𝑛) =𝑤(0) + 𝐿

Γ(𝜈)
∑𝑛−1

𝑗=0
Γ(𝑛−𝑗+𝜈)
Γ(𝑛−𝑗+1)𝑧(𝑗).

(7)

As it is known, the stability of a map can be measured by its fixed points. 
The fixed points of system (7) can be obtained from the following equa-
tion:

⎧⎪⎨⎪⎩
𝑥 = 𝛼 − 𝑦2 − 𝛽𝑧,

𝑦 = 𝑥,

𝑧 = 𝑦+
(
𝑎1 + 𝑎2𝑡𝑎𝑛ℎ (𝑤)

)
𝑧,

0 = 𝑧.

(8)

Through equation (8) we get 𝑥 = 𝑦 = 𝑧 = 0, whereas when we substitute 
it into the first equation 𝑥 = 𝛼 − 𝑦2 − 𝛽𝑧, this equation does not have 
a solution, indicating that the fractional-order memristor-based Grassi–
miller map has no fixed point. Because of the no fixed point, any chaotic 
3

attractors in the map are certainly hidden. Consider the parameters sys-
tem 𝛼 = 1.1, 𝛽 = 0.1 and 𝑎1 = 0.3, 𝑎2 = −0.45, fractional order 𝜈 = 0.2
and we assign the initial conditions as (1, 0.1, 0.2, 0). We used MATLAB 
to perform numerical simulations of the system and various useful re-
sults were obtained, which are displayed in Fig. 3. The results unveil 
chaotic behavior characterized by a hidden attractor. The finite-time 
Lyapunov exponent, calculated using Wolf algorithm, are determined 
as 𝜆1 = 0.1995, 𝜆2 = 0.1560, 𝜆3 = −1.5662, and 𝜆4 = −2.4141, respec-
tively.

4. Coexistences of chaotic and hyperchaotic hidden attractors

The coexisting bifurcation is a bifurcation phenomena that depends 
on initial conditions. The given map can generate diverse types of at-
tractors depending on the initial condition of the memristor 𝑤0 . By 
configuring the control parameters as 𝛼 = 1.7, 𝛽 = 0.1, 𝑎2 = −0.45, 
𝑎1 ∈ [0.05, 1.3] and 𝜈 = 0.1 with the initial states are assigned as 
𝑥0 = 1, 𝑦0 = 0.1, 𝑧0 = 0.2, the coexistence of attractor of the model is 
analyzed. As shown in Fig. 4, the coexisting bifurcations of the state 
𝑧(𝑛) and the Lyapunov exponents under 𝑤0 = 40 (red diagram) and 
𝑤0 = −40 (blue diagram). Complex dynamical phenomena, including 
period window, chaos and hyperchaos can be observed in Fig. 4. For 
𝑤0 = 40, when the bifurcation parameter 𝑎1 is increased in [0.05, 1.3], 
observing the bifurcation diagrams depicted in Fig. 4 (𝑎), it is evident 
that the discrete model (7) starts from hyperchaos and goes into chaos 
via tangent bifurcation route with some narrow period windows. We 
notice that the system exhibits hyperchaotic dynamics for values of 𝑎1
less than or equal to 1.225, and beyond that value 𝑎1 ≥ 1.225, it transi-

tions into chaotic behavior with some periodic windows. For the initial 
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Fig. 3. Phase diagrams in different projections of hyperchaotic hidden attractors in system (7) for parameters 𝛼 = 1.7, 𝛽 = 0.1, 𝑎1 = 0.3, 𝑎2 = −0.45, and fractional 
order 𝜈 = 0.2 : (a) in the x-y plane, (b) in the x-z, (c) in the 3D plane.

Fig. 4. Bifurcation diagrams and LEs of the FODMS (7) with infinite fixed point for fractional order value 𝜈 = 0.1: (a) for 𝑎1 ∈ [0.05, 1.3], 𝛼 = 1.7, 𝛽 = 0.1, 𝑎1 = 0.3, 
𝑎2 = −0.45, and initial condition (1, 0.1, 0.2, 40) (red diagram) and (1, 0.1, 0.2, −40) (blue diagram).

Fig. 5. Bifurcations and LEs of system (7) with infinite fixed point versus memristor initial condition 𝑤0 for fractional order value 𝜈 = 0.1 and system parameter 
𝛼 = 1.7, 𝛽 = 0.1, 𝑎 = 0.3, 𝑎 = −0.45.
1 2

condition 𝑤0 = −40 and variation of the system parameter 𝑎1 within 
the interval [0.05, 0.5], the bifurcation diagrams of the state 𝑧𝑛 are nu-

merically simulated in blue diagram. The Lyapunov exponents reveals 
that the model (7) is in hyperchaotic state at the beginning with peri-
4

odic window at 0.2807 and [0.326, 0.3417[, and then goes into chaotic 
state via chaos crisis. The period orbits evolves from chaos in the inter-
val ]0.3779, 0.5].

Moreover, we plot the bifurcation diagrams of the fractional discrete 
memristive-based Grassi-Miller model varying with the intial value of 
memristor, respectively as shown in Fig. 5. During this period, a prelim-

inary assessment indicates the presence of coexisting attractors in the 
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Fig. 6. Several attractors of system (7) with infinite fixed points for the symmetrical 
system in red color, and negative parameters system in blue color: (a) Coexistence of 
attractors for 𝑎 = 0.35, (c) Coexistence of periodic and chaotic attractor 𝑎 = 0.4. (d
1 1

model. To further evaluate the state of coexisting attractor, several co-
existing attractors was analyzed with the varying of parameter 𝑎1, as 
shown in Fig. 6. The attractors from initial condition (IC) 𝑤0 = 40 are 
drawn in red and the attractors drawn in blue are from the IC 𝑤0 = −40. 
The fractional discrete memristive-based Grassi-Miller map displays co-
existing hyperchaotic attractors for system parameter 𝑎1 = 0.1 as shown 
in Fig. 6(a). At the same time when 𝑎1 = 0.35, it can be seen that there is 
coexistence hyperchaotic (for IC 𝑤0 = 40) and chaotic attractor for (IC 
𝑤0 = −40). Furthermore, when 𝑎1 = 0.4 system (7) coexist chaotic and 
periodic attractor; however when 𝑎1 = 1.25 the fractional discrete mem-
ristive-based Grassi-Miller map chaotic attractor as shown in Fig. 6(d).

Fig. 7 shows the phase portraits of the coexisting hyperchaotic at-
tractors for different values of 𝑤0. The coexisting hyperchaotic attrac-
tors were calculated by using the initial conditions 𝑤0 = 38, 𝑤0 = 39, 
𝑤0 = 40, 𝑤0 = 41, 𝑤0 = 42, respectively. From Fig. 7, these hyper-
chaotic attractor have a similar structure in the 𝑧 −𝑤 plane.

5. Conclusion

By including Grassi as a coauthor, the manuscript has introduced 
a novel 4D fractional memristor-based Grassi-Miller map. The authors 
have shown that the conceived system (derived by combining a non-
integer order discrete memristor with the Grassi–Miller map) is char-
acterized by some special features. Namely, the proposed memristor-
based map features both no equilibria and the coexistence of various 
chaotic/hypechaotic attractors. Numerical techniques including phase 
plots, Lyapunov exponents and bifurcation diagrams have been ex-
ploited to highlight the complex dynamic behavior of the suggested 
5

4D fractional memristor-based Grassi-Miller map. Finally, as a future 
Alexandria Engineering Journal 93 (2024) 1–6

IV (𝑥0, 𝑦0, 𝑧0, 𝑤0) = (1, 0.1, 0.2, ±40), fractional value 𝜈 = 0.1, positive parameters 
hyperchaotic attractors for 𝑎1 = 0.1, (b) Coexistence of chaotic and hyperchaotic 
) Chaotic attractor for 𝑎1 = 1.25.

Fig. 7. Coexisting multiple hyperchaotic attractor for different memristor initial 
value 𝑤0 = 38 (blue), 𝑤0 = 39 (red), 𝑤0 = 40 (Purple), 𝑤0 = 41 (Magenta), 

𝑤0 = 42 (green).
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work, the plan is to implement in hardware the proposed memristive 
map, based on the expertise that some of the co-authors of the present 
manuscript have already achieved in implementing a previous version 
of the fractional discrete Grassi–Miller model [23].
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