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b
, Abdallah Al-Husban

c
,

Abderrahmane Abbes d,*, Mohammed Al Horani b, Giuseppe Grassi e, Adel Ouannas f
aDepartment of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan
bDepartment of Mathematics, The University of Jordan, Amman 11942, Jordan
cDepartment of Mathematics, Faculty of Science and Technology, Irbid National University, P.O. Box: 2600, Irbid, Jordan
dLaboratory of Mathematics, Dynamics and Modelization, Badji Mokhtar-Annaba University, Annaba 23000, Algeria
eDipartimento Ingegneria Innovazione, Universita del Salento, Lecce 73100, Italy
fDepartment of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria
Received 15 January 2023; revised 15 May 2023; accepted 6 June 2023
Available online 22 June 2023
KEYWORDS

Fractional discrete neural

network model;

Incommensurate order;

Variable order;

Chaotic dynamics;

Control;

Synchronization
Abstract This paper describes a new four-dimensional fractional discrete neural network with electro-

magnetic radiation model. In addition, the non-linear dynamics of the suggested model are examined,

within the framework of commensurate, incommensurate and variable orders, through different numer-

ical techniques such as Lyapunov exponent, phase portraits, bifurcation diagrams, and the 0–1 test

method.The results imply thatThe behaviours of the proposed fractional discrete neural networkmodel

have rich and complex dynamical properties that are influenced by the variation of the system parame-

ters, the commensurate order, the incommensurate order and the variable order.Moreover, the approx-

imate entropy test andCo algorithm are carried out to measure complexity and validate the presence of

chaos. Finally, nonlinear controllers are illustrated to stabilize and synchronize the proposed model.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The neural networks is widely recognized as one of the most

significant nonlinear models in the field of nonlinear studies.
The structure and the capacity for parallel processing of these
systems are the primary reasons for their significance. In recent
years, neural networks (NN) theory has been receiving an
increasing amount of attention from researchers owing to their

various applications in many fields such as optimization, asso-
ciative memory, data encryption, information processing and
so on [1–5]. The dynamics of neural network model interac-

tions have been widely investigated in the fields of mathematics
and physics. The analyses study of these models found several
rich dynamics, such as bifurcations, limit cycle, and chaotic
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behaviors. Although numerous studies have explored the
dynamic behaviors of continuous-time systems, discrete-time
systems have received comparatively less attention. Discrete-

time models possess their own distinct dynamical properties
and a variety of practical problems can be represented through
these systems in the real world. Owing to these characteristics,

the study of discrete neural network systems is crucial and has
led to significant advancements in engineering, physics, math-
ematics and other fields [6–9].

In the last twodecades, discrete fractional calculus has caught
the attentionof numerousmathematicians intrigued by its appli-
cations in different domains such as hardware implementation,
image encryption, and secure communication. Recently, a flurry

of articles has been published on this hot issue,where the authors
offer a variety of discrete-time fractional operators, stability
analyses, and several theoretical results [10–14]. For instance,

new mathematical modelling of human liver with Caputo–Fab-
rizio fractional derivative is studied in [15]. In [16], the authors
present some applications of a regularized W-Hilfer fractional

derivative and the dynamics of the Fractional accelerated
mass-spring system are analysed in [17]. The first study that con-
cerns the modeling of the fractional chaotic map using the left

Caputo difference operator and investigating its chaotic charac-
teristics was introduced by Wu and Baleanu in [18]. These have
led to the proposal of more commensurate fractional discrete
chaotic systems, such as [19–21], and more incommensurate

fractional discrete chaotic systems, such as [22–24], along with
a variety of control strategies and synchronization schemes
between different fractional chaotic maps, such as [25–27].

In recent times, a significant number of scholars have stud-
ied the dynamics of fractional continuous-time neural network
models owing to their potential applications in different

domains, like pattern recognition, combinatorial optimization,
associative memory and signal processing [28–32]. Nonethe-
less, when continuous-time networks are implemented for

computer-based computation, experimentation or simulation,
it is essential to discretize continuous-time networks whenever
they are used for computer-based calculation, experimenta-
tion, or simulation. Discrete-time neural networks (DTNNs)

have been utilized in a diverse range of applications [33,34].
The discretization of the continuous-time counterpart does
not sustain its dynamics (see [35]). Therefore, an investigation

into the dynamics of DTNN is imperative. Recently, some
research papers have appeared that examine the dynamical
behaviour of fractional discrete-time neural network models

[36–38]. For instance, the stability of fractional discrete-time
neural networks models have been studied by Hioual et al.
in [39]. The chaotic behaviour of a 3D fractional discrete Hop-
field neural networks model has been analyzed by Abbes et al.

[40]. In [41], the authors have explored the chaos and complex-
ity of the incommensurate fractional discrete NN, while Alma-
troud in [42] discussed the extreme multistability of fractional

discrete Hopfield neural networks model. The majority of the
aforementioned discrete neural networks research are models
with commensurate or incommensurate fractional orders, but

unfortunately, as far as we know, very few research contribu-
tions have been performed to study the dynamic behaviors of
fractional-order discrete-time neural network models with

variable fractional orders [43–46]. Consequently, the investiga-
tion of the chaotic dynamics of neural network models based
on fractional differences with commensurate, incommensurate
and variable order, as well as their synchronization and con-
trol, is an attractive subject.

Motivated by the aforementioned discussion, we intend in this

paper toexploreandstudy thedynamicbehaviorsof the newfour-
dimensional fractional discrete neural network model with elec-
tromagnetic radiation using commensurate, incommensurate

and variable orders. The basic properties of this fractional model
will be studied using certain theoretical and numerical analyses.
Furthermore, we will use the approximate entropy test and C0

algorithm to measure the complexity and validate the presence
of chaos in the proposed system. In addition, we propose nonlin-
ear controllers that enable stabilizing and synchronizing the sug-
gested model by forcing the states to converge toward zero

asymptotically. Finally, we will conclude the study by summariz-
ing the most significant findings obtained in the article.

The remainder of this paper is organized as follows. In Sec-

tion 2, we provide the mathematical formulation of the frac-
tional discrete neural network model with electromagnetic
radiation using the Caputo difference operator. in Section 3,

we explore the basic dynamical properties of the system
through numerical and theoretical analyses. In Section 4, we
employ the 0–1 method, the approximate entropy test

ApEnð Þ and the C0 algorithm to measure complexity and con-
firm the existence of chaos within the suggested model. In Sec-
tion 5, we suggest adaptive controllers in order to stabilize and
synchronize the chaotic trajectories of the proposed fractional

discrete neural network model. Finally, the conclusion of the
whole paper is presented in Section 6.

2. Model description of the fractional discrete Neural Network

Allehiany et al. [47] introduce a new neural network with elec-
tromagnetic radiation using Caputo fractional derivative cDq.

In our work, we replace the Caputo derivative by the differ-

ence operator cD#
d to produce a novel fractional discrete neural

network (FDNN) with electromagnetic radiation. The formu-
lation of the mathematical form of the fractional DHH model

is as follows:

cD#
d z1 rð Þ ¼ �z1 r� 1þ #ð Þ þ a1 tanh z1 r� 1þ #ð Þð Þ þ a2 tanh z2 r� 1þ #ð Þð Þ

þa3 tanh z3 r� 1þ #ð Þð Þ;
cD#

d z2 rð Þ ¼ �z2 r� 1þ #ð Þ þ b1 tanh z1 r� 1þ #ð Þð Þ þ b2 tanh z2 r� 1þ #ð Þð Þ
þb3 tanh z3 r� 1þ #ð Þð Þ þ az2 r� 1þ #ð Þ eþ b z4 r� 1þ #ð Þð Þ4

� �
;

cD#
d z3 rð Þ ¼ �z3 r� 1þ #ð Þ þ c1 tanh z1 r� 1þ #ð Þð Þ þ c2 tanh z2 r� 1þ #ð Þð Þ

þc3 tanh z3 r� 1þ #ð Þð Þ;
cD#

d z4 rð Þ ¼ d1z2 r� 1þ #ð Þ þ d2z4 r� 1þ #ð Þ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ
where ai; bi; ci i ¼ 1; 2; 3ð Þ; d1; d2; a; b and e are real parameters.
We take 0 < # 6 1; r 2 Ndþ1�#;Nd ¼ d; dþ 1; dþ 2; . . .f g such

that d 2 R. CD#
d is the Caputo-like difference operator which is

defined, according to [12], as

CD#
dv rð Þ ¼ D� k�#ð Þ

d Dkv rð Þ ¼ 1
C k�#ð Þ

Xr� k�#ð Þ

m¼k

r� m� 1ð Þ k�1�#ð ÞDkv mð Þ;

ð2Þ
where r 2 Nð Þdþk�# and k ¼ d#e þ 1. D�#

d is the #� th frac-

tional sum which, according to [10], can be given by

D�#
d v rð Þ ¼ 1

C #ð Þ
Xr�#

m¼#

r� m� 1ð Þ #�1ð Þv mð Þ; r 2 Nð Þkþ#; # > 0: ð3Þ
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In order to discuss the complex dynamics of system (1), we shall

present the Lemma below, which will enable us to acquire the
numerical formula for the discrete fractional predator–prey
system:

Lemma 1. [18]The solution of the initial value problem IVP

CD#
dv rð Þ ¼ g r� 1þ #; v r� 1þ #ð Þð Þ

Dkv dð Þ ¼ vj; n ¼ #½ � þ 1; j ¼ 0; 1; . . . ; n� 1;

(
ð4Þ

is written as

v rð Þ ¼ v0 dð Þ þ 1

C #ð Þ
Xr�#

m¼dþn�#

r� 1� mð Þ #�1ð Þ
g m� 1þ #; v m� 1þ #ð Þð Þ; r 2 Ndþn;

ð5Þ

where

v0 dð Þ ¼
Xn�1

j¼0

r� dð Þj
C kþ 1ð ÞD

jv dð Þ: ð6Þ

Remark 1. Take d ¼ 0, since r� 1� mð Þ #�1ð Þ ¼ C r�mð Þ
C rþ1�m�#ð Þ and

for k ¼ mþ #� 1 and n ¼ 1, the numerical formula (5) can
be designed for # 2 0; 1ð � as follows:

v rð Þ ¼ v 0ð Þ þ 1

C #ð Þ
Xr�1

k¼0

C r� 1� kþ #ð Þ
C r� kð Þ g k; v kð Þð Þ: ð7Þ

3. Nonlinear dynamics of the FDNN model

In this part, the dynamics of the fractional discrete neural net-
work model with electromagnetic radiation (1) will be exam-

ined in three cases: the commensurate order case, the
incommensurate order case and the variable order case. These
examinations will be conducted using different numerical anal-
ysis methods, such as display phase portraits, bifurcation dia-

grams, and maximum Lyapunov exponent (kmax) estimations.
The maximum Lyapunov exponents of the attractors of the
fractional DNN model (1) will be calculated by using the Jaco-

bian matrix method [48].

3.1. Commensurate order FDNN model

In this part, we will investigate the dynamics of the commen-
surate fractional discrete neural network model (1) We will dis-
cuss the characteristic of the proposed commensurate FDNN

system (1). It should be noted that the system with commensu-
rate order is a system of equations generated with identical
orders. In light of this, we will now provide the numerical for-
mula, which is derived from Lemma 1, as follows:

z1 rþ 1ð Þ ¼ z1 0ð Þ þ
Xn

k¼0

C r�1�kþ#ð Þ
C #ð ÞC r�kð Þ �z1 kð Þ þ a1 tanh z1 kð Þð Þ þ a2 tanh z2 kð Þð Þð

þa3 tanh z3 kð Þð ÞÞ;

z2 rþ 1ð Þ ¼ z2 0ð Þ þ
Xn

k¼0

C r�1�kþ#ð Þ
C #ð ÞC r�kð Þ �z2 kð Þ þ b1 tanh z1 kð Þð Þ þ b2 tanh z2 kð Þð Þð

þb3 tanh z3 kð Þð Þ þ az2 kð Þ eþ b z4 kð Þð Þ4
� ��

;

z3 rþ 1ð Þ ¼ z3 0ð Þ þ
Xn

j¼0

C r�1�kþ#ð Þ
C #ð ÞC r�kð Þ �z3 kð Þ þ c1 tanh z1 kð Þð Þ þ c2 tanh z2 kð Þð Þð

þc3 tanh z3 kð Þð ÞÞ;

z4 rþ 1ð Þ ¼ z4 0ð Þ þ
Xn

j¼0

C r�1�kþ#ð Þ
C #ð ÞC r�kð Þ d1z2 kð Þ þ d2z4 kð Þð Þ; r ¼ 1; 2; � � � ;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ
where z1 0ð Þ; z2 0ð Þ; z3 0ð Þ and z4 0ð Þ are the initial conditions.Setting
the parameters system a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼
�1:5; b2 ¼ 1:5; b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5; d1 ¼ 0:1;
d2 ¼ �0:45; a ¼�0:5; b ¼ �0:12; e ¼ 1:519 and the initial condi-
tion (I.C) z1 0ð Þ; z2 0ð Þ; z3 0ð Þ; z4 0ð Þð Þ ¼ 0; 0; 5:5; 5:5ð Þ, the varia-
tion in the dynamic behaviour of the proposed system is
illustrated with the help of bifurcation diagrams. The commensu-
rate fractional order # is regarded as the bifurcation parameter.

Figs. 1a and 1bdepict the bifurcation and themaximumLyapunov
exponents (kmax) where the parameter system e ¼ 1:519, while
Figs. 1c and 1d show the bifurcation and t kmax where e ¼ 1:65.
We can see that upon changing the commensurate order #, the
FDNN model (1) exhibits extremely complex dynamics involving
chaos and periodic motion. In particular, when # takes larger val-

ues, kmax is negative or equal to zero, meaning that the commensu-
rate FDNN (1) is stable and periodic windows appear. Moreover,
when the commensurate order decreases, chaotic behaviors can be
obtained where the values of kmax are positive. If # continues to

decrease, the values of kmax approaches zero, and the proposed
commensurate FDNN model becomes periodic. We can also
observe that when we change the value of the system parameter e

from 1.519 to 1.65, the chaotic region expands and the commensu-
rate fractional discrete neural network with electromagnetic radia-
tionmodel (1) gets more chaotic. Now, considering e as the critical

parameter, we plotted the bifurcation diagrams of (1) versus
e 2 1:35; 1:7½ � as shown in Fig. 2, which correspond to the frac-
tional values # ¼ 0:56; # ¼ 0:63; # ¼ 0:75 and # ¼ 0:99. We

notice that the states of the FDNN are affected by the system
parameter e and the commensurate fractional order #. For
instance, when the order# increases, the chaotic region shrinks
and more periodic states are observed. Also, Figs. 2c and 2d show

that when the system parameter e increases, the trajectories of the
commensurate model (1) gradually evolve from a periodic state
with an eight-period orbit to a chaotic one, and kmax plotted in

Figs. 2g and 2h confirm these findings. For completeness, to have
a better understanding of these characteristics, Fig. 3 depicts the
discrete time evolution of the states z1; z2; z3 and z4 of the proposed
commensurate system(1)whileFig. 4depicts the results ofdifferent
phaseportraits for c ¼ 0:67; c ¼ 0:7; c ¼ 0:8; c ¼ 0:85; c ¼ 0:9
and c ¼ 0:95 in 3D space. It is clear that the proposed commensu-
rate fractional discrete system exhibits chaotic motion when the

order # decreases and periodic orbits when the commensurate
order # takes higher values. These numerical simulations demon-
strate that the commensurate FDNN system (1) has various inter-

esting dynamical properties.

3.2. Incommensurate order FDNN model

This section explores the behavior of the discrete neural net-
work model with incommensurate fractional order values.
The Incommensurate order system refers to the idea of using

distinct fractional orders for each equation of the system.
The incommensurate fractional discrete neural network model
is represented as

cD#1
d z1 rð Þ ¼ �z1 r� 1þ #1ð Þ þ a1 tanh z1 r� 1þ #1ð Þð Þ þ a2 tanh z2 r� 1þ #1ð Þð Þ

þa3 tanh z3 r� 1þ #1ð Þð Þ; r 2 Nd�#1þ1

cD#2
d z2 rð Þ ¼ �z2 r� 1þ #2ð Þ þ b1 tanh z1 r� 1þ #2ð Þð Þ þ b2 tanh z2 r� 1þ #2ð Þð Þ

þb3 tanh z3 r� 1þ #2ð Þð Þ þ az2 r� 1þ #2ð Þ
� eþ b z4 r� 1þ #2ð Þð Þ4
� �

; r 2 Nd�#2þ1

cD#3
d z3 rð Þ ¼ �z3 r� 1þ #3ð Þ þ c1 tanh z1 r� 1þ #3ð Þð Þ þ c2 tanh z2 r� 1þ #3ð Þð Þ

þc3 tanh z3 r� 1þ #3ð Þð Þ; r 2 Nd�#3þ1

cD#4
d z4 rð Þ ¼ d1z2 r� 1þ #4ð Þ þ d2z4 r� 1þ #4ð Þ; r 2 Nd�#4þ1 :

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð9Þ



Fig. 1 The bifurcations and maximum Lyapunov exponents versus the fractional order # of the commensurate FDNN (1).
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Employing Lemma 1, the numerical model of the incommen-

surate fractional discrete system (9) is signed as follows:

z1 rþ 1ð Þ ¼ z1 0ð Þ þ
Xn

k¼0

C r�1�kþ#1ð Þ
C #1ð ÞC r�kð Þ �z1 kð Þ þ a1 tanh z1 kð Þð Þ þ a2 tanh z2 kð Þð Þð

þa3 tanh z3 kð Þð ÞÞ;

z2 rþ 1ð Þ ¼ z2 0ð Þ þ
Xn

k¼0

C r�1�kþ#2ð Þ
C #2ð ÞC r�kð Þ �z2 kð Þ þ b1 tanh z1 kð Þð Þ þ b2 tanh z2 kð Þð Þð

þb3 tanh z3 kð Þð Þ þ az2 kð Þ eþ b z4 kð Þð Þ4
� ��

;

z3 rþ 1ð Þ ¼ z3 0ð Þ þ
Xn

j¼0

C r�1�kþ#3ð Þ
C #3ð ÞC r�kð Þ �z3 kð Þ þ c1 tanh z1 kð Þð Þ þ c2 tanh z2 kð Þð Þð

þc3 tanh z3 kð Þð ÞÞ;

z4 rþ 1ð Þ ¼ z4 0ð Þ þ
Xn

j¼0

C r�1�kþ#4ð Þ
C #4ð ÞC r�kð Þ d1z2 kð Þ þ d2z4 kð Þð Þ; r ¼ 1; 2; � � � :

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð10Þ

The three bifurcation diagrams in Fig. 5 reflect the behaviors

of the incommensurate model by varying e 2 1:35; 1:7½ �
with the values of parameters a1 ¼ 1:5; a2 ¼ 2; a3 ¼
0:9; b1 ¼ �1:5; b2 ¼ 1:5; b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5;
d1 ¼ 0:1; d2 ¼ �0:45; a ¼ �0:5; b ¼ �0:12 and the I.C
0; 0; 5:5; 5:5ð Þ. It is plain to observe that these diagrams are
strictly different, indicating that the change in orders

#1; #2; #3; #4ð Þ has an influence on the states of the incommen-
surate fractional discrete neural network model (9). For
instance, for #1; #2; #3; #4ð Þ ¼ 0:9; 1; 1; 0:9ð Þ, we can observe

that the system states evolve from chaotic to periodic when
the parameter e increases. For #1; #2; #3; #4ð Þ ¼
0:9; 0:3; 1; 0:9ð Þ, a chaotic region is observed throughout the

interval except for a small region when e approaches 1.35,
while for #1; #2; #3; #4ð Þ ¼ 0:5; 1; 0:7; 1ð Þ, when the parameter
e increases abd close to 1.7, the incommensurate FDNN model
(9) shows periodic regions with five-period orbits. Further-

more, we investigate the following three cases for a more accu-
rate illustration of the influence of incommensurate orders on
the behaviours of the FDNN model (9):



Fig. 2 The bifurcations and maximum Lyapunov exponents versus the parameter system e of the commensurate FDNN (1) for different

fractional values #.

Fig. 3 Time evolution of (1) for # ¼ 0:75 and a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼ 1:5; b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5; d1 ¼
0:1; d2 ¼ �0:45; a ¼ �0:5; b ¼ �0:12; e ¼ 1:519 and I.C. 0; 0; 5:5; 5:5ð Þ.
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Case 1. We vary the order #1 from 0 to 1 with step size
D#1 ¼ 0:001. Figs. 6a and 6b illustrate the bifurcation
and its corresponding maximum Lyapunov exponent
for #2 ¼ 1; #3 ¼ 1; #4 ¼ 0:9, the parameter values

a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼ 1:5; b3 ¼
�0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5; d1 ¼ 0:1; d2 ¼ �0:45;

a ¼ �0:5; b ¼ �0:12; e ¼ 1:519 and the I.C

0; 0; 5:5; 5:5ð Þ. It is clear that from Fig. 6a, the state
of the incommensurate FDNN (9) displays chaotic
behavior for smaller values of #1, as reflected by pos-

itive Lyapunov exponents, as seen in Fig. 6b. The kmax

shown in Fig. 1b changes between positive and nega-
tive for the fractional order value #1 close to 1. This

result means a chaotic region is seen with the appear-
ance of some periodic windows.

Case 2. The bifurcation and its kmax are drawn in order to
examine the dynamic behaviors of the incommensu-

rate fractional neural network model (9) when #2 is
an adjustable parameter, as displayed in Fig. 7. These
results are obtained by varying #2 in the range 0; 1ð �
and with incommensurate orders #1 ¼ 0:9; #3 ¼ 1
and #4 ¼ 0:9. The initial conditions
z1 0ð Þ; z2 0ð Þ; z3 0ð Þ; z4 0ð Þð Þ ¼ 0; 0; 5:5; 5:5ð Þ, and the
parameter values a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼
�1:5; b2 ¼ 1:5; b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5;
d1 ¼ 0:1; d2 ¼ �0:45; a ¼ �0:5; b ¼ �0:12; e ¼ 1:519
have remained unchanged. We can observe that when

the order #2 takes small values, the trajectories
become stable. When #2 increases, chaotic behaviors
can be obtained where the values of kmax are positive,

and small periodic regions are also seen where the
kmax have negative values. Moreover, when #2 gets
larger and approaches 1, the MLEs values change

between positive and negative, meaning that the tra-
jectories of the incommensurate FDNN model (9)
change their motion from chaotic to periodic.

Case 3. We draw the bifurcation chart and its kmax of the pro-

posed new incommensurate FDNN model (9) versus
#3 2 0; 1ð � and we chose the incommensurate orders
as #1 ¼ 0:5; #2 ¼ 1 and #4 ¼ 1. From Fig. 8, in con-



Fig. 4 Phase portraits of (1) for different values of #.

Fig. 5 Bifurcations of (9) versus the parameter system e for (a) #1; #2; #3; #4ð Þ ¼ 0:9; 1; 1; 0:9ð Þ (b) #1; #2; #3; #4ð Þ ¼ 0:9; 0:3; 1; 0:9ð Þ (c)
#1; #2; #3; #4ð Þ ¼ 0:5; 1; 0:7; 1ð Þ.

Fig. 6 Bifurcation of (9) and corresponding MLE versus the incommensurate fractional order #1 for #2 ¼ 1; #3 ¼ 1 and #4 ¼ 0:9.

396 A.S. Heilat et al.



Fig. 7 Bifurcation of (9) and corresponding MLE versus the incommensurate fractional order #2 for #1 ¼ 0:9; #3 ¼ 1 and #4 ¼ 0:9.

Fig. 8 Bifurcation of (9) and corresponding MLE versus the incommensurate fractional order #3 for #1 ¼ 0:5; #2 ¼ 1 and #4 ¼ 1.
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trast to the previous cases, we observe that the trajec-
tories of the incommensurate model are chaotic when
the order #3 takes larger values and approaches 1 in
which kmax takes their highest value. the trajectories

become stable. In addition, When #3 decreases, the
stability region is shown and periodic windows
appear. If the incommensurate order #3 decrease fur-

ther, chaotic behaviors occur again in
#3 2 0:211; 0:509ð Þ. When the order continues to
decrease and close to zero, chaos disappears and peri-

odic windows with four-period orbits are observed
where the values of kmax are negative. According to
these findings, changes in the incommensurate orders

have an effect on the dynamical properties of a frac-
tional discrete neural network model with electromag-
netic radiation (9). It also suggests that the system’s
behaviors may be more accurately represented by

incommensurate orders, which is supported by the
phase portraits of the state variables of the incom-
mensurate fractional system (9) seen in Fig. 9.

3.3. Variable order FDNN model

The major goal of this section is to explore the complex
dynamics of the FDNN MODEL with fractional variable

order value. The variable order fractional discrete neural net-
work model is represented as

cD# rð Þ
d z1 rð Þ ¼ �z1 r� 1þ # rð Þð Þ þ a1 tanh z1 r� 1þ # rð Þð Þð Þ þ a2 tanh z2 r� 1þ # rð Þð Þð Þ

þa3 tanh z3 r� 1þ # rð Þð Þð Þ;
cD# rð Þ

d z2 rð Þ ¼ �z2 r� 1þ # rð Þð Þ þ b1 tanh z1 r� 1þ # rð Þð Þð Þ þ b2 tanh z2 r� 1þ # rð Þð Þð Þ
þb3 tanh z3 r� 1þ # rð Þð Þð Þ þ az2 r� 1þ # rð Þð Þ eþ b z4 r� 1þ # rð Þð Þð Þ4

� �
;

cD# rð Þ
d z3 rð Þ ¼ �z3 r� 1þ # rð Þð Þ þ c1 tanh z1 r� 1þ # rð Þð Þð Þ þ c2 tanh z2 r� 1þ # rð Þð Þð Þ

þc3 tanh z3 r� 1þ # rð Þð Þð Þ;
cD# rð Þ

d z4 rð Þ ¼ d1z2 r� 1þ # rð Þð Þ þ d2z4 r� 1þ # rð Þð Þ;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð11Þ



Fig. 9 Phase portraits of (9) for (a) #1; #2; #3; #4ð Þ ¼ 0:8; 1; 1; 0:9ð Þ (b) #1; #2; #3; #4ð Þ ¼ 0:1; 1; 1; 0:9ð Þ (c)

#1; #2; #3; #4ð Þ ¼ 0:9; 0:3; 1; 0:9ð Þ (d) #1; #2; #3; #4ð Þ ¼ 0:5; 1; 0:3; 1ð Þ .
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where r 2 Naþ1�# rð Þ; # rð Þ 2 0; 1ð � is the fractional variable

order. The numerical model of the variable order FDNN

model is derived from Lemma 1 as follows:

z1 rþ 1ð Þ ¼ z1 0ð Þ þ
Xn

k¼0

C r�1�kþ# kð Þð Þ
C # kð Þð ÞC r�kð Þ �z1 kð Þ þ a1 tanh z1 kð Þð Þ þ a2 tanh z2 kð Þð Þð

þa3 tanh z3 kð Þð ÞÞ;
z2 rþ 1ð Þ ¼ z2 0ð Þ þ

Xn

k¼0

C r�1�kþ# kð Þð Þ
C # kð Þð ÞC r�kð Þ �z2 kð Þ þ b1 tanh z1 kð Þð Þ þ b2 tanh z2 kð Þð Þð

þb3 tanh z3 kð Þð Þ þ az2 kð Þ eþ b z4 kð Þð Þ4
� ��

;

z3 rþ 1ð Þ ¼ z3 0ð Þ þ
Xn

j¼0

C r�1�kþ# kð Þð Þ
C # kð Þð ÞC r�kð Þ �z3 kð Þ þ c1 tanh z1 kð Þð Þ þ c2 tanh z2 kð Þð Þð

þc3 tanh z3 kð Þð ÞÞ;
z4 rþ 1ð Þ ¼ z4 0ð Þ þ

Xn

j¼0

C r�1�kþ# kð Þð Þ
C # kð Þð ÞC r�kð Þ d1z2 kð Þ þ d2z4 kð Þð Þ; r ¼ 1; 2; � � � :

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð12Þ

To illustrate the impact of the variable order on the behaviors

of the FDNN (11), We set the system parameter
a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼ 1:5; b3 ¼ �0:45;
c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5; d1 ¼ 0:1; d2 ¼ �0:45; a ¼ �0:5; b ¼
�0:12; e ¼ 1:519 and I.C. 0; 0; 5:5; 5:5ð Þ, Fig. 10 shows the

resulting phase plots for different variable order. As can be
observed in Fig. 10, the system (11) displays periodic beha-

viour for v rð Þ ¼ 1
12
exp sin r

15

� �� �þ 0:76, and it displays chaotic

behaviour for chosen fractional variable orders

v rð Þ ¼ 0:7þ 0:2 exp �rð Þ
1þexp �rð Þ and v rð Þ ¼ 0:7þ exp �rð Þ

1þexp �rð Þ but the shape

of the attractors differ from a fractional variable order to

another and the attractors are extremely different from those
obtained in Fig. 4 These results can prove that the choice of
the fractional variable order influences on the shape of the

attractors of the system (11).
Since the phase plots are not definitive to describe the nat-

ure of the dynamics of the system, we are going to observe the

bifurcation and the maximum Lyapunov exponents plots con-
cerning the parameter e 2 1:35; 1:7½ � to give more precise
details on the dynamics of the system (11). We draw bifurca-

tions and its kmax for three different fractional variable orders

# rð Þ ¼ 1
12
exp sin r

15

� �� �þ 0:76; # rð Þ ¼ 0:7þ 0:2 exp �rð Þ
1þexp �rð Þ and
# rð Þ ¼ 0:7þ exp �rð Þ
1þexp �rð Þ as illustrated in Fig. 11. When looking

at Fig. 11, It is easy to observe that the shape of the bifurcation

diagrams is different for the three proposed fractional variable
orders. In addition, when we change the value of the variable
order # rð Þ, the stability region shrink and the chaotic region

expand. For example, for # rð Þ ¼ 1
12
exp sin r

15

� �� �þ 0:76, the

system is stable at first, and as the value of e increases, it grad-
ually loses its stability and chaotic trajectories emerge. For

# rð Þ ¼ 0:7þ 0:2 exp �rð Þ
1þexp �rð Þ, the system becomes more chaotic,

and the region in which the states are stable shrinks, whereas

for # rð Þ ¼ 0:7þ exp �rð Þ
1þexp �rð Þ, the chaos appears in all interval when

e 2 1:35; 1:7½ � except for some crisis points. Moreover, as com-
pared with the results of the commensurate FDNN model (1)
shown in Fig. 2 and the results of the incommensurate FDNN

model (9) shown in Fig. 7, we notice that the diagrams are
strictly different, which indicates that the choice of the frac-
tional variable order affects the dynamic characteristics of
the fractional discrete neural network model.

4. The 0–1 test for chaos and the Complexity analysis of the

FDNN model

In this section, we analyze the complexity of the chaotic behav-
iors for evaluating the dynamic properties of chaotic systems
in which the higher the amount of complexity, the more chao-

tic the system gets. Here, the complexity of the proposed frac-
tional discrete neural network model is evaluated using the
approximate entropy test as well as the C0 complexity algo-

rithm. Also, we will use the 0–1 method to confirm the pres-
ence of chaos in the FDNN model.

4.1. The 0–1 test of the FDNN model

Here, we will employ the 0–1 test approach, which was pro-
vided by Gottwald and Melbourne [49], in order to detect



Fig. 10 Phase portraits of the variable order FDNN (11) for different variable values of # rð Þ.
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Fig. 11 The bifurcations maximum Lyapunov exponents versus the parameter system e of the variable order FDNN (11) for different

fractional variable values # rð Þ.
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the difference between chaotic and regular behaviors in
dynamic systems. We take the series data as input, and if the
dynamics of the model are chaotic, the output will be close

to 1, otherwise, it will be close to 0. Furthermore, we describe
the test as follows:

Firstly, by using the time series z1 mð Þð Þm¼1;...;N, we establish

the translation variables as follows:

p1 kð Þ ¼
Xk

m¼1

z1 mð Þcos i1ð Þ; q1 kð Þ ¼
Xk

m¼1

z1 mð Þsin i1ð Þ;k¼ 1;2; . . . ;N:

ð13Þ
The p1 � q1

� �
chart is used to detect whether or not chaotic

behaviours of the proposed FDNN model occur. If the trajec-
tories of p1 and q1 are bounded, the dynamical behaviours of

the model are regular, but if they indicate Brownian-like beha-

viour, the system’s dynamics are chaotic. Furthermore, we
introduce the mean square displacement formula as follows:

M1 kð Þ ¼ 1

N

XN
m¼1

p1 mþ kð Þ � p1 mð Þ� �2 þ q1 mþ kð Þ � q1 mð Þ� �2h i
; k 6 N

10
: ð14Þ

Finally, we represent the asymptotic growth by:

K1 ¼ lim
k!1

logM1

log k
: ð15Þ

The growth rate ”K ¼ median K1ð Þ” allows the distinction

between nonchaotic and chaotic motions in the proposed com-
mensurate FDNNmodel (1). If K is closer to, this suggests that
the model is not chaotic, whereas if K is closer to 1, the model

is chaotic.
Fig. 12 illustrates the results of asymptotic growth rate K of

the commensurate FDNN model (1) for # 2 0:5; 1½ � in which
e ¼ 1:519 and e ¼ 1:65. We can show that when the parameter

e decreases, the growth rate K approaches 1 which proves that
the commensurate FDNN model (1) has chaotic behaviour
Fig. 12 he 0–1 test versus the fractional order # of the commensura

1:5; b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5; d1 ¼ 0:1; d2 ¼ �0:45; a ¼ �0:
and it clearly confirms the previous results of bifurcations
and their kmax shown in Fig. 2. Now, to validate the occurrence
of chaos in the incommensurate order FDNN model (9) and

the variable order FDNN model (11), the results of the p� q
plots for different incommensurate values and variable values
are depicted in Figs. 13 and 14, respectively. It is evident that

Figs. 13a and 14a show bounded trajectories, which indicates
that the system is periodic. In contrast, Figs. 13b, 13c, 14b
and 14c display Brownian-like trajectories, which confirm the

occurrence of chaotic motions in the incommensurate FDNN
model and the variable FDNN model.

4.2. The ApEn of the FDNN model

Now, we describe the complexity of the fractional neural net-
work system (1) by using the approximate entropy (ApEn)
algorithm [50]. The ApEn is a measure of complexity of sys-

tems generated by a time series. Note that a time series with
a higher values of ApEn are more complex ones. To calculate
ApEn, we define first n�mþ 1 vectors as follows:

Z ið Þ ¼ z ið Þ; . . . ; z iþm� 1ð Þ½ �; ð16Þ
for i 2 1; n�mþ 1½ � where z 1ð Þ; z 2ð Þ; . . . ; z nð Þ is a set of dis-
crete points. In addition, we discribe the following equation:

Cm
i rð Þ ¼ K

n�mþ 1
; ð17Þ

where K is the number of Z ið Þ having d Z ið Þ;Z jð Þð Þ 6 r. Note
that the value of the approximate entropy depends on two

important parameters: the similar tolerance r and the embed-
ding dimension m. Here, we set m ¼ 2 and r ¼ 0:2std Zð Þ where
std Zð Þ is the standard deviation of the data Z. Theoretically,

the ApEn is calculated as:

ApEn ¼ /m rð Þ � /mþ1 rð Þ; ð18Þ
te FDNN model (1) for a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼
5;b ¼ �0:12; e ¼ 1:519; 1:65 and I.C. 0; 0; 5:5; 5:5ð Þ.



Fig. 14 The p� qð Þ plots of the variable FDNN model (11) for (a) # rð Þ ¼ 1
12
exp sin r

15

� �� �þ 0:76, (b) # rð Þ ¼ 0:7þ 0:2 exp �rð Þ
1þexp �rð Þ, (c)

# rð Þ ¼ 0:7þ exp �rð Þ
1þexp �rð Þ.

Fig. 13 The p� qð Þ plots of the incommensurate FDNN model (9) for (a) #1; #2; #3; #4ð Þ ¼ 0:8; 1; 1; 0:9ð Þ (b)
#1; #2; #3; #4ð Þ ¼ 0:9; 0:3; 1; 0:9ð Þ (c) #1; #2; #3; #4ð Þ ¼ 0:5; 1; 0:3; 1ð Þ.
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where,

/m rð Þ ¼ 1

n�m� 1

Xn�mþ1

i¼0

logCm
i rð Þ: ð19Þ

Setting the parameters a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼
�1:5; b2 ¼ 1:5; b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5; d1 ¼ 0:1;
d2 ¼ �0:45; a ¼ �0:5; b ¼ �0:12 and I.C. 0; 0; 5:5; 5:5ð Þ, the
approximate entropy results of the commensurate FDNN

model (1), the incommensurate FDNN model (9) and the vari-
able order FDNN model (11) are given in Figs. 15a, 15b and
15c, respectively. It is clear that in order to acquire larger val-

ues of ApEn, the time series has a higher level of complexity.
As a consequence, these findings are in accordance with the
MLE results that were shown before, which therefore validates

the presence of chaos in the proposed fractional system.

4.3. The C0 complexity of the FDNN model

In this part, we use the C0 complexity method based on the
inverse Fourier transform to figure out the complexity of the
suggested fractional discrete neural network system. The fol-
lowing is the description of the algorithm[51,52]:

For a sequence / 0ð Þ; . . . ;/ M� 1ð Þ, the algorithm of the C0

complexity is given as follows:
1. We compute the Fourier transform of the sequence x mð Þ
by:

ZN lð Þ ¼ 1

N

XN�1

l¼0

x lð Þexp�2pi kj
Nð Þ; l ¼ 0; 1; ::;N� 1: ð20Þ

2. We figure out the mean square by:

GN ¼ 1
N

PN�1
l¼0 jZN lð Þj2and we define

ZN lð Þ ¼ ZN lð Þ if kZN lð Þk2 > rGN;

0 if kZN lð Þk2 6 rGN:

(
ð21Þ

3. We determine the inverse Fourier transform using the

following formula:

n ið Þ ¼ 1

N

XN�1

l¼0

�zN lð Þexp2pi il
Nð Þ; i ¼ 0; 1; ::;N� 1: ð22Þ

4. The complexity of C0 is figured out by using the follow-
ing formula:

C0 ¼

XN�1

i¼0

kn ið Þ � x ið Þk

XN�1

i¼0

kx ið Þk2
: ð23Þ



Fig. 15 The ApEn of the FDNN model versus the parameter e for (a) # ¼ 0:99, (b) #1; #2; #3; #4ð Þ ¼ 0:5; 1; 0:7; 1ð Þ, (c)
v rð Þ ¼ 1

12
exp sin r

15

� �� �þ 0:76.

The new fractional discrete neural network model under electromagnetic radiation: Chaos, control and synchronization 403
The C0 complexity of the commensurate FDNN model (1) is
shown in Fig. 16a. Fig. 16b illustrates the results of estimating
the C0 complexity of the incommensurate FDNN model (9)

and the C0 results of the variable order FDNN model (11) is
displayed if Fig. 16c. We get these results by adjusting the sys-
tem parameters a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼ 1:5;
b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5; d1 ¼ 0:1; d2 ¼ �0:45;
a ¼ �0:5; b ¼ �0:12, the initial conditions z1 0ð Þ; z2 0ð Þ; z3 0ð Þ;ð
z4 0ð ÞÞ ¼ 0; 0; 5:5; 5:5ð Þ and varying the system parameter

e 2 1:35; 1:7½ �. From Fig. 16a, as with MLE, the C0 values of
the commensurate system (1) increase as the parameter e
decreases. Furthermore, when #1; #2; #3; #4ð Þ ¼ 0:5; 1; 0:7; 1ð Þ,
the incommensurate system (9) exhibits lower complexity when

the values of e increase and close to 1.7, which is compatible
with the findings of the bifurcation and the approximate
entropy test (ApEn). Besides, from Fig. 16c, the greater com-

plexity of the variable order system (11) is noticed in the inter-
val where the parameter e increases. Thus, we can infer that the
C0 complexity measure is a reliable means of quantifying com-

plexity effectively.

5. The control of the fractional discrete neural network model

5.1. Stabilisation of FDNN model

In this section, we suggest a stabilization controller to stabilize
the chaotic trajectories of the proposed fractional discrete neu-
ral network model. The goal of the stabilization control prob-
Fig. 16 The C0 complexity of the FDNN model versus the para

v rð Þ ¼ 1
12
exp sin r

15

� �� �þ 0:76.
lem is to design a good adaptive controller that makes all of

the system’s states tend asymptotically to zero. To this aim,
we first recall the Lemma of the stability of fractional map.

Lemma 2. [53]Let z rð Þ ¼ z1 rð Þ; . . . ; zn rð Þð ÞT and B 2 Mn Rð Þ.
The zero fixed point of the linear fractional order discrete

system

CD#
dz rð Þ ¼ B z r� 1þ #ð Þ; ð24Þ

8 r 2 Ndþ1�# is asymptotically stable if

ki 2 c 2 C :j # j< 2 cos
j arg c j �p

2� #

� �#

and j arg# j> # p
2

( )
;

ð25Þ
where ki are the eigenvalues of the matrix B.

Now, the controlled FDNN system is given by:

cD#
d z1 rð Þ ¼ �z1 r� 1þ #ð Þ þ a1 tanh z1 r� 1þ #ð Þð Þ þ a2 tanh z2 r� 1þ #ð Þð Þ

þa3 tanh z3 r� 1þ #ð Þð Þ þ uz1 r� 1þ #ð Þ;
cD#

d z2 rð Þ ¼ �z2 r� 1þ #ð Þ þ b1 tanh z1 r� 1þ #ð Þð Þ þ b2 tanh z2 r� 1þ #ð Þð Þ
þb3 tanh z3 r� 1þ #ð Þð Þ þ az2 r� 1þ #ð Þ eþ b z4 r� 1þ #ð Þð Þ4

� �
þuz2 r� 1þ #ð Þ;

cD#
d z3 rð Þ ¼ �z3 r� 1þ #ð Þ þ c1 tanh z1 r� 1þ #ð Þð Þ þ c2 tanh z2 r� 1þ #ð Þð Þ

þc3 tanh z3 r� 1þ #ð Þð Þ þ uz3 r� 1þ #ð Þ;
cD#

d z4 rð Þ ¼ d1z2 r� 1þ #ð Þ þ d2z4 r� 1þ #4ð Þ þ uz4 r� 1þ #ð Þ;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð26Þ
meter e for (a) # ¼ 0:99, (b) #1; #2; #3; #4ð Þ ¼ 0:5; 1; 0:7; 1ð Þ, (c)
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where uz1 rð Þ; uz2 tð Þ; uz3 rð Þ; uz4 rð Þ and are the adaptive control

terms. The proposed control law is represented in the following

Theorem.

Theorem 1. The FDNN model (1) is stabilized subject to the
following control law:

uz1 rð Þ ¼ �a1 tanh z1 rð Þð Þ � a2 tanh z2 rð Þð Þ � a3 tanh z3 rð Þð Þ;
uz2 rð Þ ¼ �b1 tanh z1 rð Þð Þ � b2 tanh z2 rð Þð Þ � b3 tanh z3 rð Þð Þ � az2 rð Þ eþ bz44 rð Þ� �

;

uz3 rð Þ ¼ �c1 tanh z1 rð Þð Þ � c2 tanh z2 rð Þð Þ � c3 tanh z3 rð Þð Þ;
uz4 rð Þ ¼ �d1z2 rð Þ:

8>>><
>>>:

ð27Þ
Fig. 17 Attractors of the controlled FDNN model (28) for a1 ¼ 1:5

c3 ¼ 1:5; d1 ¼ 0:1; d2 ¼ �0:45; a ¼ �0:5; b ¼ �0:12; e ¼ 1:519 and I.C.
Proof. By substituting (27) into (26), we get the following

system:

cD#
dz1 rð Þ ¼ �z1 r� 1þ #ð Þ;

cD#
dz2 rð Þ ¼ �z2 r� 1þ #ð Þ;

cD#
dz3 rð Þ ¼ �z3 r� 1þ #ð Þ;

cD#
dz4 rð Þ ¼ d2z4 r� 1þ #ð Þ:

8>>><
>>>:

ð28Þ

which can be written as follows:
; a2 ¼ 2; a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼ 1:5; b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2;

0; 0; 5:5; 5:5ð Þ.
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cD#1
d z1 rð Þ; z2 rð Þ; z3 rð Þ; z4 rð Þð ÞT

¼ B z1 rð Þ; z2 rð Þ; z3 rð Þ; z4 rð Þð ÞT; ð29Þ
where:

B ¼

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 d2

0
BBB@

1
CCCA:

The eigenvalues of the matrix B are k1 ¼ k2 ¼ k3 ¼ �1, and
k4 ¼ d2 where d2 ¼ �0:45, it is easy to see that the eigenvalues

kj j ¼ 1; 2; 3; 4ð Þ satisfies the condition of Lemma 2, which

proves that the zero equilibrium of the controlled system
(28) is asymptotically stable, therefore the states of the con-
trolled system (28) are asymptotically stabilized.

The result of Theorem 1 are illustrated in Fig. 17 and
Fig. 18 for a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼ 1:5;
b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼ 1:5; d1 ¼ 0:1; d2 ¼ �0:45;
a ¼ �0:5; b ¼ �0:12; e ¼ 1:519 and I.C. 0; 0; 5:5; 5:5ð Þ. Clearly,
the states of the controlled system converge to zero and the
chaotic nature of the system is deleted.

5.2. Synchronization scheme of FDNN model

This section presents an adaptive controller to synchronize the

suggested FDNN model with electromagnetic radiation (1).
The aim of the synchronization process is to force the error
between the slave and the master systems to converge toward

zero.
Let’s consider the commensurate fractional system (1) as

the master system:
Fig. 18 The stabilized states of the controlled FDNN model(28) fo

c2 ¼ �2; c3 ¼ 1:5; d1 ¼ 0:1; d2 ¼ �0:45; a ¼ �0:5;b ¼ �0:12; e ¼ 1:519
cD#
d z1m rð Þ ¼ �z1m r� 1þ #ð Þ þ a1 tanh z1m r� 1þ #ð Þð Þ þ a2 tanh z2m r� 1þ #ð Þð Þ

þa3 tanh z3m r� 1þ #ð Þð Þ;
cD#

d z2m rð Þ ¼ �z2m r� 1þ #ð Þ þ b1 tanh z1m r� 1þ #ð Þð Þ þ b2 tanh z2m r� 1þ #ð Þð Þ

þb3 tanh z3m r� 1þ #ð Þð Þ þ az2m r� 1þ #ð Þ eþ b z4m r� 1þ #ð Þð Þ4
� �

;

cD#
d z3m rð Þ ¼ �z3m r� 1þ #ð Þ þ c1 tanh z1m r� 1þ #ð Þð Þ þ c2 tanh z2m r� 1þ #ð Þð Þ

þc3 tanh z3m r� 1þ #ð Þð Þ;
cD#

d z4m rð Þ ¼ d1z2m r� 1þ #ð Þ þ d2z4m r� 1þ #ð Þ:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð30Þ

Define the slave system as:

cD#
d z1s rð Þ ¼ �z1s r� 1þ #ð Þ þ a1 tanh z1s r� 1þ #ð Þð Þ þ a2 tanh z2s r� 1þ #ð Þð Þ

þa3 tanh z3s r� 1þ #ð Þð Þ þ C1 r� 1þ #ð Þ;
cD#

d z2s rð Þ ¼ �z2s r� 1þ #ð Þ þ b1 tanh z1s r� 1þ #ð Þð Þ þ b2 tanh z2s r� 1þ #ð Þð Þ
þb3 tanh z3s r� 1þ #ð Þð Þ þ az2s r� 1þ #ð Þ eþ b z4s r� 1þ #ð Þð Þ4

� �
þC2 r� 1þ #ð Þ;

cD#
d z3s rð Þ ¼ �z3s r� 1þ #ð Þ þ c1 tanh z1s r� 1þ #ð Þð Þ þ c2 tanh z2s r� 1þ #ð Þð Þ

þc3 tanh z3s r� 1þ #ð Þð Þ þ C3 r� 1þ #ð Þ;
cD#

d z4s rð Þ ¼ d1z2s r� 1þ #ð Þ þ d2z4s r� 1þ #ð Þ þ C4 r� 1þ #ð Þ;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð31Þ

where the functions C1;C2;C3 and C4 are the synchronization
controllers. The synchronization error is defined for r 2 Nd�1þ#

as follows:

e1 rð Þ ¼ z1s rð Þ � z1m rð Þ;
e2 rð Þ ¼ z2s rð Þ � z2m rð Þ;
e3 rð Þ ¼ z3s rð Þ � z3m rð Þ;
e4 rð Þ ¼ z4s rð Þ � z4m rð Þ;

8>>><
>>>:

ð32Þ

then, the master system (30) and the slave system (31) are said
to be synchronized if

lim
r!1

jej rð Þj ¼ 0; for j ¼ 1; 2; 3; 4: ð33Þ
r a1 ¼ 1:5; a2 ¼ 2; a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼ 1:5; b3 ¼ �0:45; c1 ¼ 3;

and I.C. 0; 0; 5:5; 5:5ð Þ.



406 A.S. Heilat et al.
The following Theorem describes the suggested control law for

attaining the synchronization of the conceived system.

Theorem 2. Subject to

C1 rð Þ ¼ �a1 tanh z1s rð Þ � tanh z1m rð Þð Þð Þ � a2 tanh z2s rð Þ � tanh z2m rð Þð Þð Þðð
�a3 tanh z3s rð Þ � tanh z3m rð Þð Þð Þ � l1e1 rð Þ;ð

C2 rð Þ ¼ �b1 tanh z1s rð Þ � tanh z1m rð Þð Þð Þ � b2 tanh z2s rð Þ � tanh z2m rð Þð Þð Þðð
�b3 tanh z3s rð Þ � tanh z3m rð Þð Þð Þ � az2s rð Þ eþ b z4s rð Þð Þ4

� ��
þaz2m rð Þ eþ b z4m rð Þð Þ4

� �
� l2e2 rð Þ;

�
C3 rð Þ ¼ �c1 tanh z1s rð Þ � tanh z1m rð Þð Þð Þ � c2 tanh z2s rð Þ � tanh z2m rð Þð Þð Þðð

�c3 tanh z3s rð Þ � tanh z3m rð Þð Þð Þ � l3e3 rð Þ;C4 rð Þ ¼ �d1e2 rð Þ � l4e4 rð Þ:ð ð34Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
where �1 < lj < 2# � 1; j ¼ 1; 2; 3 and 0 < l4 � d2 < 2#. Then

the master system (30) and slave system (31) are synchronized.

Proof. By using the Caputo-type #-th fractional-order differ-
ences On the error system (32), we get:
Fig. 19 Time evolution of the
cD#
d e1 rð Þ ¼ �z1s r� 1þ #ð Þ þ a1 tanh z1s r� 1þ #ð Þð Þ þ a2 tanh z2s r� 1þ #ð Þð Þ

þa3 tanh z3s r� 1þ #ð Þð Þ þ C1 r� 1þ #ð Þ þ z1m r� 1þ #ð Þ
�a1 tanh z1m r� 1þ #ð Þð Þ � a2 tanh z2m r� 1þ #ð Þð Þ
�a3 tanh z3m r� 1þ #ð Þð Þ;

cD#
d e2 rð Þ ¼ �z2s r� 1þ #ð Þ þ b1 tanh z1s r� 1þ #ð Þð Þ þ b2 tanh z2s r� 1þ #ð Þð Þ

þb3 tanh z3s r� 1þ #ð Þð Þ þ az2s r� 1þ #ð Þ eþ b z4s r� 1þ #ð Þð Þ4
� �

þC2 r� 1þ #ð Þ þ z2m r� 1þ #ð Þ � b1 tanh z1m r� 1þ #ð Þð Þ
�b2 tanh z2m r� 1þ #ð Þð Þ � b3 tanh z3m r� 1þ #ð Þð Þ
�az2m r� 1þ #ð Þ eþ b z4m r� 1þ #ð Þð Þ4

� �
;

cD#
d e3 rð Þ ¼ �z3s r� 1þ #ð Þ þ c1 tanh z1s r� 1þ #ð Þð Þ þ c2 tanh z2s r� 1þ #ð Þð Þ

þc3 tanh z3s r� 1þ #ð Þð Þ þ C3 r� 1þ #ð Þ þ z3m r� 1þ #ð Þ
�c1 tanh z1m r� 1þ #ð Þð Þ � c2 tanh z2m r� 1þ #ð Þð Þ
�c3 tanh z3m r� 1þ #ð Þð Þ;

cD#
d e4 rð Þ ¼ d1z2s r� 1þ #ð Þ þ d2z4s r� 1þ #ð Þ þ C4 r� 1þ #ð Þ

�d1z2m r� 1þ #ð Þ � d2z4m r� 1þ #ð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð35Þ

Substituting the control law (34) into (35), we get:
fractional error system (35).
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cDv e1 rð Þ; e2 rð Þ; e3 rð Þ; e4 rð Þð ÞT
¼ B� e1 r� 1þ #ð Þ; e2 r� 1þ #ð Þ;ð
e3 r� 1þ #ð Þ; e1 r� 1þ #ð ÞÞT; ð36Þ

where

B ¼

� 1þ l1ð Þ 0 0 0

0 � 1þ l2ð Þ 0 0

0 0 � 1þ l3ð Þ 0

0 0 0 � l4 � d2ð Þ

0
BBB@

1
CCCA

The eigenvalues of the matrix B are
k1 ¼ � 1þ l1ð Þ; k2 ¼ � 1þ l2ð Þ; k3 ¼ � 1þ l3ð Þ and k4 ¼
� l4 � d2ð Þ. Now, it is easy to see that, for �1 < lj < 2# � 1

where j ¼ 1; 2; 3 and for 0 < l4 � d2 < 2#, the eigenvalues ki
for i ¼ 1; 2; 3; 4 satisfy

j ki j< 2 cos
j arg ki j �p

2� v

� �#

¼ 2# and j arg ki j¼ p >
# p
2

:

So, we can conclude that according to Lemma 2, the fractional
error system (35) is stabilized at zero and consequently, the

fractional discrete neural network master system (30) and the
fractional discrete neural network slave system (31) are
synchronized.

In order to verify this result, numerical simulations are per-
formed using MATLAB. We choose # ¼ 0:9; a1 ¼ 1:5; a2 ¼ 2;
a3 ¼ 0:9; b1 ¼ �1:5; b2 ¼ 1:5; b3 ¼ �0:45; c1 ¼ 3; c2 ¼ �2; c3 ¼
1:5; d1 ¼ 0:1; d2 ¼ �0:45; a ¼ �0:5; b ¼ �0:12; e ¼ 1:519; l1;ð
l2; l3; l4Þ ¼ �0:1;�0:3;�0:4;�0:1ð Þ and the initial values
e1 0ð Þ; e2 0ð Þ; e3 0ð Þ; e4 0ð Þð Þ ¼ �0:01; 0:2;�0:1; 0:1ð Þ. Fig. 19

reports the time evolution of states of the fractional error sys-
tem (35) subject to control law (34). It is evident that the errors
approach zero, which provides that the synchronization dis-

cussed earlier is effective.

6. Conclusion

In this article, we described a new four-dimensional fractional
discrete neural network with electromagnetic radiation model
depending on commensurate, incommensurate and variable

orders. The model revealed that there are different and rich
dynamical characteristics. The behaviors of the suggested
FDNN model for three cases: the commensurate order case,

the incommensurate order case and the variable order case
were discussed by calculating the Lyapunov exponent, plotting
phase portraits and bifurcation diagrams and using the 0–1 test
method. We have shown that the states of the proposed model

are affected by the changes in values of the fractional order
and the system parameters, and a variety of dynamics have
been obtained, including stable trajectories, periodic motions,

and chaotic behaviors. Furthermore, the ApEn algorithm
and C0 test were applied to measure the complexity of the pro-
posed model. The results show that when the fractional orders

are varied, the fractional discrete neural network model pro-
duces chaotic behavior with a higher complexity degree and
a broader range of chaotic regions. Finally, successful control

laws were suggested that enable stabilizing and synchronizing
the suggested model by compelling the states to converge
toward zero asymptotically. Numerical simulations using
MATLAB were accomplished to validate our results. Owing
to its complex and diverse dynamical behavior, this study
can provide a theoretical framework and aid future work in

the fields of secure communication and encryption.
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