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1 Introduction and summary

The superconformal index introduced in [1-3] may be regarded as the Witten index for
superconformal theories in radial quantization. It is invariant under reasonable changes
of model parameters and is therefore relevant to test weak-strong dualities. Conversely,
in the context of AdS/CFT, computing explicitly the index on both the gauge and string
sides is an important test of the correspondence. This is non-trivial when one analyzes the
detailed dependence of the index on the state charges.

In the illustrative case of N = 4 U(N) SYM on the world-volume of N parallel D3
branes in type IIB superstring, we may first consider the index contributions from states
with charges of order V. In this approximation, the index matches the counting of Kaluza-
Klein (KK) BPS gravitons from supergravity on AdSs x S°. For higher values of the
charges, the index starts to depend on N, as it will be explained below. In this paper
when we say large N expansion of the index we refer to its large N expansion at charges
of order N or smaller.!

!This peculiar dependence on N is important to reproduce black holes physics. Indeed, it is by now
known that at large enough charges the asymptotic growth of the index is much faster than that of the gas
of KK modes [4-8].



Finite N corrections to the index may be organized in additional series in the index
expansion parameter ¢ with overall weight ¢™, where n = 1,2, ... is the effect from n giant
gravitons [9-13]. This structure is generic. For instance, in the S-fold background of IIB
superstring [14], beside giant gravitons, one also has D3 branes wrapped on the internal
space S°/7Zj, dual to Pfaffian-like operator, and these also provide additional finite N
corrections to the index [15, 16].2

In more details, in N = 4 U(N) SYM, finite N corrections may be computed by
considering branes that are multiply wrapped around topologically trivial 3-cycles in the
internal S [20]. Writing it as |21|* + |22|? + |23/> = 1, there are three 3-cycles defined by
zr = 0. For wrapping numbers (ni,ng,ns) the gauge theory on the wrapped D3 branes
one has a U(ny) x U(ng) x U(ng) gauge theory with bi-fundamental multiplets in a ring
quiver diagram and the finite N index is proposed to be

o0

jU(N) = JkK Z j(nlmz,%)’ (1'1)

ni,n2,n3=0

where Jkxk is the large N Kaluza-Klein contribution. The N dependence of the brane index
ﬁ(mm’ng) is just from a classical prefactor coming from the classical charges and energy of
the wrapped brane system of the schematic form q(mtn2tns)N - The actual calculation of
the remaining part of j(m,nz,ns) requires to integrate over the gauge holonomy the plethystic
exponential of an expression involving the single-letter index of the brane world-volume
superconformal theory.

This step turns out to be subtle and rather non-trivial. First, the brane single-letter
index includes tachyonic modes related to the topological triviality of the wrapping cycles.
Their plethystic exponentiation requires an analytic continuation. Second, the integration
cycle of the gauge holonomy phases is not the naive one, where each belongs to the unit
circle. Instead, a prescription has to be given to determine which poles are kept and which
are discarded. Although it is possible to match the gauge theory index at finite N by
a special choice of contour, it is unclear how to understand these rules in general. In
the analysis of [20], wrapping up to nj + ng + ng = 3 was successfully considered, but
extending the results to higher windings remained a missing issue due to the high algebraic
complexity of the calculation. Similar pole prescriptions appeared in other theories [21-26]
and a discussion of what could be the correct pole prescription was presented in [27].3

In [31], the problem was reconsidered trying to elucidate the precise analytic contin-
uation relating the original gauge theory index and the brane index. The paradigmatic
example is the finite NV half-BPS index of N = 4 U(N) SYM that turned out to admit a
simple expansion similar to (1.1)

In(q) = Jo(q) [1 + i quﬁk(Q)] , (1.2)

k=1

2The problem of counting states associated with these configurations was addressed in [17-19)].

3In the recent paper [28], explicit string results for the worldsheet instantons in the ABJM theory [29]
have been presented. In principle, they could be compared with the finite size corrections to the M2 brane
index [23] along the lines of [30].



where the brane indices J; are given by the remarkably simple analytic continuation rule*

A

Jk(q) = Jk(g™). (1.3)

The holographic interpretation of (1.3) is straightforward [31]. Let X be an adjoint scalar
and ¢ be the fugacity for a global symmetry U(1), under which X has unit charge. Giant
gravitons are D3 branes wrapped on the maximal S® fixed by U(1), and have charge N.
The corresponding radial fluctuations mode in the world-volume theory of the wrapped
branes has U(1), charge —1. For a stack of k giant gravitons, the fluctuation mode is
a k x k matrix of scalars and the world-volume theory has U(k) gauge invariance. This
suggests indeed that the half-BPS excitations of wrapped branes are counted by the U(k)
index Jy (¢ 1), ie. (1.3).

Let us remark that a very non-trivial feature of (1.3) is the fact that the inversion
q¢— q"
possible to re-expand in powers of ¢ for counting purposes.

implies a resummation of the contributions to the index J; after which it is

This strategy was exploited systematically in [31] by considering other BPS sectors
and models. Generally speaking, stacks of k giant gravitons are dual to operators (det X)*
and fluctuations of the stack of wrapped D3 branes with U(k) gauge theory on their world-
volume are matched to finite modifications of determinant operators following [35, 36].

Although the determinant modification strategy leads to a well-defined single-letter
index on the wrapped brane world-volume, the evaluation of the index still requires a
crucial ingredient, i.e. again a prescription for the integration cycle of the gauge holonomy
integral. This problem was addressed in full generality in [37] where a precise definition of
the gauge integral as a multivariate residue was proposed and successfully tested in several
examples.’

In this paper, we explore the proposal of [37] in the case of the Schur index [40]. This
specialization of the full index has also been discussed in [31] and has the advantage of
being computable at finite N with minor effort, thanks to the methods and exact results
of [41]. On the other hand, it is worth to revisit its brane expansion for various reasons.

We recall that the Schur index depends on two fugacities x, y with a Zy symmetry
exchanging x <> y. In [31], the index has been studied as a series in the parameter ¢ = xy,
followed by small x expansion. The corresponding giant graviton-type representation was
found to take the form

In(2;q) = Joo(25 q) i 2*NTy (23 q), (1.4)
k=0

*We remark that expansions like (1.2) for the superconformal index suffer from a certain ambiguity
and is not unique. Indeed, in [32] it was given a general representation of that form for a class of matrix
integrals over U(V) that includes the superconformal index integral representation. The J functions in this
construction are different from the ones arising from wrapped D3 branes as pointed out in [33]. A critical
discussion in the case of the half-BPS index appeared recently in [34].

®As remarked in [31], relations like (1.2) and its multi-fugacities generalizations are not simply combi-
natorial. Even if the superconformal gauge theory has not a weakly-curved holographic dual, one expects
that in any U(V) gauge theory is dual to a string theory where finite charge operators are dual to string
excitations and operators of size N can be associated to D-branes [38, 39].



with the brane indices given by the specific analytic continuation

Jp(w;q) = Tz ™27 'g), (1.5)
analogous to (1.3). On the other hand, as also suggested in [31], it should be possible to
treat x, y symmetrically and obtain a different kind of expansion®

In(@,y) = Joo(@,y) S "Ny NG 1 (2, ). (1.6)
k.’

This second representation is somehow more natural from the point of view of the wrapped
D3 branes interpretation.”

One additional reason to study the brane expansion of the symmetric Schur index is
that looking at the small z, y limit with fixed ratio x/y, one finds that the individual
brane indices ﬁ(hk/) have rational terms with denominators having factors like powers of
x+y. Such terms cannot be expanded unambiguously into a power series in  and y. They
are associated with the wall-crossing phenomena discussed in [37] occurring when different
fugacities or their powers collapse. These singularities should cancel after summing over
k, k' since they are absent in the left hand side of (1.6) i.e. in the index of the original
superconformal gauge theory.

At the walls, pole cancellation occurs and entails a peculiar enhancement of the brane
index coefficients, i.e. state degeneracy, that get an N dependence. In [37] it was sug-
gested that in more physical cases, like the %-BPS index, this mechanism could be impor-
tant to understand how bulk microstates build emerging non-trivial geometries, e.g. BPS
black-holes.

Results. To clarify the above issues, we computed various function ﬁ(k7kl) in (1.6) by the
algorithm of [37]. We did this by scaling

(z,y) = € (z,y), (1.7)

where ¢ is a formal expansion parameter. This allows to analyze the regime of small x,
y with any fixed ratio z/y. The index Jy and the brane quantities ﬁ(k,k/) are shown to
admit a regular e-expansion. Remarkably, the leading contribution is always a non-trivial
rational function of x, y. For example

A x? " (x — 2y)

j(1,0)(<‘5967€y) == €+ 0(52)7 ﬁ(2,0)(<€fl¢a€y) = (z — y)2y(z +y) et + 0(55), (1.8)

and so on. The presence of such contributions signals an ambiguity related to the order of
the double expansion in z, y. In the language of [37] this is a wall-crossing phenomenon in

SWe will denote by F(x;¢) quantities in terms of & and ¢ = zy, while F(z,y) will be the same quantity
in terms of z, y. So F(z;zy) = F(z,y), but reason for this notation is that F'(z;q) will always be assumed
to have been computed as a series expansion in powers of g, followed by expansion in z, while F(z,y) will
be later considered without a specific order of expansion.

"An expansion of the type (1.6) was proposed in [24] but their analysis needed a specific ad hoc pole
prescription rule whose origin remained unclear.



the sense that two different expansions should be used depending on |z/y| being smaller or
larger than 1. This splits the fugacity space into two regions separated by the codimension-1
wall z = y.

In the separate terms ﬁ(hk/), the limit x — y gives rise to a true singularity. Nev-
ertheless, it has to cancel in the full finite N index because it has a regular polynomial
dependence on x, y order by order in €,

In(emey) =1+ 3 P (2, y) ", (1.9)

n=1

where ?5\7,1) (x,y) are symmetric polynomials of degree n. For the quantities we have com-

puted, we checked that this cancellation indeed occurs by considering the subset of terms
with fixed level k + £’.

Our explicit multivariate residue calculation also clarifies the relation between the two
apparently incompatible expansions (1.4) and (1.6). We will argue that

Ti(239) = Te(e ™5 y) = Ty (2, y). (1.10)

In this relation the lLh.s. is obtained by an analytic continuation of the gauge theory index
according to (1.5), while the r.h.s. is the result from the multivariate residue computation.
Also, it is remarkable that the terms in (1.6) that are missing in (1.4), i.e. those with ¥’ > 0,
do not contribute if (1.6) is evaluated by expanding first in small y and then in z, i.e. in
the asymmetric limit where (1.4) is known to hold. This is the only regime where (1.4)
and (1.6) are equivalent, while in the more general case of fixed ratio x/y, the correct
expansion is necessarily the double sum in (1.6).

We also examined the structure of the index expansion at the wall z = y and could
confirm the peculiar enhancement of its coefficients that are polynomials in N. In more
details, the index takes the form

In(z,y) =Joo ()

o0
1+ Y Q)N+ | (1.11)
=y k=1
where I has a regular series in = independent on N and Qx(N) are computable polyno-
mials in NV of degree k. Relation (1.11) follows from the known expression of the index
at the wall [41]. In the brane expansion, it is a consequence of the wall-crossing poles
cancellation.

The plan of the paper is the following. In section 2 we summarize the Gaiotto-Lee
construction of the brane single-letter index from determinant operator modifications as
the prescription to define the brane (full multi-particle) indices as multivariate residue.
In section 3 we discuss the Schur index in the e-expansion. We compute various brane
indices as multivariate residue by a novel deformation algorithm. Cancellation of wall-
crossing poles is checked up to level k + k' = 3 and we verify the validity of the double
expansion (1.6). In section 4 we compare the two expansions (1.4) and (1.6) showing how
resummation of the ¢ = xy is possible to achieve the remarkable equality (1.10). Finally,
in section 5 we discuss the degeneracy enhancement summarized in (1.11) and happening



at the wall z = y. In appendix A we briefly discuss the case of the solvable i—BPS Schur
index where similar mechanisms are illustrated.

2 Gaiotto-Lee determinant modification construction

Let us briefly summarize the Gaiotto-Lee determinant modification construction to build
the single letter brane index and the prescription given in [37] to compute the brane index
by integrating out gauge fugacities. We consider a U(/N) supersymmetric gauge theory and
represent the finite IV index I (z) depending on a set of counting variables @ = (z1,...,x5)
in the form of a giant graviton-type expansion

o0

In(x) = Ioo(x) Z xlle . ‘-arfsN ﬁ(kh_”’ks)(w). (2.1)
K1 k2, ks =0

Here, I () is the large N index equal to the (dual) closed string index given by the
fluctuations of Kaluza-Klein supergravity modes. The sum in (2.1) is over the wrapping
number of branes wrapped on different supersymmetric cycles. FEach term in (2.1) is
associated with a stack of k; branes of type ¢ and the brane index ﬁ(;ﬂ’m’ks) counts states in
the worldvolume [], U(k;) quiver gauge theory. In the dictionary of [37], these states are
referred to as open string excitations on the (ki,...,ks) brane stack.

Adjoint fields in the U(N) gauge theory are counted by the single-letter index f(x)
which is a rational function of the fugacities & associated with the global symmetries of
the gauge theory. The total (multi-letter) index of the gauge theory is written in the usual
way as an integral over U(N) gauge fugacities — with standard integration cycle —

N N N
o= f M (-2 re o S 2] e

a#b ap=1 b

where Pexp denotes the plethystic exponential. At large N, one has simply

J&(w)—-51 l_;;) 2" = (2T, .. al). (2.3)

The prescription in [31] counts modifications of the determinant product []5_;(det X;),
where X; are the adjoint fields, and modification means that we can replace in det X; the
letter X; somewhere by other fields. As proven in [31, 37], this provides the representa-
tion (2.1) with the following expression for the brane index

k@ = g H

ks dafj

y £
27rw de=1 210G,

X1 Xi
X H ( ) H ( ) Pexp Z fZ a‘v , (2.4)
a1#by "bl as#bs O'bs ij=1 b, Ub

where the modified single-letter index is

fila) =01+ = (2.5)



and the integration cycle will be discussed in section 2.1. As an example, in the half-BPS sec-
tor we have a single letter X and the determinant operator det X = e ""Nej, . X7t XV
has weight V. The only admissible modification is X — 1 that reduce by 1 the exponent
of x. This is consistent with (2.5) that gives using f = x

f(ac) =1+ (z = 1)1 27 =z L (2.6)

1—=x

From the general formula (2.4), modifications of (det X)* in the half-BPS sector are de-
scribed by the brane index

T 7{ H = (1 - Ub) Fexp [i 2 Ua] ’ 27

27rwa asth

The expected result is the explicit formula, cf. (1.3),

. LR(E+1)/2

Jp(z) = T(a™") = (1) o —, (2.8)

m:l(l - $m)

where we used Iy (z) = 1/ T2, (1 — z™).

2.1 Analytic continuation

As we mentioned the expression (2.4) still requires to specify how to integrate over the
parameters oXe. As in the example of the half-BPS sector, the world-volume theory con-
tains field with opposite charges to the ones of the original theory. In the half-BPS sector,

L and

one can compute the index Jj, for modifications of (det X)* as a power series in z~
then analytically continue its resummation to a power series in z. In general, the relation
between f in (2.5) and f is not so simple and one needs an independent way to evalu-
ate (2.4). The proposal in [37] is to compute it as a multivariate residue with a rather
general prescription of the canonical integration cycle [42].

We recall that multivariate residues occur in our context for an integrand of the form

h(d)d(fl A-dog
91(0) gk (o)

, K=Yk, (2.9)

with the point & = 0 being an isolated common zero of the denominator factors g, (o).
The canonical integration cycle is the torus |g,(o)| = € for small enough ¢, and orientation
d(arggi) A--- ANd(arggr) > 0. Unlike the 1-dimensional case, it depends on the detailed
factors g,(o) in the denominator of (2.9) and not just on the full denominator. Notice also
that the integration cycle is not the trivial one |o,| = €.

To define the factors gq (o), we recall that the integrand of ﬁ(kl,...,ks) generally involves
ratios of infinite products. Numerators and denominators come respectively from negative
and positive terms that appear in an expansion of the brane single-letter index f;(w) If
for some i, j we have the expansion in monomials f}(z) = + 3, pa(x) — 35 ns(x), we will
find in the denominator of the integrand products of factors

R NE (2.10)



Interpretation of this factor is a single open string connecting (det Xj)bj with (det X;),-
Following [37], we will partition the denominator as

X X X X Xs Xs
9= {(91 17""gk11)7(91 27""gk22)v"'(gl IREEEN'/ ) )} (2‘11)

In this partition we put in gf(l

all denominators that represent open strings ending on
(det X1);. Then we put in gg{l all remaining denominators that represent open strings
ending on (det X7)2 and so on. If in this ordering gii comes before glf_j then we place into

géﬁ' the factor

X 1 _X

X; X; _ .
— pa(z ) — 0y, — Pa(x) e (2.12)
2.2 A deformation algorithm for the multivariate residue

To illustrate the computational difficulties in the evaluation of the multivariate residue
associated with the cycle (2.11), let us consider again the half-BPS case. From (2.7),
evaluating the plethystic, we have

Jp(z) = ;,< — 1) ]{H il a "% (2.13)

2mio, ;ﬁbaa x Loy,

and the proposed partitioning of the denominator is

g9=A{g1.- %} ga=0a [[(0a—2700). (2.14)
b#a

To compute the multivariate residue it is important to determine whether the pole is non-
degenerate, i.e. has non-vanishing Jacobian

J = det (6g“> . (2.15)
a,b 801, =0
If J # 0 at the pole 0 = ¢*, then we have simply
h(o™)
R = . 2.16
Zovg J(o*) (2.16)

If the pole is degenerate (J = 0) there are algebraic geometry algorithms to compute the
multivariate residue, based on Grébner basis methods. These become rapidly useless in
our cases due to (i) the presence of the fugacities as free parameters, and (ii) the fact that
the plethystic exponential produces (generically although not in half-BPS case) infinite
products that have to be truncated to a large number of factors to get accurate results for
series expansions of the brane indices.

We have used a trick based on a deformation of the integrand in order to deal with
non-degenerate poles only. In the half-BPS case, the integral (2.13) reproduces (2.8) if the
function

7{1_[ doa o (2.17)

27rwa ath O —x 1oy,



has the expression

k
Gr(z) = k! k=172 11 11 :fn, (2.18)
—x
m=1

which is what we want to obtain. We deform the integrand by considering

k
(e) doy, Oa — Op
= 7{ I | | | 2.1
Gy (7) ot 27i(0g + €q) aih 70~ x oy +ew’ (2.19)

where, in this simple case, we just choose
€q = QE, Eab = KE, (2.20)

where €, kK are parameters that for the moment are not fixed. Notice however that it is
important to have different ¢, for different a. The poles are now all non-degenerate. Since
the deformation is a simple shift, the computation of the set of poles is not demanding.
For higher k the number of poles py is

po=4, p3=20, pi=136, ps=1182, pg=12304, ---. (2.21)

This number grows quickly but slow enough to allow to go well beyond what can be reached
with the standard methods.

For example, for k = 2, the pole o, = 0 splits into the following four poles in (o1, 09)
whose residue may be computed by (2.16)

POLE RESIDUE
{E2
1 (_57 _26) T (1—2z+kx)(2—x+KT)
(1—z+rz)
2 (-e,—Ke—3) E= e (2.22)
3 (-2 ) 0
2 (2—2z+kx)
4 (re-%-2x)  Sham

The residue is independent on e showing that the deformed cycle is in the same class,
i.e. Jp(x;€) in (2.19) is actually independent on the deformation parameter e. The single
residues depend still on k, but the sum does not and reads

2z
1+=x

Ga(z) = Z Residues = , (2.23)

which is the correct value to reproduce ﬁg(x) For the next value k = 3 there are 20 poles



(01,09,03) and the associated residues are

POLE RESIDUE
45
1 (78’ —2e, 736) " (1-3z+wk)(2—3z+zkr)(1—-2z+2K) (3—2z+2K) (2—2+2K)(B—T+2K)
92 (—5 —9¢ _5+zgn) zt(1—2z+2k)(1—z+aK)
) ) z (I1+2)(1-3z+zk)(2—z+zk)(1-222+zK+22K)
3 —e. —9¢ _2etuaer _ 24 (2—2x+zK)(2—2+TK)
’ ) z (I142)(2—3z+zk)(1—2z+2zK) 2— 22+ 2K+22K)
TER xER
5 (_5 _ etxer —38) 224 (1-3z+xk)(1—z+K)
’ z (I+z)(1—2z+zk)(3—z+ak)(1-322+zK+22K)
etxer etxeR
6 (e ==, =) 0
7 —g. —&gtmer etaentaler 3 (1—z+xK)?
’ z z?2 (I4+z+22)(1—2z+zK)(1—3z2+zr+22K)
8 _g, _3etaer 3. _ 224 (3—3z+xk)(3—z+xK)
’ z (142)(1-3z+xk) (3—2x+zkK) (3—x2+TK+T2K)
9 —e. — etzentaler _ edaen 3 (1—z+xk)?
’ x2 ’ T (I+z+22)(1-3z+zk)(1—222+zr+22kK)
zER TER
10 (_71+x’_2€’ _71+x) 0
and
POLE RESIDUE
TER TER
11 (-, -2, —3¢) 0
TER xER zER
12 (_ 71+x7_71+x’_71+x) 0
_ 2etzER _ 24 (2—3z+xK)(2—2x+TK)
13 ( z 2, 35) (I4z)(3—2z+zk)(2—z+zk) (2—322+2K+22%K)
2etxe 2etxe
14 (-Zteem g, 2edzen) 0
15 _2etwern 9o 2etxertaek 23 (2—2z+xk)>
z ) z2 (I4+z+22?)(2—z+zK)(2—3z2+zK+22K)
_ 3etmerk . B z*(3—3z+zk)(3—22+2xK)
16 ( z 2, SE) (14=)(2—3z+zk)(3—z+zkK)(3—22%2+zK+22%K)
17 (_ 352905/{ ,— 362338& , _35) 0
18 _ 3etwer _ 3etaerta’er —3c 23(3—3z+zk)?
xz x2 ’ (I4+z+22)(3—z+zK)(3—222+zK+22K)
19 _ 2etuenta’en oo _ 2etucw z3(2—2x4xk)>
z2 ’ ’ x (I4+z+22)(2—3z+zK)(2—22+zK+22K)
20 _ 3etaentaen  _ 3etaer —3e z3(3—3z+zk)?
z? ’ z (1+z+z2?)(3—2z+zK) (3—x’+rK+T2K)

The sum of residues is again independent on x and in agreement with (2.18). We have
checked that in this way the correct Gi(z) in (2.18) are reproduced up to & = 6 that

~10 -



is definitely out of reach even in this simple case if standard algorithms based on the
transformation theorem [43] are used.

3 Brane expansion of the Schur index

The single-letter superconformal index for N = 4 U(N) SYM depends on five fugacities
with one constraint [2]
(1-z)1—y)(1-2)

[y, 2p0) =1~ 1-pa—q = W7 r (3.1)

The Schur index is the specialization p = z,® and its one-letter index is thus

f:liq(m—i-Z—Qq). (32)

The finite NV index has expression [44]

N N do, TIY (1 —0aoy (1 —apoy ) TI0G et (1= 0oy, ™) (1 — 0b0, ' q™)

N Jjoo|=1 55 2miog é\fb(l - xaaafjl) Hfl\{b (11— xaaaglqm)(l —zloyog tqm)’
(3.3)
and obeys by the relation [31]
> 0 N. 0 m
Z o(uz™; q) In (s q)x%N(NJrl)ZN _ H (1 n 2T m>, (3.4)
= Oo(uiq) e oo 1 —uq

where 0o(2;p) = [1720(1 — 2p?)(1 — z~1p/*1). The index can be expanded in powers of ¢

In(eig) = 3 90 (@) g™, (35)

m=0

and the exact coefficient function Jg\rfn) (z) can be determined by expanding (3.3) in powers
of ¢, and doing the integration over |o,| = 1, assuming for instance |z| < 1 to select the
relevant poles. A more efficient algorithm is based on (3.4). The key remark is that its
r.h.s. can be expanded in powers of ¢ in exact form. For instance, at order ¢° and ¢'
we have’

l—u—+=z

mgm (1 * 1-— uqm> &0 - m(—z;:v)oo, (3.6)
00 zx™ B _Z(l_u+z)(1+$2—u2x2) .
mgoo <1 + 1—uqm> o u(l—u)(1+2)(1+22) (=23 2) oo, (3.7)

8As in [31] we consider the index in the Ramond sector to simplify the formulas. This is not a limitation
since the Neveu-Schwarz index is obtained by the shift z — z.,/g.
9Here, standard notation is used for the q-Pochhammer symbol (2;¢)eo = Hzozo(l — 2¢%).
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with similar expressions for higher powers of q. Comparing with the L.h.s. of (3.4) gives
In(z,q) at a certain order in gq. The terms with N =1,2,3 and m =0, ...,5 are explicitly

Ji(z;q) = i +@ ' -Dg+@?-2)@+ @ - 1 -2+ (a7 -2

+ (@ P-4z —aYHP 4+, (3.8)
Ja(z3q) = = x)}l =y +r g+ 2272+ 1) + 22 + 27 +27) P

+B4+3 + 20 + B P+ 2+ + -, (3.9)

1 1 24z — a2+t
33(1';(]) = (1 —:c)(l —372)(1 _xS) + x(l _3;2) q+ ( _;2(1 —IL’;_) ) q2

3—2x2 + 223 + 2t — 26 4 28 3+4+x—2x2—i—x3—|—2x6—|—x7—x10—|—m12 4

z3(1 — 22) e x*(1 — 22) 1

5—dx? + 223 + ot + 28 — 207 + 229 + 210 — M 4 216 |
3.10
+ S0 -2 ¢+ (3.10)

and so on. It is easy to obtain these expansion in ¢, but with the dependence on z in closed
form, for any higher N. Notice that the ¢° and ¢' terms have the simple expressions

(L P SO W . — (3.11)

(1 —am)’ z [INZ1(1—am)

The brane expansion is (1.4) where

Too(z: q) = ﬁ L—g" . (3.12)
’ oy (L=am)(1 —z=mg™)
Gaiotto-Lee suggested the analytic continuation formula for the brane indices
In(z;9) = In(@ 27 1) (3.13)
Hence, we should have the following non-trivial relations for the finite IV indices
IN(z;q) =Jso(x;q) ikaJk(x_l;a:_lq). (3.14)

k=0
If we fix IV and increase the max value of k£ in the sum, we can check that we have an

equality. This is fully explicit for the coefficient of ¢° and ¢'. Indeed, using (3.11) and
1 1—=x

Joolw:0) = (= = Ty 1T O (3.15)
the first two terms in the expansion of (3.14) read
1 1—-2z
Y (—em) allaa-am T
> 1 1—2 1 1—2
—x [u;m)w T e @) it lnfnzlu Sy I T
(3.16)
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One can check that this is satisfied if the following single condition holds

o0

T a-am Z N H (3.17)

m=N-+1

which is easily proved.'® Similarly, we can analyze higher powers of ¢q. To discuss the
convergence of the brane expansion, we introduce the remainder

K
A (259) = In(w;9) — Toolw;0) 3 "Ny (2271 g). (3.18)
k=0

Picking the leading non vanishing power of 2 — 0, one finds'!

A (@)=Y <c§§2 LK+ (K+2+2N)— (K+2)p+_..) P, (3.19)
p=0

that clarifies to what extent (3.14) holds. At fixed order in ¢, the agreement improves (the
exponent of x gets bigger) by adding more terms, i.e. increasing K. On the other hand,
with a fixed number of terms, the leading correction has a leading contribution with a large
negative exponent of z as the order in ¢ is increased.

3.1 Symmetric formulation

As we mentioned in the Introduction, we want to work out a symmetric formulation in the
fugacities x, y and capture in particular the index and its brane expansion when

x,y — 0, L~ fixed. (3.20)
)

This is achieved by scaling
T — ex, Yy — ey, (3.21)

where ¢ is a counting parameter. We will see that this is a non-trivial change since at a
finite order in € an infinite number of ¢" terms in the unsymmetric brane index ﬁk(:z:, q)
will contribute.

Let us begin by examining the finite IV index in the e-expansion. Setting ¢ = zvy,
from (3.4) we read the expansion of J in symmetric homogenous polynomials

Ji(ea,ey) =1+ (z+y)e + (2 —ay +y°)e® + (r +y)(@® —ay +y°) + (@ +yh)e +--, (3.22)
Jo(ex,ey) =14 (z +y)e +2(2® + y*)e? +2(x +y) (2 —xy +3°)e3 +3(z* +y)et + - - -, (3.23)
Iz3(ex,ey) =14 (x +y)e +2(z* +9y%)e? + (x +y)(3z% — 22y + 3y?)e® + (4ot + 22y + 4yt +-

(3. 24)

10We write the r.h.s. as Zk 0T zhN HS L Toos Zk 0 k ghNTh(E=1)/2 HS 112 zb. Then, Euler iden-
tity H;.::o 14+q¢mz) = Zk:o k(k n/2 Hs:l 1_1qs, allows to transform it into the infinite product

[17_,(1 = 2N*'2™) which is same as the Lh.s. in (3.17).

"The exponent is for the first deviation term. It is thus equal to the exponent in eq. (C.3) of [31]

increased by one.
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Also, we have

Joo(er,ey) = 14 (z + y)e + 2(2® + y*)> + (z + y)(32° — 22y + 3y°)e®
+ (52t + 23y + 2227 + ay® + 5yt + - (3.25)

These expressions are clearly equivalent to the previous expressions for Iy (x,q) in (3.8),
(3.9), and (3.10). For instance, in (3.8) we can replace ¢ = xy and get

1
1—=x

+ (@t =22ty + (70 — 2P o —2t) 2%’ + 0(yP), (3.26)

+ @t =Day+ (@2 —2) 2?2y + (3 —z7 1 +1 - 22) a3y

Ii(zyzy) =

and the written terms agree with all terms in (3.22) neglecting powers of y higher then
5. In particular, the term y° in (3.26) resum all 2" terms in (3.22). For higher N similar
resummations occur and in general using the exact depencence on x in Iy (x,zy) resums
terms of the form z"y? with fixed p and any n.

The natural brane expansion for the index Iy (z,y) is expected to be

k,k'=1
where cf. (3.12),
(2y; 7)o
Joo(z,y) = — 2P0 3.28
(@) (25 2) 00 (Y3 Y) oo (3.28)

A

In the next section, we will compute I ;) by multivariate residue computations.

3.2 Multivariate residue computation of the brane expansion

Setting ¢ = xy in (3.2), the single-letter index becomes symmetric in z, y

-2
flz,y) = W (3.29)
and using (2.5) we obtain

= I S ot oy ey (3.30)

11—y 0
fg,/ = W = i (y~t — 2z + xy)z™, (3.31)

m=0
R=yt-z fr=0'-y (3.32)
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We now want to compute the terms in the r.h.s. of (3.27). From (2.4), the general formula
for ﬁ(k’k/) is

kl

X Y, Y
j(kk/)wy k'k"j{HZMU 2moYH (I=0g /Ub)(g)<1_aa/gb)
y ﬁ ﬁ (1—y" oy /op)?
wpmrmeo (1= 27 tyma [ ) (1 — zym o foyf)
T (1—a"*oY fo})?
wpm1meo (L =y tamal o)) (1 — yam o) Joy)
kK X/ Y
1 —zxoy /oy —yoy JoX
% (3.33)
al:[lbl;[ll—y*lag(/ag/l z 1o} Jo X'
The exchange symmetry
Iy (@ y) = I 1y (y, @), (3.34)

allows to consider just the cases kK > k’. The sum k + k' will be called the level of the
brane index.

3.2.1 Level 1
At this level we need just to compute the (1,0) contribution. It does not require any
integration and has the exact expression

o0 (1 o ym+1 )2

~ . 0r)\2
Tan(y) = ,,LIO (1— 2 Tym)(1 —aym ) — (x—l;%fzfy; Y)oo (3.35)

Its small € expansion after the scaling (3.21) is

[E26

—z(z —y)e? + (=23 + 38

J,0)(ez,ey) = —

Y’ y y°
+ (—x4+$2y2—azy3+)64+ <—x5+2>55+ <—x6+x3y3—y6+3)86+---
x T T
(3.36)
The O(e) term is highly non-trivial since it may be expanded in small z/y or y/x with

different results. The singularity at the codimension-1 wall x = y has to cancel in the full
index which has no such wall-crossing problems.
3.2.2 Level 2
At level 2 we need (2,0) and (1,1). The expression for (2,0) is
1 2 2 2 —ymtlg,)2
J(go)xy 5}{1—[ Hlfaa/gb) H H ( 7(101) Y Oa)
a=1 a,b=1m=0

o o=y 00) (0 — oy 0,)

2o,

m—+ 1 )2

15 4 2 dog e o
51 H y(l )wm+1) j{H H(l—aa/ab }‘:[0 (op—y

2mio, ath —x U"LUa)(Ub*‘TUerl )

(3.37)
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The associated functions g1, go are'?

g1 =01 H (o1 — Yy ™a9) (o1 — zy™ T o9), go = oo H (o9 — 27 Y9™01) (00 — zy™ o).
m=0 m=0

(3.38)

The computation is done by setting 0o = 1 and summing over the poles in o; in g1, see
appendix B of [37]. The result is

R 567(:1:—2y)64 7 29 il
J = — 205 — e[ 228 — o 422303 | O+ [ 327 — 2 42290 | 7
%0) (x—y)Qy(Hy) y? y? Y y Y

13 9 15 12
T 2 x 2
- <3x8— y5+3x4y4+i> ¥+ <4x9 - y6+x3y6+i/3> el (3.39)

Then, let us consider (1,1)

ﬁ ( ) 10_0[ (1 - ym+1)2 (1 - xm+1)2
(1,1) r,Y) = —1,m m —1,m m
o (L =27 ty™) (1= ay™ ) (1 — y~lam)(1 — yamt!)
doX do¥ oYV —xz0X oX —yoV¥

. 3.40
2miocX 2mioY oY —y~loX oX —p~lgY (340)

The multivariate residue is computed again setting ¥ = 1 and summing over the poles in
oX. The result is

. ) (1 _ ym+1)2 (1 _ $m+1)2
3(1,1)(%?/):93.@1_[ “1.m m —1..m m
meo (L= tym)(1 = zym+) (1 —y~Lam)(1 — yamH)

zy (z;2)% (v 9)%

= . 3.41
T ¥)oe 50 (25w (279 (340
After the scaling (3.21) we obtain
A 23yPet
Jan(ex,ey) = m 222 (z + y)ed — xy(at + 223y + 229 + y*)e®
+ (=" — 228y — aty® — 2Pyt — 208 — )T - (3.42)
3.2.3 Level 3
At level 3 we need (3,0) and (2,1). The first is
do, 3 > (op—y +1O'a)2
j(3 0) z y 3[ f H 277'20',1 pr 170’@/017 all)_Il WHO Ub — ymo- )(Ub _:L-y'm+lo-a)
ym“)6 2 do, ~ (op —y"Hog)?
E] mHO 1—a— y )3(1 — zy™t1)3 74 al_ll 2mio, 1;‘[b ~9a/0) HL‘[O (op — 2 ty™moy)(op — zy™Ho,)
(3.43)

12%We truncate the infinite products and increase the order of truncation until the result is stable.
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In order to apply the deformation algorithm, we first modify this expression introducing
the infinitesimal parameter 7 with some coefficients'?

R H (1_ m+1)6 ﬁ
Jao (@ yin) = = ™ f
3! o (L=a7lym)3(1 — zym+1)3

a=1

(1= o) (= o3 (- o) 0 5
02+ 2kan o1+ 2k117 o3+ 2k’317 o2+ 3k1n

x(l— o3 )(1_ o2 ) - (0n —y™*'0a)?
o9 + 3kan 03+ 3ksn) == (00 — 27 y™m o + kapn) (op — 2y™rog + kapn)’
(3.44)
where k., = kp,. The numerical values of k,, k., should be chosen in order to resolve the

2mi(og —|— /{:an)

degeneracy of the multiple poles.'* The associated g, functions are then

o
g1 = (o1 + ki) (o1 + 2k1n) (s1 + 3kin) [] [(0'1 — Yy oy + m2) (01 — 2y og 4 m12)
m=0
X (o1 — Yo + ms)(o1 — zy" oy + 7713)] ) (3.45)

with cyclically rotated expressions for go and g3. A rather demanding calculation gives the
first term in the small € expansion after the scaling (3.21)

2% (223 — 322y — 3292 + 5¢°)

P Pat Gty O 349

j(3,0) (ex,ey) = —

In the (2, 1) case we have

xm+1)2(1 o ym+1)4

N (1
3(271)(3:,y) =9 H —1,m m -1, m m
2! S (I—yla )(1—@/95 T =2 lym)2(1 — zym+l)?

2 2
" 7{ H doX do¥ 0¥ o) H —zoX  oX —yo¥
s 2mioy 2mioY b aelicad y‘laff oX —xz1lo¥
( ym—H X)
X . 3.47
I ot e 40

a#bm= O

We notice that we can integrate out o by a rescaling. Following Lee’s prescription in the
rest (where we simply set 0¥ = 1) we define

g1 = (07 ) (07 — 2~ H — 27 'y"o3 ) (of —ay"o3), (3.48)
m=0
[e%S)

g2 = (05" )* (03 —x~ y) [[ (055 —a7'y™oi ) (o5 —ay™Hlof). (3.49)
m=0

13We use 7 instead of € to avoid confusion with the scaling in (3.21).

14 As a simple choice, in the calculation we took for ki, ko, ks, k12, k13, ka3 the reciprocal of the successive
prime integers 29, 31, 37, 41, 43, 47 to avoid accidental arithmetical dependencies. We do not know what
could be the general recipe to remove degeneracy, but at least in our case the choice of the deformation
did not appear to be critical and was always checked against the evaluation of the multiresidue at fixed
numerical x, y, which is feasible.
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Using again the deformation algorithm, applied in a similar way to the previous (3,0) case,
we compute the first term of the small € expansion after the scaling (3.21)

5 22y (z — 2y)
Ten ) = iy

(3.50)

3.3 Cancellation of wall-crossing poles

The first term in the computed brane indices j(k,k’) is a non-trivial rational function of the
fugacities with wall-crossing pole at © = +y. Let us show that these poles cancel in the
sum of k, k' contributions at given level N = k+ &/, although they are present in the single
terms. This has to happen since the index is a polynomial in z, ¥.

Level 1. The non-trivial rational functions at level 1 contribute in (3.27) as

_xN x2 B yN y2 _ _xN+2 _ yN+2 _ _xNJrll _ (y/$)N+2 (3 51)
T —y Y—x T—y 1—y/z '
and this is a polynomial.
Level 2. At level 2, we need
BT G ) (z)V Byt 2 y"(y — 2)
(z —y)%y(z +y) (z —y)? (z — y)?z(r +y)
(N +E — N+ (pN+5 _ 9 N+4y o 90y N+4 _  N+5)

=— (3.52)
zy(z —y)*(z +y)
and this is 1/(zy) times a polynomial, because one checks that the limits x — +y are not
singular. So we get only simple monomials and no wall-crossing denominators.

Level 3. We have to consider the combination

A

N0, y) + 2Ny oy (@, y) + 2Ny o (v, 2) + v I 5.0) (v, 2). (3.53)

Using the previous expressions we can check that for all V this is a finite sum of monomials

+1

in z*!, y*!, hence again all wall-crossing unwanted denominators cancel.

3.4 Checking the validity of the symmetric brane expansion

Let us see how the brane expansion reproduces the exact index, i.e. the validity of the
relation (3.27). Introducing the explicit scaling (3.21), it reads

In(ez,ey) = Toolemsey) |1+ S eOTFINGENYING (e ey) | (3.54)
kK =1

Let us remark that up to level 2 we have exact expression for all terms with the exception of
ﬁ(Q,O) that can be expanded in € with minor effort. At level 3, we have the leading €° result
for J(30)(ex,ey) and J(o 1)(ex, ey). This means that for a generic N, we can appreciate the
role of the computed terms, in particular the level 3 contributions, by computing the exact
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index at order £3V+9 and J (2,0) at order eNt9. The necessary expansions for making checks
at N = 1 and N = 2, extending the partial results quoted in (3.22), (3.23), and (3.39)
are given below. While the expansion of J; and J9 is somewhat trivial, the one for §(2,0)
is not. Reason is that to compute correctly the higher terms in the e-expansion, we need
to increase the number of factors kept in the infinite products in the integrand expression.
Our results are

Ji(ez,ey) = 1+ (z+y)e+(@® —zy+y)e’ + (z+y) (2 —ay+y*)e’ + (" +yh)et

+(x—y)?(x+y) (@ +ay+y?)e® + (2 + 23y + )l + (2 +y) (2® — 2Py +2ty?

—a?y ratyt —ay® +y°)e’ + (2 —y)* (a? +ay+y?) (2t + 2y +aty’ +ay +yt)e®

+(z4y) (@ =2y +y?) (28 — 23> +1%) + (22 +y?) (2% — 289 + 2yt — 22y0 +¢®)e!”

F () (@0 — 2Py +a¥y? — 2P + 20y — 2Py et — ey g 0)e M o (212 — 2ByS 4y 2)e 2
(3.55)

Ja(ew,ey) = 1+ (z+y)e+2(2” +y*)e® +2(x+y)(a® —zy +y°)e’ +3(a* +y)e*

+(z+y)(32* = 323y +42%y? — 32y® + 3y*)® +4(2 + ) (v — 2%y +y*)e°

Az +y) (a0 — 2Pyt oty — 2Py eyt — oy +y0)e” + (52 + 3atyt 4 5y®)ed

+(z+y)(2? —2y+y?) (525 — 42y +5y5)e® +6(2? +y2) (2% — 25y* +aty* —2?y5 +-4%)e!?

+2(z4y) (320 — 3%+ 325y* — 327 y3 4+ 325y * — 22595 + 3215 — 32397 + 32%9® — 3a9°

+3y10) et 7 (2t 4y (2 — 2yt +9°2) e 4 (1) (Tat2 = Tatly + 720y2 — 7203

+8x8y* —827y5 + 82090 — 825y " +82y® — T3y +-Ta2y0 — Tyt + Ty H)e!3

F A2 4y (2012 — 2010y 4 208yt — 2845 4204 — 222910 4 212) M 4 8 (241

(2% —zy+y?) (2 — 23y +2?y? —xy® +y?) (2B +aTy—25yP —atyt — a3y ay  +y%)eP -, (3.56)

and finally

7 4 7 9
A x'(x—2y)e x x
Jio,0)(em,2y) = — =%z 10) + (2:1:5 y?> g5+ <2:c6 y3+2x3y3> eb

11 13 20
+ (3377— 5;4+2xy6> e+ <3x8— J;5+3x4y4+i> e®

12

15 2 17 YT
+ (4939 — Sty y3> e+ (43}10 L 3aPyP da?y S T ) g0
Y x Yy x

19 9 18
+<5$11_Zg+2xy10+ i7 sy (3.57)

Let us now introduce the difference between the exact index and the approximate brane
expansion corresponding to keeping terms up to level £

A%) = —In(ex,ey) + o (exyey) |1+ Z btk )N kayk/Nﬁ(hk/)(ex,ey) . (3.58)
ke k' =1
k4K <t
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At N =1, the level 1 difference is
) =7 Y7
ANl = < — b T —2aty? — a3y 20yt — S ) S IR (3.59)
Yy T

Including the level 2 terms it improves to

2 15 14 2 13 . .
Ag\?)zl = (2x12+x3 f%f—x 72x11y71:10y2+2x9y3+x8y4+5x6y6+x4y8+2x3y9f:rzyw
Yy Yy Y
(3.60)
9,13 14 9,15
—2a:y”+2y12—y—92+y3> el ..., (3.61)
T T T

This is canceled by the level 3 terms leaving
ARL, =0(e?), (3.62)

where 20 = 16 +4 x (N = 1), coming from the expected leading powers of ¢ in J at level 4
plus the N dependence of that contribution in the brane expansion.
Similarly, at N = 2 we find

(1) 8 2 6,2 5,3 4.4 3.5 2,6 8 y’ 8
Ayi,=|—=2 —|—;—21‘y — 2%y’ —3z7y" — 2"y’ - 227y —y —|—? e84 -

(3.63)
At level 2, this is reduced to
9 21.18 .ZC17 21.16
Agv):z _ (_23315 _ ; + ? + ; + 2x14y+x13y2 . 2x12y3 o x10y5 - 5x9y6
. . . . ) 6 17 9 18 -
—2w8y7—2x7y8—5xby9—x5yw—2m3y12+m2y15+2xy14—2y1"—|— Y _’_?;72_ i/3 15 7
(3.64)
and this is canceled by the level 3 terms leading to
3 24
ARL, =0(e*), (3.65)

where 24 = 16 + 4 x (N = 2). The above calculations show that the double brane ex-
pansion (3.27) works indeed as expected and reproduces the finite N indices when both
fugacities are sent to zero independently.

4 Comparing the Gaiotto-Lee and symmetric expansions

As we mentioned in the Introduction, we have two representations of the finite N index
and from (3.14) and (3.27) it should be that

S i(@ig) = Y Y NI (). (4.1)
k=1 k=1
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Using (3.13), the Lh.s. can be written
oo o
Yoo e g = > ANy NI (2, y). (4.2)
k=1 kk'=1
Finally, since ¢ = xy, the relation we need to prove reads
o0 oo
ZwkNjk(ﬁ_l;y) = Z kayk/Nﬁ(k,k')($ay)~ (4.3)
k=1 kk/=1

Here, we remark that the L.h.s. is known as a power series in . Instead the y dependence
of the r.h.s. is non-trivial. It is puzzling that (4.3) could hold. To understand what is going
on, let us inspect the £ = 1 term in the Lh.s. of (4.3). From (3.8), it is

eNaNg (e et ey)

1
=eNgh L_l_l +(ex—Dey+ (222 —ete ) e?y? + (323 —ex+1—e2272) 33
—e 1z
+(etat —e B3 elyt 4 (P2d — 2t el el P
2,3 4
N+1_N 4 Y Y
NN gy L L T L o). . 4.4
( y- L Lo ) (44

As we remarked, at this fixed order in &, we receive contributions from all the ¢"™ terms in
the unsymmetric index J;. Since the structure suggests a simple geometric series, we sum
it up and get

1

eNaNgy(e7 e ey) = —eV TN (
1—4
x

+ O(e)) : (4.5)

Comparing with (3.51), we see that this equals the (1,0) contribution in the symmetric
brane expansion. This suggests that we may have in general

Te(zhy) = ﬁ(k,o) (z,9). (4.6)

Let us test the conjectured relation (4.6) at level 2. From (3.9), we obtain

5 4 3 2
Jo(e o ley) = + % + y—5 + y—S + Lt aye? 4233
e%x Ex T T
5
+ <x4+2x2y2 tay® 4+ 3yt 2L +> et +0() (4.7)
x
The terms that are singular for ¢ — 0 appear to form again a geometric series that we sum
5 4 3 2 2
Y yo oLy y- 1
5=+ =+ 5+t —e=¢ec=— 4.8
g2x" 5$5+w3+z rl-2 (48)
and in this form we can re-expand at small € to get
2 5
1 T
ey; [ —e?xy — 323 — 543 + O(£%). (4.9)
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Hence, the small € expansion is

5 5
Jo(e 1oL ey) = <—x +at 202y +ay® + 3yt 2L 4 > et +0@E%).  (4.10)
Yy T

and this precisely agrees with the small y expansion of the € term in j(270) (z,9)
7 5 5 6 7
z'(z — 2y) T 4 2, 2 3 4, oY ] ] 8
- = - ot + 2227 + ay® + 3yt + 25 +455 + 35 + 00, (411
=y ty) Y YRR g s O (L)

Thus, at level 2, the relation (4.6) holds although its verification is non-trivial, since we

had to resum the singular terms for ¢ — 0. A similar analysis may be attempted at level
3, but as expected, the resummation of the singular terms is less trivial to be guessed.

The above analysis and in particular the non-trivial relation (4.6) shows that one can
restrict the symmetric brane expansion to the form

o0
In(@,y) = Joo(,y) |1+ D @) (z,9)] (4.12)
k=1

provided we expand in an asymmetric way the r.h.s. by first expanding in y and then in z.
A similar mechanisms holds for a simplified index of the 3d SCF'Ts associated to M2 branes
as discussed in the Introduction of [31]. To appreciate what is the fate of the missing terms
(k, k') with & > 0, it is instructive to look at the expression multiplying ¥V, i.e.

A xXr,XT 2
Jon(ey) = (=Y gc>oo<)§§; L)oo (4.13)

-1

~ 1s zero at all orders in the expansion in

When we replace y = ¢/, the factor (z/q;z)
series of ¢ at fixed x. This suggests that all terms (k, k') with ¥ > 0 are invisible if this

order of expansions is applied, while they are fully relevant in the (symmetric) e-expansion.

5 Enhanced degeneracies at the walls

We conclude with some comments on a question posed in [37], i.e. whether we can find
degeneracies in brane indices consistent with excited geometries, as BPS black holes or
bubbling geometries that break more supersymmetry. In that paper, it was claimed that
such degeneracies emerge as a finite remainder left after a cancellation of poles happens
at wall-crossing points where two or more fugacities collapse or satisfy some special re-
lation. Such a process of cancellation among contributions coming from different brane
configurations to produce degeneracies associated to objects such as black holes or bub-
bling geometries could be interpreted as a signal of a process by which the corresponding
stacks of branes bind and form bound states. For example, a representative example of one
such cancellation happens in the giant graviton expansion of the %G-BPS index that in the
coincident limit =y = z = w? and p = ¢ = w3, cf. (3.1), takes the form

In =T |1+ 3 w3 Dy (N 47 || (5.1)
n=1 p=0

where D,, ,(N) is a polynomial of degree 3n — 1 in N [37].
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In the present case of the Schur index, it is interesting to explore this phenomenon in
the e-expansion and compare with the known giant-graviton expansion at the special point
x =y, i.e. for the £-BPS index. This reads [41]

N +k N+k—1 2
(N )+( N )] ZFNHR (5.2)

and is indeed characterized by N-dependent degeneracies. The terms in (5.2) can be

oo

In(z, ) Z(_l)k

JIoo(@,2) =

understood from our expressions as we know explain. At level 1 we have the following
contribution to the ratio in the Lh.s. of (5.2)

eV [a:Nﬁ(LO) (ex,ey) + yNj(O,l) (ex, 5y)} . (5.3)
Expanding in € and taking the non-singular limit y — x gives a single term.
—(N 4 2)eN 1N+t (5.4)
Doing the same calculation at level 2 we get again a single contribution

1
(N +4)(N + 1)g2NHa 2N+, (5.5)

Finally, at level 3, we have computed just the first non vanishing contribution to the various

A

(i) With k + &' = 3 and from those terms we obtain

—é(N+6)(N+2)(N+1)63N+9$3N+9- (5.6)

One can indeed check that these contributions match the k = 1,2,3 terms in (5.2).
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A e-expansion in the i-BPS sector

It is instructive to consider the e-expansion of the index for the %—BPS sector. The single-
letter index depends on two fugacities since it is obtained from (3.1) by sending p, q, z — 0.
It reads

f=z4+y—uzy. (A1)

The full index has generating function [2]

. R 1
& e = e = .
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Taking residues in ( one obtains the brane expansion. This gives

(o] R o 1
IN=TJx |1+ Z(kaj(hO) + ykNj(O,k)) , Joo = H po — (A.3)
k=1 m=1 (1_‘T )(1_y )
with the explicit brane indices
~ ;’2: 1— ym ~ ~
Ik0)(T,Y) = =% il ) Jom(@y) =Iko)(y,z).  (A4)

e (L= 2™ TIs—y (1 — o= hym)’

Taking the scaling limit (3.21) and expanding in € we obtain the series expansions of the
finite IV index, for instance

Ji(ex,ey) =1+ (x +y)e + (2% + )2 + (@3 + 43 + (2 +y)et + - (A.5)
Ja(ex,ey) = 1+ (z +y)e + (227 + 2y + 2u%)e + (z + y) (227 — 2y + 2¢%)e

+ Bzt + By + 22+ P+ 3yHet + - (A.6)
I3(ex,ey) = 1+ (z +y)e + (227 + 2y + 2u%)e + (z + y) (32% — 2y + 3y?)e

+ (4z* + 223y + 322y% + 22 + dyt)et 4 - - (A.7)

and the expansion of the brane indices

2?e  z(z?—zy+yP)e® (2t — 2Py +yt)ed

ﬁ<170)(€x,5y):—x_y— e - oy 4, (A.8)
7.4 5(,.3 2 3\.5 3,8 7 6,2 5 3 3.5 8y _6
A x'e x”(x” —xy” + 5 (" +zx'y+x —x +x + €
j(2,())(530,63/) =- — ( Y 2y ) — ( L Y 3 Y Yy +y°) +en
(z—y)y(z+y) (z—y)y (z—y)y*(r+y)
(A.9)
2159 x12(x6 +:r4y2 _x:sys _|_y6)€10

j __ [ _
@0 (6% 9) = = C S F a1 ) (z —y)y® (a2 + 2y + y2)

9/..12 10,2 284_75 4. 8 12y 11
(x4 y+ﬂc7y2wy +:r;y +y e doen (A.10)
(z—y)y" (2 + 2y +y?)

In this case, the structure of the expansion is more complicated than for the Schur index.
Indeed, all terms of j(k,o) are non-trivial rational functions of the fugacities. Of course, the
wall-crossing poles cancel to reproduce the gauge theory index. Going to the wall x =y

(we omit a discussion of the other special points like x = —y) one finds that the level k
combination

Ly = 230y, y) + ¥ I 0y (2,9), (A.11)
has limit

Lilomy = =2V [(N+2)z 4+ (N +1) 22 + (N = 2)2® + (N = 5) 2" + -],

Lolp—y = —2*N[(N +4) 2* + 2(N +4)2® + (4N +15) 2% + 2(3N +10) 27 + - - -],

L3|yey = —23N[(N +6)2° + 2(N +6) 2! + 5(N +6) 2! + (ON +53) 2! +---]. (A.12)
These finite size corrections reproduce the giant graviton-type expansion of the index that
follows from (A.2). Indeed, integrating around ¢ = 0 we have
S TS
T omi ¢N+1 ot (1 _ <$n)2

In(z, ) (A.13)
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Deforming the contour to encircle the poles at ¢ = z =%

the opposite of the residue of (A.13) at ( =2™"

we can identify L; at x = y with

1
_ _ 2k
Li|y—y = — Resy = —x Cg;nk i CN“ H )2 (A.14)
n;ék
In particular the leading term at small x is
Li|z= :zk(Nfl)((NJrl)xka)ﬁéfgxk(l\fﬂ)(xkfl)ﬁ 1 i an ok
=Y oot (1_3371—/6)2 oot (1_$n—k)2 v l_xn—k
n#k n#k n#k
_ ﬁ 1 xk(N—l)((N+1)xk_N>_2$k(N—2)(xk_1)i zn—k
oy (17 T
n#k n#k
= 1 2
H | et DN 2k 1+0(2)) = —aFVH (N — 2%+ O(a), (A.15)

in agreement with the first term in (A.12). Besides, the above calculation shows that higher
order powers of x take the form

Lk‘az =y — kN+k Z ag pN+bk,p) ) (A'16)
p=0

for some numerical coefficients ay,p, by p, again in agreement with (A.12). The fact that
this case the enhancement of degeneracy is just linear in IV is a consequence of the fact
that the singularity at = y in the brane indices is only of the simple form 1/(x — y) with
no powers. This is due to the m = k factor in the z, y dependent infinite product in (A.4).
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