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1 Introduction and summary

The superconformal index introduced in [1–3] may be regarded as the Witten index for
superconformal theories in radial quantization. It is invariant under reasonable changes
of model parameters and is therefore relevant to test weak-strong dualities. Conversely,
in the context of AdS/CFT, computing explicitly the index on both the gauge and string
sides is an important test of the correspondence. This is non-trivial when one analyzes the
detailed dependence of the index on the state charges.

In the illustrative case of N = 4 U(N) SYM on the world-volume of N parallel D3
branes in type IIB superstring, we may first consider the index contributions from states
with charges of order N . In this approximation, the index matches the counting of Kaluza-
Klein (KK) BPS gravitons from supergravity on AdS5 × S5. For higher values of the
charges, the index starts to depend on N , as it will be explained below. In this paper
when we say large N expansion of the index we refer to its large N expansion at charges
of order N or smaller.1

1This peculiar dependence on N is important to reproduce black holes physics. Indeed, it is by now
known that at large enough charges the asymptotic growth of the index is much faster than that of the gas
of KK modes [4–8].
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Finite N corrections to the index may be organized in additional series in the index
expansion parameter q with overall weight qnN , where n = 1, 2, . . . is the effect from n giant
gravitons [9–13]. This structure is generic. For instance, in the S-fold background of IIB
superstring [14], beside giant gravitons, one also has D3 branes wrapped on the internal
space S5/Zk, dual to Pfaffian-like operator, and these also provide additional finite N

corrections to the index [15, 16].2

In more details, in N = 4 U(N) SYM, finite N corrections may be computed by
considering branes that are multiply wrapped around topologically trivial 3-cycles in the
internal S5 [20]. Writing it as |z1|2 + |z2|2 + |z3|2 = 1, there are three 3-cycles defined by
zI = 0. For wrapping numbers (n1, n2, n3) the gauge theory on the wrapped D3 branes
one has a U(n1) × U(n2) × U(n3) gauge theory with bi-fundamental multiplets in a ring
quiver diagram and the finite N index is proposed to be

IU(N) = IKK

∞∑
n1,n2,n3=0

Î(n1,n2,n3), (1.1)

where IKK is the large N Kaluza-Klein contribution. The N dependence of the brane index
Î(n1,n2,n3) is just from a classical prefactor coming from the classical charges and energy of
the wrapped brane system of the schematic form q(n1+n2+n3)N . The actual calculation of
the remaining part of Î(n1,n2,n3) requires to integrate over the gauge holonomy the plethystic
exponential of an expression involving the single-letter index of the brane world-volume
superconformal theory.

This step turns out to be subtle and rather non-trivial. First, the brane single-letter
index includes tachyonic modes related to the topological triviality of the wrapping cycles.
Their plethystic exponentiation requires an analytic continuation. Second, the integration
cycle of the gauge holonomy phases is not the naive one, where each belongs to the unit
circle. Instead, a prescription has to be given to determine which poles are kept and which
are discarded. Although it is possible to match the gauge theory index at finite N by
a special choice of contour, it is unclear how to understand these rules in general. In
the analysis of [20], wrapping up to n1 + n2 + n3 = 3 was successfully considered, but
extending the results to higher windings remained a missing issue due to the high algebraic
complexity of the calculation. Similar pole prescriptions appeared in other theories [21–26]
and a discussion of what could be the correct pole prescription was presented in [27].3

In [31], the problem was reconsidered trying to elucidate the precise analytic contin-
uation relating the original gauge theory index and the brane index. The paradigmatic
example is the finite N half-BPS index of N = 4 U(N) SYM that turned out to admit a
simple expansion similar to (1.1)

IN (q) = I∞(q)
[
1 +

∞∑
k=1

qkN Îk(q)
]

, (1.2)

2The problem of counting states associated with these configurations was addressed in [17–19].
3In the recent paper [28], explicit string results for the worldsheet instantons in the ABJM theory [29]

have been presented. In principle, they could be compared with the finite size corrections to the M2 brane
index [23] along the lines of [30].
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where the brane indices Îk are given by the remarkably simple analytic continuation rule4

Îk(q) = Ik(q−1). (1.3)

The holographic interpretation of (1.3) is straightforward [31]. Let X be an adjoint scalar
and q be the fugacity for a global symmetry U(1)q under which X has unit charge. Giant
gravitons are D3 branes wrapped on the maximal S3 fixed by U(1)q and have charge N .
The corresponding radial fluctuations mode in the world-volume theory of the wrapped
branes has U(1)q charge −1. For a stack of k giant gravitons, the fluctuation mode is
a k × k matrix of scalars and the world-volume theory has U(k) gauge invariance. This
suggests indeed that the half-BPS excitations of wrapped branes are counted by the U(k)
index Ik(q−1), i.e. (1.3).

Let us remark that a very non-trivial feature of (1.3) is the fact that the inversion
q → q−1 implies a resummation of the contributions to the index Ik after which it is
possible to re-expand in powers of q for counting purposes.

This strategy was exploited systematically in [31] by considering other BPS sectors
and models. Generally speaking, stacks of k giant gravitons are dual to operators (det X)k

and fluctuations of the stack of wrapped D3 branes with U(k) gauge theory on their world-
volume are matched to finite modifications of determinant operators following [35, 36].

Although the determinant modification strategy leads to a well-defined single-letter
index on the wrapped brane world-volume, the evaluation of the index still requires a
crucial ingredient, i.e. again a prescription for the integration cycle of the gauge holonomy
integral. This problem was addressed in full generality in [37] where a precise definition of
the gauge integral as a multivariate residue was proposed and successfully tested in several
examples.5

In this paper, we explore the proposal of [37] in the case of the Schur index [40]. This
specialization of the full index has also been discussed in [31] and has the advantage of
being computable at finite N with minor effort, thanks to the methods and exact results
of [41]. On the other hand, it is worth to revisit its brane expansion for various reasons.

We recall that the Schur index depends on two fugacities x, y with a Z2 symmetry
exchanging x ↔ y. In [31], the index has been studied as a series in the parameter q = xy,
followed by small x expansion. The corresponding giant graviton-type representation was
found to take the form

IN (x; q) = I∞(x; q)
∞∑

k=0
xkN Îk(x; q), (1.4)

4We remark that expansions like (1.2) for the superconformal index suffer from a certain ambiguity
and is not unique. Indeed, in [32] it was given a general representation of that form for a class of matrix
integrals over U(N) that includes the superconformal index integral representation. The Î functions in this
construction are different from the ones arising from wrapped D3 branes as pointed out in [33]. A critical
discussion in the case of the half-BPS index appeared recently in [34].

5As remarked in [31], relations like (1.2) and its multi-fugacities generalizations are not simply combi-
natorial. Even if the superconformal gauge theory has not a weakly-curved holographic dual, one expects
that in any U(N) gauge theory is dual to a string theory where finite charge operators are dual to string
excitations and operators of size N can be associated to D-branes [38, 39].
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with the brane indices given by the specific analytic continuation

Îk(x; q) = Ik(x−1; x−1q), (1.5)

analogous to (1.3). On the other hand, as also suggested in [31], it should be possible to
treat x, y symmetrically and obtain a different kind of expansion6

IN (x, y) = I∞(x, y)
∑
k,k′

xkN yk′N Î(k,k′)(x, y). (1.6)

This second representation is somehow more natural from the point of view of the wrapped
D3 branes interpretation.7

One additional reason to study the brane expansion of the symmetric Schur index is
that looking at the small x, y limit with fixed ratio x/y, one finds that the individual
brane indices Î(k,k′) have rational terms with denominators having factors like powers of
x±y. Such terms cannot be expanded unambiguously into a power series in x and y. They
are associated with the wall-crossing phenomena discussed in [37] occurring when different
fugacities or their powers collapse. These singularities should cancel after summing over
k, k′ since they are absent in the left hand side of (1.6) i.e. in the index of the original
superconformal gauge theory.

At the walls, pole cancellation occurs and entails a peculiar enhancement of the brane
index coefficients, i.e. state degeneracy, that get an N dependence. In [37] it was sug-
gested that in more physical cases, like the 1

16 -BPS index, this mechanism could be impor-
tant to understand how bulk microstates build emerging non-trivial geometries, e.g. BPS
black-holes.

Results. To clarify the above issues, we computed various function Î(k,k′) in (1.6) by the
algorithm of [37]. We did this by scaling

(x, y) → ε (x, y), (1.7)

where ε is a formal expansion parameter. This allows to analyze the regime of small x,
y with any fixed ratio x/y. The index IN and the brane quantities Î(k,k′) are shown to
admit a regular ε-expansion. Remarkably, the leading contribution is always a non-trivial
rational function of x, y. For example

Î(1,0)(εx, εy) = − x2

x − y
ε + O(ε2), Î(2,0)(εx, εy) = − x7(x − 2y)

(x − y)2y(x + y)ε4 + O(ε5), (1.8)

and so on. The presence of such contributions signals an ambiguity related to the order of
the double expansion in x, y. In the language of [37] this is a wall-crossing phenomenon in

6We will denote by F (x; q) quantities in terms of x and q = xy, while F (x, y) will be the same quantity
in terms of x, y. So F (x; xy) = F (x, y), but reason for this notation is that F (x; q) will always be assumed
to have been computed as a series expansion in powers of q, followed by expansion in x, while F (x, y) will
be later considered without a specific order of expansion.

7An expansion of the type (1.6) was proposed in [24] but their analysis needed a specific ad hoc pole
prescription rule whose origin remained unclear.
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the sense that two different expansions should be used depending on |x/y| being smaller or
larger than 1. This splits the fugacity space into two regions separated by the codimension-1
wall x = y.

In the separate terms Î(k,k′), the limit x → y gives rise to a true singularity. Nev-
ertheless, it has to cancel in the full finite N index because it has a regular polynomial
dependence on x, y order by order in ε,

IN (εx, εy) = 1 +
∞∑

n=1
P

(n)
N (x, y) εn, (1.9)

where P
(n)
N (x, y) are symmetric polynomials of degree n. For the quantities we have com-

puted, we checked that this cancellation indeed occurs by considering the subset of terms
with fixed level k + k′.

Our explicit multivariate residue calculation also clarifies the relation between the two
apparently incompatible expansions (1.4) and (1.6). We will argue that

Îk(x; q) ≡ Ik(x−1; y) = Î(k,0)(x, y). (1.10)

In this relation the l.h.s. is obtained by an analytic continuation of the gauge theory index
according to (1.5), while the r.h.s. is the result from the multivariate residue computation.
Also, it is remarkable that the terms in (1.6) that are missing in (1.4), i.e. those with k′ > 0,
do not contribute if (1.6) is evaluated by expanding first in small y and then in x, i.e. in
the asymmetric limit where (1.4) is known to hold. This is the only regime where (1.4)
and (1.6) are equivalent, while in the more general case of fixed ratio x/y, the correct
expansion is necessarily the double sum in (1.6).

We also examined the structure of the index expansion at the wall x = y and could
confirm the peculiar enhancement of its coefficients that are polynomials in N . In more
details, the index takes the form

IN (x, y)
∣∣∣∣
x=y

=I∞(x)
[
1 +

∞∑
k=1

Qk(N)xkN+k2
]

, (1.11)

where I∞ has a regular series in x independent on N and Qk(N) are computable polyno-
mials in N of degree k. Relation (1.11) follows from the known expression of the index
at the wall [41]. In the brane expansion, it is a consequence of the wall-crossing poles
cancellation.

The plan of the paper is the following. In section 2 we summarize the Gaiotto-Lee
construction of the brane single-letter index from determinant operator modifications as
the prescription to define the brane (full multi-particle) indices as multivariate residue.
In section 3 we discuss the Schur index in the ε-expansion. We compute various brane
indices as multivariate residue by a novel deformation algorithm. Cancellation of wall-
crossing poles is checked up to level k + k′ = 3 and we verify the validity of the double
expansion (1.6). In section 4 we compare the two expansions (1.4) and (1.6) showing how
resummation of the q = xy is possible to achieve the remarkable equality (1.10). Finally,
in section 5 we discuss the degeneracy enhancement summarized in (1.11) and happening
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at the wall x = y. In appendix A we briefly discuss the case of the solvable 1
4 -BPS Schur

index where similar mechanisms are illustrated.

2 Gaiotto-Lee determinant modification construction

Let us briefly summarize the Gaiotto-Lee determinant modification construction to build
the single letter brane index and the prescription given in [37] to compute the brane index
by integrating out gauge fugacities. We consider a U(N) supersymmetric gauge theory and
represent the finite N index IN (x) depending on a set of counting variables x = (x1, . . . , xs)
in the form of a giant graviton-type expansion

IN (x) = I∞(x)
∞∑

k1,k2,...,ks=0
xk1N

1 · · ·xksN
s Î(k1,...,ks)(x). (2.1)

Here, I∞(x) is the large N index equal to the (dual) closed string index given by the
fluctuations of Kaluza-Klein supergravity modes. The sum in (2.1) is over the wrapping
number of branes wrapped on different supersymmetric cycles. Each term in (2.1) is
associated with a stack of ki branes of type i and the brane index Î(k1,...,ks) counts states in
the worldvolume

∏
i U(ki) quiver gauge theory. In the dictionary of [37], these states are

referred to as open string excitations on the (k1, . . . , ks) brane stack.
Adjoint fields in the U(N) gauge theory are counted by the single-letter index f(x)

which is a rational function of the fugacities x associated with the global symmetries of
the gauge theory. The total (multi-letter) index of the gauge theory is written in the usual
way as an integral over U(N) gauge fugacities — with standard integration cycle —

IN (x) = 1
N !

∮
|za|=1

N∏
a=1

dza

2πiza

N∏
a ̸=b

(
1 − za

zb

)
Pexp

f(x)
N∑

a,b=1

za

zb

 , (2.2)

where Pexp denotes the plethystic exponential. At large N , one has simply

I∞(x) =
∞∏

n=1

1
1 − f(xn) , xn = (xn

1 , . . . , xn
s ). (2.3)

The prescription in [31] counts modifications of the determinant product
∏s

i=1(det Xi)ki ,
where Xi are the adjoint fields, and modification means that we can replace in det Xi the
letter Xi somewhere by other fields. As proven in [31, 37], this provides the representa-
tion (2.1) with the following expression for the brane index

Î(k1,...,ks)(x) = 1
k1! · · · ks|!

∮ k1∏
a1=1

dσX1
a1

2πiσX1
a1

· · ·
ks∏

as=1

dσXs
as

2πiσXs
as

×
∏

a1 ̸=b1

(
1 −

σX1
a1

σX1
b1

)
· · ·

∏
as ̸=bs

(
1 −

σXs
as

σXs
bs

)
Pexp

 s∑
i,j=1

f̂ i
j

∑
ai,bj

σXi
ai

σ
Xj

bj

 , (2.4)

where the modified single-letter index is

f̂ i
j(x) = δi

j +
(xi − 1)(1 − x−1

j )
1 − f(x) , (2.5)

– 6 –



J
H
E
P
0
8
(
2
0
2
3
)
0
7
3

and the integration cycle will be discussed in section 2.1. As an example, in the half-BPS sec-
tor we have a single letter X and the determinant operator det X = 1

N ! ε
i1···iN εj1···jN Xj1

i1
· · ·XjN

iN

has weight xN . The only admissible modification is X → 1 that reduce by 1 the exponent
of x. This is consistent with (2.5) that gives using f = x

f̂(x) = 1 + (x − 1)(1 − x−1)
1 − x

= x−1. (2.6)

From the general formula (2.4), modifications of (det X)k in the half-BPS sector are de-
scribed by the brane index

Îk(x) = 1
k!

∮ k∏
a=1

dσa

2πiσa

∏
a ̸=b

(
1 − σa

σb

)
Pexp

1
x

∑
a,b

σa

σb

 , (2.7)

The expected result is the explicit formula, cf. (1.3),

Îk(x) = Ik(x−1) = (−1)k xk(k+1)/2∏k
m=1(1 − xm)

, (2.8)

where we used IN (x) = 1/
∏N

n=1(1 − xn).

2.1 Analytic continuation

As we mentioned, the expression (2.4) still requires to specify how to integrate over the
parameters σXa

a . As in the example of the half-BPS sector, the world-volume theory con-
tains field with opposite charges to the ones of the original theory. In the half-BPS sector,
one can compute the index Îk for modifications of (det X)k as a power series in x−1 and
then analytically continue its resummation to a power series in x. In general, the relation
between f̂ in (2.5) and f is not so simple and one needs an independent way to evalu-
ate (2.4). The proposal in [37] is to compute it as a multivariate residue with a rather
general prescription of the canonical integration cycle [42].

We recall that multivariate residues occur in our context for an integrand of the form

h(σ) dσ1 ∧ · · · dσK

g1(σ) · · · gK(σ) , K =
∑

i

ki, (2.9)

with the point σ = 0 being an isolated common zero of the denominator factors ga(σ).
The canonical integration cycle is the torus |ga(σ)| = ε for small enough ε, and orientation
d(arg g1) ∧ · · · ∧ d(arg gK) ≥ 0. Unlike the 1-dimensional case, it depends on the detailed
factors ga(σ) in the denominator of (2.9) and not just on the full denominator. Notice also
that the integration cycle is not the trivial one |σa| = ε.

To define the factors ga(σ), we recall that the integrand of Î(k1,...,ks) generally involves
ratios of infinite products. Numerators and denominators come respectively from negative
and positive terms that appear in an expansion of the brane single-letter index f̂ i

j(x). If
for some i, j we have the expansion in monomials f̂ i

j(x) = +
∑

α pα(x)−
∑

β nβ(x), we will
find in the denominator of the integrand products of factors

σXi
ai

− pα(x)σXj

bj
. (2.10)

– 7 –
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Interpretation of this factor is a single open string connecting (det Xj)bj
with (det Xi)ai .

Following [37], we will partition the denominator as

g = {(gX1
1 , . . . , gX1

k1
), (gX2

1 , . . . , gX2
k2

), · · · (gXs
1 , . . . , gXs

ks
)}. (2.11)

In this partition we put in gX1
1 all denominators that represent open strings ending on

(det X1)1. Then we put in gX1
2 all remaining denominators that represent open strings

ending on (det X1)2 and so on. If in this ordering gXi
ai

comes before g
Xj

bj
then we place into

gXi
ai

the factor
σXi

ai
− pα(x)σXj

bj
→ σ

Xj

bj
− pα(x)−1σXi

ai
. (2.12)

2.2 A deformation algorithm for the multivariate residue

To illustrate the computational difficulties in the evaluation of the multivariate residue
associated with the cycle (2.11), let us consider again the half-BPS case. From (2.7),
evaluating the plethystic, we have

Îk(x) = 1
k!

( 1
1 − x−1

)k ∮ k∏
a=1

dσa

2πiσa

∏
a ̸=b

σa − σb

σa − x−1σb
, (2.13)

and the proposed partitioning of the denominator is

g = {g1, . . . , gk}, ga = σa

∏
b ̸=a

(σa − x−1σb). (2.14)

To compute the multivariate residue it is important to determine whether the pole is non-
degenerate, i.e. has non-vanishing Jacobian

J = det
a,b

(
∂ga

∂σb

) ∣∣∣∣
σ=0

. (2.15)

If J ̸= 0 at the pole σ = σ∗, then we have simply

Res
σ=σ∗;g

ω = h(σ∗)
J(σ∗) . (2.16)

If the pole is degenerate (J = 0) there are algebraic geometry algorithms to compute the
multivariate residue, based on Gröbner basis methods. These become rapidly useless in
our cases due to (i) the presence of the fugacities as free parameters, and (ii) the fact that
the plethystic exponential produces (generically although not in half-BPS case) infinite
products that have to be truncated to a large number of factors to get accurate results for
series expansions of the brane indices.

We have used a trick based on a deformation of the integrand in order to deal with
non-degenerate poles only. In the half-BPS case, the integral (2.13) reproduces (2.8) if the
function

Gk(x) =
∮ k∏

a=1

dσa

2πiσa

k∏
a ̸=b

σa − σb

σa − x−1σb
, (2.17)
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has the expression

Gk(x) = k! xk(k−1)/2
k∏

m=1

1 − x

1 − xm
, (2.18)

which is what we want to obtain. We deform the integrand by considering

G
(ε)
k (x) =

∮ k∏
a=1

dσa

2πi(σa + εa)
∏
a ̸=b

σa − σb

σa − x−1σb + εab
, (2.19)

where, in this simple case, we just choose

εa = a ε, εab = κε, (2.20)

where ε, κ are parameters that for the moment are not fixed. Notice however that it is
important to have different εa for different a. The poles are now all non-degenerate. Since
the deformation is a simple shift, the computation of the set of poles is not demanding.
For higher k the number of poles pk is

p2 = 4, p3 = 20, p4 = 136, p5 = 1182, p6 = 12304, · · · . (2.21)

This number grows quickly but slow enough to allow to go well beyond what can be reached
with the standard methods.

For example, for k = 2, the pole σa = 0 splits into the following four poles in (σ1, σ2)
whose residue may be computed by (2.16)

pole residue

1 (−ε,−2ε) − x2

(1−2x+κx)(2−x+κx)

2
(
−ε,−κε − ε

x

) x(1−x+κx)
(1+x)(1−2x+κx)

3
(
− κxε

−1+x ,− κxε
−1+x

)
0

4
(
−κε − 2ε

x ,−2ε
)

x(2−2x+κx)
(1+x)(2−x+κx)

(2.22)

The residue is independent on ε showing that the deformed cycle is in the same class,
i.e. Îk(x; ε) in (2.19) is actually independent on the deformation parameter ε. The single
residues depend still on κ, but the sum does not and reads

G2(x) =
∑

Residues = 2x

1 + x
, (2.23)

which is the correct value to reproduce Î2(x). For the next value k = 3 there are 20 poles
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(σ1, σ2, σ3) and the associated residues are

pole residue

1 (−ε,−2ε,−3ε) − 4x6

(1−3x+xκ)(2−3x+xκ)(1−2x+xκ)(3−2x+xκ)(2−x+xκ)(3−x+xκ)

2
(
−ε,−2ε,− ε+xεκ

x

) x4(1−2x+xκ)(1−x+xκ)
(1+x)(1−3x+xκ)(2−x+xκ)(1−2x2+xκ+x2κ)

3
(
−ε,−2ε,−2ε+xεκ

x

)
− x4(2−2x+xκ)(2−x+xκ)

(1+x)(2−3x+xκ)(1−2x+xκ)(2−x2+xκ+x2κ)

4
(
−ε,− xεκ

−1+x ,− xεκ
−1+x

)
0

5
(
−ε,− ε+xεκ

x ,−3ε
) 2x4(1−3x+xκ)(1−x+xκ)

(1+x)(1−2x+xκ)(3−x+xκ)(1−3x2+xκ+x2κ)

6
(
−ε,− ε+xεκ

x ,− ε+xεκ
x

)
0

7
(
−ε,− ε+xεκ

x ,− ε+xεκ+x2εκ
x2

)
x3(1−x+xκ)2

(1+x+x2)(1−2x+xκ)(1−3x2+xκ+x2κ)

8
(
−ε,−3ε+xεκ

x ,−3ε
)

− 2x4(3−3x+xκ)(3−x+xκ)
(1+x)(1−3x+xκ)(3−2x+xκ)(3−x2+xκ+x2κ)

9
(
−ε,− ε+xεκ+x2εκ

x2 ,− ε+xεκ
x

)
x3(1−x+xκ)2

(1+x+x2)(1−3x+xκ)(1−2x2+xκ+x2κ)

10
(
− xεκ

−1+x ,−2ε,− xεκ
−1+x

)
0

and

pole residue

11
(
− xεκ

−1+x ,− xεκ
−1+x ,−3ε

)
0

12
(
− xεκ

−1+x ,− xεκ
−1+x ,− xεκ

−1+x

)
0

13
(
−2ε+xεκ

x ,−2ε,−3ε
)

x4(2−3x+xκ)(2−2x+xκ)
(1+x)(3−2x+xκ)(2−x+xκ)(2−3x2+xκ+x2κ)

14
(
−2ε+xεκ

x ,−2ε,−2ε+xεκ
x

)
0

15
(
−2ε+xεκ

x ,−2ε,−2ε+xεκ+x2εκ
x2

)
x3(2−2x+xκ)2

(1+x+x2)(2−x+xκ)(2−3x2+xκ+x2κ)

16
(
−3ε+xεκ

x ,−2ε,−3ε
)

− x4(3−3x+xκ)(3−2x+xκ)
(1+x)(2−3x+xκ)(3−x+xκ)(3−2x2+xκ+x2κ)

17
(
−3ε+xεκ

x ,−3ε+xεκ
x ,−3ε

)
0

18
(
−3ε+xεκ

x ,−3ε+xεκ+x2εκ
x2 ,−3ε

)
x3(3−3x+xκ)2

(1+x+x2)(3−x+xκ)(3−2x2+xκ+x2κ)

19
(
−2ε+xεκ+x2εκ

x2 ,−2ε,−2ε+xεκ
x

)
x3(2−2x+xκ)2

(1+x+x2)(2−3x+xκ)(2−x2+xκ+x2κ)

20
(
−3ε+xεκ+x2εκ

x2 ,−3ε+xεκ
x ,−3ε

)
x3(3−3x+xκ)2

(1+x+x2)(3−2x+xκ)(3−x2+xκ+x2κ)

The sum of residues is again independent on κ and in agreement with (2.18). We have
checked that in this way the correct Gk(x) in (2.18) are reproduced up to k = 6 that
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is definitely out of reach even in this simple case if standard algorithms based on the
transformation theorem [43] are used.

3 Brane expansion of the Schur index

The single-letter superconformal index for N = 4 U(N) SYM depends on five fugacities
with one constraint [2]

f(x, y, z, p, q) = 1 − (1 − x)(1 − y)(1 − z)
(1 − p)(1 − q) , xyz = pq. (3.1)

The Schur index is the specialization p = z,8 and its one-letter index is thus

f = 1
1 − q

(
x + q

x
− 2q

)
. (3.2)

The finite N index has expression [44]

IN (x; q) = 1
N !

∮
|σa|=1

N∏
a=1

dσa

2πiσa

∏N
a<b(1−σaσ−1

b )(1−σbσ
−1
a )∏N

a,b(1−xσaσ−1
b )

∏N
a,b

∏∞
m=1(1−σaσ−1

b qm)(1−σbσ
−1
a qm)∏N

a,b

∏∞
m=1(1−xσaσ−1

b qm)(1−x−1σbσ
−1
a qm)

,

(3.3)
and obeys by the relation [31]

∞∑
N=0

θ0(uxN ; q)
θ0(u; q) IN (x; q)x

1
2 N(N+1)zN =

∞∏
m=−∞

(
1 + zxm

1 − uqm

)
, (3.4)

where θ0(z; p) =
∏∞

j=0(1 − zpj)(1 − z−1pj+1). The index can be expanded in powers of q

IN (x; q) =
∞∑

m=0
I

(m)
N (x) qm, (3.5)

and the exact coefficient function I
(m)
N (x) can be determined by expanding (3.3) in powers

of q, and doing the integration over |σa| = 1, assuming for instance |x| < 1 to select the
relevant poles. A more efficient algorithm is based on (3.4). The key remark is that its
r.h.s. can be expanded in powers of q in exact form. For instance, at order q0 and q1

we have9

∞∏
m=−∞

(
1 + zxm

1 − uqm

)∣∣∣∣
q0

= 1 − u + z

(1 − u)(1 + z)(−z; x)∞, (3.6)

∞∏
m=−∞

(
1 + zxm

1 − uqm

)∣∣∣∣
q1

= −z(1 − u + z)(1 + xz − u2x2)
ux(1 − u)(1 + z)(1 + xz) (−z; x)∞, (3.7)

8As in [31] we consider the index in the Ramond sector to simplify the formulas. This is not a limitation
since the Neveu-Schwarz index is obtained by the shift x → x

√
q.

9Here, standard notation is used for the q-Pochhammer symbol (z; q)∞ =
∏∞

k=0(1 − zqk).
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with similar expressions for higher powers of q. Comparing with the l.h.s. of (3.4) gives
IN (x, q) at a certain order in q. The terms with N = 1, 2, 3 and m = 0, . . . , 5 are explicitly

I1(x; q) = 1
1 − x

+ (x−1 − 1) q + (x−2 − x) q2 + (x−3 − x−1 + 1 − x2) q3 + (x−4 − x3) q4

+ (x−5 − x−2 + x − x4) q5 + · · · , (3.8)

I2(x; q) = 1
(1 − x)(1 − x2) + x−1q + (2x−2 + x)q2 + (2x−3 + x−1 + x3)q3

+ (3 + 3x−4 + x5)q4 + (3x−5 + 2x + x7)q5 + · · · , (3.9)

I3(x; q) = 1
(1 − x)(1 − x2)(1 − x3) + 1

x(1 − x2) q + (2 + x − x2 + x4)
x2(1 − x2) q2

+ 3 − 2x2 + 2x3 + x4 − x6 + x8

x3(1 − x2) q3 + 4 + x − 2x2 + x3 + 2x6 + x7 − x10 + x12

x4(1 − x2) q4

+ 5 − 4x2 + 2x3 + x4 + x6 − 2x7 + 2x9 + x10 − x14 + x16

x5(1 − x2) q5 + · · · , (3.10)

and so on. It is easy to obtain these expansion in q, but with the dependence on x in closed
form, for any higher N . Notice that the q0 and q1 terms have the simple expressions

I
(0)
N (x) = 1∏N

m=1(1 − xm)
, I

(1)
N (x) = − 1 − x

x
∏N−1

m=1(1 − xm)
. (3.11)

The brane expansion is (1.4) where

I∞(x; q) =
∞∏

m=1

1 − qm

(1 − xm)(1 − x−mqm) . (3.12)

Gaiotto-Lee suggested the analytic continuation formula for the brane indices

ÎN (x; q) = IN (x−1; x−1q). (3.13)

Hence, we should have the following non-trivial relations for the finite N indices

IN (x; q) =I∞(x; q)
∞∑

k=0
xkNIk(x−1; x−1q). (3.14)

If we fix N and increase the max value of k in the sum, we can check that we have an
equality. This is fully explicit for the coefficient of q0 and q1. Indeed, using (3.11) and

I∞(x; q) = 1
(x; x)∞

− 1 − x

x (x; x)∞
q + O(q2), (3.15)

the first two terms in the expansion of (3.14) read
1∏N

m=1(1 − xm)
− 1 − x

x
∏N−1

m=1(1 − xm)
q + · · ·

=
∞∑

k=0
xkN

[ 1
(x; x)∞

− 1 − x

x (x; x)∞
q + · · ·

] [ 1∏k
m=1(1 − x−m)

− 1 − x

x
∏k−1

m=1(1 − x−m)
q+
]
.

(3.16)
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One can check that this is satisfied if the following single condition holds

∞∏
m=N+1

(1 − xm) =
∞∑

k=0
xkN

k∏
s=1

1
1 − x−s

, (3.17)

which is easily proved.10 Similarly, we can analyze higher powers of q. To discuss the
convergence of the brane expansion, we introduce the remainder

∆(K)
N (x; q) = IN (x; q) − I∞(x; q)

K∑
k=0

xkNIk(x−1; x−1q). (3.18)

Picking the leading non vanishing power of x → 0, one finds11

∆(K)
N (x; q) =

∞∑
p=0

(
c

(K)
N,p x

1
2 (K+1)(K+2+2N)−(K+2) p + · · ·

)
qp, (3.19)

that clarifies to what extent (3.14) holds. At fixed order in q, the agreement improves (the
exponent of x gets bigger) by adding more terms, i.e. increasing K. On the other hand,
with a fixed number of terms, the leading correction has a leading contribution with a large
negative exponent of x as the order in q is increased.

3.1 Symmetric formulation

As we mentioned in the Introduction, we want to work out a symmetric formulation in the
fugacities x, y and capture in particular the index and its brane expansion when

x, y → 0,
x

y
= fixed. (3.20)

This is achieved by scaling
x → εx, y → εy, (3.21)

where ε is a counting parameter. We will see that this is a non-trivial change since at a
finite order in ε an infinite number of qn terms in the unsymmetric brane index Îk(x; q)
will contribute.

Let us begin by examining the finite N index in the ε-expansion. Setting q = xy,
from (3.4) we read the expansion of IN in symmetric homogenous polynomials

I1(εx, εy)=1 + (x + y)ε + (x2 −xy + y2)ε2 + (x + y)(x2 −xy + y2)ε3 + (x4 + y4)ε4 + · · · , (3.22)
I2(εx, εy)=1 + (x + y)ε + 2(x2 + y2)ε2 + 2(x + y)(x2 −xy + y2)ε3 + 3(x4 + y4)ε4 + · · · , (3.23)
I3(εx, εy)=1 + (x + y)ε + 2(x2 + y2)ε2 + (x + y)(3x2 − 2xy + 3y2)ε3 + (4x4 + x2y2 + 4y4)ε4 + · · · .

(3.24)

10We write the r.h.s. as
∑∞

k=0 xkN
∏k

s=1
−xs

1−xs =
∑∞

k=0(−1)kxkN+k(k−1)/2∏k

s=1
1

1−xs . Then, Euler iden-
tity

∏∞
m=0(1 + qmz) =

∑∞
k=0 zk qk(k−1)/2 ∏k

s=1
1

1−qs , allows to transform it into the infinite product∏∞
m=0(1 − xN+1xm) which is same as the l.h.s. in (3.17).
11The exponent is for the first deviation term. It is thus equal to the exponent in eq. (C.3) of [31]

increased by one.
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Also, we have

I∞(εx, εy) = 1 + (x + y)ε + 2(x2 + y2)ε2 + (x + y)(3x2 − 2xy + 3y2)ε3

+ (5x4 + x3y + 2x2y2 + xy3 + 5y4)ε4 + · · · . (3.25)

These expressions are clearly equivalent to the previous expressions for IN (x, q) in (3.8),
(3.9), and (3.10). For instance, in (3.8) we can replace q = xy and get

I1(x; xy) = 1
1 − x

+ (x−1 − 1) xy + (x−2 − x) x2y2 + (x−3 − x−1 + 1 − x2) x3y3

+ (x−4 − x3) x4y3 + (x−5 − x−2 + x − x4) x5y5 + O(y6), (3.26)

and the written terms agree with all terms in (3.22) neglecting powers of y higher then
5. In particular, the term y0 in (3.26) resum all xn terms in (3.22). For higher N similar
resummations occur and in general using the exact depencence on x in IN (x, xy) resums
terms of the form xnyp with fixed p and any n.

The natural brane expansion for the index IN (x, y) is expected to be

IN (x, y) = I∞(x, y)

1 +
∞∑

k,k′=1
xkN yk′N Î(k,k′)(x, y)

 , (3.27)

where cf. (3.12),

I∞(x, y) = (xy; xy)∞
(x; x)∞(y; y)∞

. (3.28)

In the next section, we will compute Î(k,k′) by multivariate residue computations.

3.2 Multivariate residue computation of the brane expansion

Setting q = xy in (3.2), the single-letter index becomes symmetric in x, y

f(x, y) = x + y − 2xy

1 − xy
, (3.29)

and using (2.5) we obtain

f̂X
X = x−1 − 2y + xy

1 − y
=

∞∑
m=0

(x−1 − 2y + xy)ym, (3.30)

f̂Y
Y = y−1 − 2x + xy

1 − x
=

∞∑
m=0

(y−1 − 2x + xy)xm, (3.31)

f̂X
Y = y−1 − x, f̂Y

X = x−1 − y. (3.32)
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We now want to compute the terms in the r.h.s. of (3.27). From (2.4), the general formula
for Î(k,k′) is

Î(k,k′)(x, y) = 1
k!k′!

∮ k∏
a=1

dσX
a

2πiσX
a

k′∏
a=1

dσY
a

2πiσY
a

k∏
a ̸=b

(1 − σX
a /σX

b )
k′∏

a ̸=b

(1 − σY
a /σY

b )

×
k∏

a,b=1

∞∏
m=0

(1 − ym+1σX
a /σX

b )2

(1 − x−1ymσX
a /σX

b )(1 − xym+1σX
a /σX

b )

×
k′∏

a,b=1

∞∏
m=0

(1 − xm+1σY
a /σY

b )2

(1 − y−1xmσY
a /σY

b )(1 − yxm+1σY
a /σY

b )

×
k∏

a=1

k′∏
b=1

1 − xσX
a /σY

b

1 − y−1σX
a /σY

b

1 − yσY
b /σX

a

1 − x−1σY
b /σX

a

. (3.33)

The exchange symmetry
Î(k,k′)(x, y) = Î(k′,k)(y, x), (3.34)

allows to consider just the cases k ≥ k′. The sum k + k′ will be called the level of the
brane index.

3.2.1 Level 1

At this level we need just to compute the (1, 0) contribution. It does not require any
integration and has the exact expression

Î(1,0)(x, y) =
∞∏

m=0

(1 − ym+1)2

(1 − x−1ym)(1 − xym+1) = (y; y)2
∞

(x−1; y)∞(xy; y)∞
. (3.35)

Its small ε expansion after the scaling (3.21) is

Î(1,0)(εx, εy) = − x2ε

x − y
− x(x − y)ε2 + (−x3 + y3)ε3

+
(
− x4 + x2y2 − xy3 + y5

x

)
ε4 +

(
− x5 + y7

x2

)
ε5 +

(
− x6 + x3y3 − y6 + y9

x3

)
ε6 + · · · .

(3.36)

The O(ε) term is highly non-trivial since it may be expanded in small x/y or y/x with
different results. The singularity at the codimension-1 wall x = y has to cancel in the full
index which has no such wall-crossing problems.

3.2.2 Level 2

At level 2 we need (2, 0) and (1, 1). The expression for (2, 0) is

Î(2,0)(x, y) = 1
2

∮ 2∏
a=1

dσa

2πiσa

2∏
a ̸=b

(1−σa/σb)
2∏

a,b=1

∞∏
m=0

(σb − ym+1σa)2

(σb −x−1ymσa)(σb −xym+1σa)

= 1
2

∞∏
m=0

(1− ym+1)4

(1−x−1ym)2(1−xym+1)2

∮ 2∏
a=1

dσa

2πiσa

2∏
a ̸=b

(1−σa/σb)
∞∏

m=0

(σb − ym+1σa)2

(σb −x−1ymσa)(σb −xym+1σa) .

(3.37)
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The associated functions g1, g2 are12

g1 = σ1

∞∏
m=0

(σ1 − x−1ymσ2)(σ1 − xym+1σ2), g2 = σ2

∞∏
m=0

(σ2 − x−1ymσ1)(σ2 − xym+1σ1).

(3.38)

The computation is done by setting σ2 = 1 and summing over the poles in σ1 in g1, see
appendix B of [37]. The result is

Î(2,0) = − x7(x−2y)ε4

(x−y)2y(x+y) +
(

2x5− x7

y2

)
ε5 +

(
2x6− x9

y3 +2x3y3
)

ε6 +
(

3x7− x11

y4 +2xy6
)

ε7

+
(

3x8− x13

y5 +3x4y4 + 2y9

x

)
ε8 +

(
4x9− x15

y6 +x3y6 + 2y12

x3

)
ε9 + ·· · . (3.39)

Then, let us consider (1, 1)

Î(1,1)(x, y) =
∞∏

m=0

(1 − ym+1)2

(1 − x−1ym)(1 − xym+1)
(1 − xm+1)2

(1 − y−1xm)(1 − yxm+1)

×
∮

dσX

2πiσX

dσY

2πiσY

σY − xσX

σY − y−1σX

σX − yσY

σX − x−1σY
. (3.40)

The multivariate residue is computed again setting σY = 1 and summing over the poles in
σX . The result is

Î(1,1)(x, y) = xy
∞∏

m=0

(1 − ym+1)2

(1 − x−1ym)(1 − xym+1)
(1 − xm+1)2

(1 − y−1xm)(1 − yxm+1)

= xy (x; x)2
∞ (y; y)2

∞
(x−1; y)∞ (y−1; x)∞ (xy; x)∞ (xy; y)∞

. (3.41)

After the scaling (3.21) we obtain

Î(1,1)(εx, εy) = − x3y3ε4

(x − y)2 − x2y2(x + y)ε5 − xy(x4 + 2x3y + 2xy3 + y4)ε6

+ (−x7 − 2x6y − x4y3 − x3y4 − 2xy6 − y7)ε7 + · · · . (3.42)

3.2.3 Level 3

At level 3 we need (3, 0) and (2, 1). The first is

Î(3,0)(x, y) = 1
3!

∮ 3∏
a=1

dσa

2πiσa

3∏
a ̸=b

(1−σa/σb)
3∏

a,b=1

∞∏
m=0

(σb − ym+1σa)2

(σb −x−1ymσa)(σb −xym+1σa)

= 1
3!

∞∏
m=0

(1− ym+1)6

(1−x−1ym)3(1−xym+1)3

∮ 3∏
a=1

dσa

2πiσa

3∏
a ̸=b

(1−σa/σb)
∞∏

m=0

(σb − ym+1σa)2

(σb −x−1ymσa)(σb −xym+1σa) .

(3.43)
12We truncate the infinite products and increase the order of truncation until the result is stable.
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In order to apply the deformation algorithm, we first modify this expression introducing
the infinitesimal parameter η with some coefficients13

Î(3,0)(x, y; η) = 1
3!

∞∏
m=0

(1− ym+1)6

(1−x−1ym)3(1−xym+1)3

∮ 3∏
a=1

dσa

2πi(σa + kaη)

×
(

1− σ1
σ2 + 2k2η

)(
1− σ2

σ1 + 2k1η

)(
1− σ1

σ3 + 2k3η

)(
1− σ3

σ2 + 3k1η

)

×
(

1− σ3
σ2 + 3k2η

)(
1− σ2

σ3 + 3k3η

) ∞∏
m=0

(σb − ym+1σa)2

(σb −x−1ymσa + kabη)(σb −xym+1σa + kabη) ,

(3.44)
where kab = kba. The numerical values of ka, kab should be chosen in order to resolve the
degeneracy of the multiple poles.14 The associated ga functions are then

g1 = (σ1 + k1η)(σ1 + 2k1η)(s1 + 3k1η)
∞∏

m=0

[
(σ1 − x−1ymσ2 + η12)(σ1 − xym+1σ2 + η12)

× (σ1 − x−1ymσ3 + η13)(σ1 − xym+1σ3 + η13)
]
, (3.45)

with cyclically rotated expressions for g2 and g3. A rather demanding calculation gives the
first term in the small ε expansion after the scaling (3.21)

Î(3,0)(εx, εy) = − x15 (2x3 − 3x2y − 3xy2 + 5y3)
y3(x − y)3(x + y)(x2 + xy + y2) ε9 + O(ε10). (3.46)

In the (2, 1) case we have

Î(2,1)(x, y) = 1
2!

∞∏
m=0

(1 − xm+1)2(1 − ym+1)4

(1 − y−1xm)(1 − yxm+1)(1 − x−1ym)2(1 − xym+1)2

×
∮ 2∏

a=1

dσX
a

2πiσX
a

dσY

2πiσY

2∏
a ̸=b

(1 − σX
a /σX

b )
2∏

a=1

σY − xσX
a

σY − y−1σX
a

σX
a − yσY

σX
a − x−1σY

×
2∏

a ̸=b

∞∏
m=0

(σX
b − ym+1σX

a )2

(σX
b − x−1ymσX

a )(σX
b − xym+1σX

a )
. (3.47)

We notice that we can integrate out σY by a rescaling. Following Lee’s prescription in the
rest (where we simply set σY = 1) we define

g1 = (σX
1 )2(σX

1 − x−1)(σX
1 − y)

∞∏
m=0

(σX
1 − x−1ymσX

2 )(σX
1 − xym+1σX

2 ), (3.48)

g2 = (σX
2 )2(σX

2 − x−1)(σX
2 − y)

∞∏
m=0

(σX
2 − x−1ymσX

1 )(σX
2 − xym+1σX

1 ). (3.49)

13We use η instead of ε to avoid confusion with the scaling in (3.21).
14As a simple choice, in the calculation we took for k1, k2, k3, k12, k13, k23 the reciprocal of the successive

prime integers 29, 31, 37, 41, 43, 47 to avoid accidental arithmetical dependencies. We do not know what
could be the general recipe to remove degeneracy, but at least in our case the choice of the deformation
did not appear to be critical and was always checked against the evaluation of the multiresidue at fixed
numerical x, y, which is feasible.
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Using again the deformation algorithm, applied in a similar way to the previous (3, 0) case,
we compute the first term of the small ε expansion after the scaling (3.21)

Î(2,1)(εx, εy) = − x9y3(x − 2y)
(x − y)3(x + y)ε9 + · · · . (3.50)

3.3 Cancellation of wall-crossing poles

The first term in the computed brane indices Î(k,k′) is a non-trivial rational function of the
fugacities with wall-crossing pole at x = ±y. Let us show that these poles cancel in the
sum of k, k′ contributions at given level N = k +k′, although they are present in the single
terms. This has to happen since the index is a polynomial in x, y.

Level 1. The non-trivial rational functions at level 1 contribute in (3.27) as

−xN x2

x − y
− yN y2

y − x
= −xN+2 − yN+2

x − y
= −xN+1 1 − (y/x)N+2

1 − y/x
. (3.51)

and this is a polynomial.

Level 2. At level 2, we need

− x2N x7(x − 2y)
(x − y)2y(x + y) − (xy)N x3y3

(x − y)2 − y2N y7(y − 2x)
(x − y)2x(x + y)

= −(xN+4 − yN+4)(xN+5 − 2xN+4y + 2xyN+4 − yN+5)
xy(x − y)2(x + y) (3.52)

and this is 1/(xy) times a polynomial, because one checks that the limits x → ±y are not
singular. So we get only simple monomials and no wall-crossing denominators.

Level 3. We have to consider the combination

x3N Î(3,0)(x, y) + x2N yN Î(2,1)(x, y) + xN y2N Î(2,1)(y, x) + y3N Î(3,0)(y, x). (3.53)

Using the previous expressions we can check that for all N this is a finite sum of monomials
in x±1, y±1, hence again all wall-crossing unwanted denominators cancel.

3.4 Checking the validity of the symmetric brane expansion

Let us see how the brane expansion reproduces the exact index, i.e. the validity of the
relation (3.27). Introducing the explicit scaling (3.21), it reads

IN (εx, εy) = I∞(εx, εy)

1 +
∞∑

k,k′=1
ε(k+k′)N xkN yk′N Î(k,k′)(εx, εy)

 . (3.54)

Let us remark that up to level 2 we have exact expression for all terms with the exception of
Î(2,0) that can be expanded in ε with minor effort. At level 3, we have the leading ε9 result
for Î(3,0)(εx, εy) and Î(2,1)(εx, εy). This means that for a generic N , we can appreciate the
role of the computed terms, in particular the level 3 contributions, by computing the exact
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index at order ε3N+9 and Î(2,0) at order εN+9. The necessary expansions for making checks
at N = 1 and N = 2, extending the partial results quoted in (3.22), (3.23), and (3.39)
are given below. While the expansion of I1 and I2 is somewhat trivial, the one for Î(2,0)
is not. Reason is that to compute correctly the higher terms in the ε-expansion, we need
to increase the number of factors kept in the infinite products in the integrand expression.
Our results are

I1(εx,εy) = 1+(x+y)ε+(x2−xy+y2)ε2 +(x+y)(x2−xy+y2)ε3 +(x4 +y4)ε4

+(x−y)2(x+y)(x2 +xy+y2)ε5 +(x6 +x3y3 +y6)ε6 +(x+y)(x6−x5y+x4y2

−x3y3 +x2y4−xy5 +y6)ε7 +(x−y)2(x2 +xy+y2)(x4 +x3y+x2y2 +xy3 +y4)ε8

+(x+y)(x2−xy+y2)(x6−x3y3 +y6)ε9 +(x2 +y2)(x8−x6y2 +x4y4−x2y6 +y8)ε10

+(x+y)(x10−x9y+x8y2−x7y3 +x5y5−x3y7 +x2y8−xy9 +y10)ε11 +(x12−x6y6 +y12)ε12 + ·· · ,
(3.55)

I2(εx,εy) = 1+(x+y)ε+2(x2 +y2)ε2 +2(x+y)(x2−xy+y2)ε3 +3(x4 +y4)ε4

+(x+y)(3x4−3x3y+4x2y2−3xy3 +3y4)ε5 +4(x2 +y2)(x4−x2y2 +y4)ε6

+4(x+y)(x6−x5y+x4y2−x3y3 +x2y4−xy5 +y6)ε7 +(5x8 +3x4y4 +5y8)ε8

+(x+y)(x2−xy+y2)(5x6−4x3y3 +5y6)ε9 +6(x2 +y2)(x8−x6y2 +x4y4−x2y6 +y8)ε10

+2(x+y)(3x10−3x9y+3x8y2−3x7y3 +3x6y4−2x5y5 +3x4y6−3x3y7 +3x2y8−3xy9

+3y10)ε11 +7(x4 +y4)(x8−x4y4 +y8)ε12 +(x+y)(7x12−7x11y+7x10y2−7x9y3

+8x8y4−8x7y5 +8x6y6−8x5y7 +8x4y8−7x3y9 +7x2y10−7xy11 +7y12)ε13

+4(x2 +y2)(2x12−2x10y2 +2x8y4−x6y6 +2x4y8−2x2y10 +2y12)ε14 +8(x+y)

(x2−xy+y2)(x4−x3y+x2y2−xy3 +y4)(x8 +x7y−x5y3−x4y4−x3y5 +xy7 +y8)ε15 + ·· · , (3.56)

and finally

Î(2,0)(εx, εy) = − x7(x−2y)ε4

(x−y)2y(x+y) +
(

2x5− x7

y2

)
ε5 +

(
2x6− x9

y3 +2x3y3
)

ε6

+
(

3x7− x11

y4 +2xy6
)

ε7 +
(

3x8− x13

y5 +3x4y4 + 2y9

x

)
ε8

+
(

4x9− x15

y6 +x3y6 + 2y12

x3

)
ε9 +

(
4x10− x17

y7 +3x5y5 +4x2y8 + 2y15

x5

)
ε10

+
(

5x11− x19

y8 +2xy10 + 2y18

x7

)
ε11 + · · · . (3.57)

Let us now introduce the difference between the exact index and the approximate brane
expansion corresponding to keeping terms up to level ℓ

∆(ℓ)
N = −IN (εx, εy) + I∞(εx, εy)

1 +
∞∑

k,k′=1
k+k′≤ℓ

ε(k+k′)N xkN yk′N Î(k,k′)(εx, εy)

 . (3.58)
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At N = 1, the level 1 difference is

∆(1)
N=1 =

(
− x6 + x7

y
− 2x4y2 − x3y3 − 2x2y4 − y6 + y7

x

)
ε6 + · · · . (3.59)

Including the level 2 terms it improves to

∆(2)
N=1 =

(
2x12 + 2x15

y3 − x14

y2 − 2x13

y
−2x11y−x10y2 +2x9y3 +x8y4 +5x6y6 +x4y8 +2x3y9−x2y10

(3.60)

−2xy11 +2y12− 2y13

x
− y14

x2 + 2y15

x3

)
ε12 + ·· · . (3.61)

This is canceled by the level 3 terms leaving

∆(3)
N=1 =O(ε20), (3.62)

where 20 = 16 + 4× (N = 1), coming from the expected leading powers of ε in Î at level 4
plus the N dependence of that contribution in the brane expansion.

Similarly, at N = 2 we find

∆(1)
N=2 =

(
−x8 + x9

y
− 2x6y2 − x5y3 − 3x4y4 − x3y5 − 2x2y6 − y8 + y9

x

)
ε8 + · · · .

(3.63)

At level 2, this is reduced to

∆(2)
N=2 =

(
−2x15 − 2x18

y3 + x17

y2 + 2x16

y
+ 2x14y + x13y2 − 2x12y3 −x10y5 − 5x9y6

−2x8y7 − 2x7y8 − 5x6y9 −x5y10 − 2x3y12 + x2y13 + 2xy14 − 2y15 + 2y16

x
+ y17

x2 − 2y18

x3

)
ε15 + · · · ,

(3.64)
and this is canceled by the level 3 terms leading to

∆(3)
N=2 =O(ε24), (3.65)

where 24 = 16 + 4 × (N = 2). The above calculations show that the double brane ex-
pansion (3.27) works indeed as expected and reproduces the finite N indices when both
fugacities are sent to zero independently.

4 Comparing the Gaiotto-Lee and symmetric expansions

As we mentioned in the Introduction, we have two representations of the finite N index
and from (3.14) and (3.27) it should be that

∞∑
k=1

xkN Îk(x; q) =
∞∑

k,k′=1
xkN yk′N Î(k,k′)(x, y). (4.1)
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Using (3.13), the l.h.s. can be written
∞∑

k=1
xkNIk(x−1; x−1q) =

∞∑
k,k′=1

xkN yk′N Î(k,k′)(x, y). (4.2)

Finally, since q = xy, the relation we need to prove reads
∞∑

k=1
xkNIk(x−1; y) =

∞∑
k,k′=1

xkN yk′N Î(k,k′)(x, y). (4.3)

Here, we remark that the l.h.s. is known as a power series in y. Instead the y dependence
of the r.h.s. is non-trivial. It is puzzling that (4.3) could hold. To understand what is going
on, let us inspect the k = 1 term in the l.h.s. of (4.3). From (3.8), it is

εN xNI1(ε−1x−1; εy)

= εN xN
[ 1

1− ε−1x−1 + (εx− 1) εy + (ε2x2 − ε−1x−1) ε2y2 + (ε3x3 − εx + 1− ε−2x−2) ε3y3

+ (ε4x4 − ε−3x−3) ε4y4 + (ε5x5 − ε2x2 + ε−1x−1 − ε−4x−4) ε5y5 + · · ·
]

= εN+1xN

(
−x− y − y2

x
− y3

x2 − y4

x3 +O(ε) · · ·
)

. (4.4)

As we remarked, at this fixed order in ε, we receive contributions from all the qn terms in
the unsymmetric index I1. Since the structure suggests a simple geometric series, we sum
it up and get

εN xNI1(ε−1x−1; εy) = −εN+1xN+1
(

1
1 − y

x

+ O(ε)
)

. (4.5)

Comparing with (3.51), we see that this equals the (1, 0) contribution in the symmetric
brane expansion. This suggests that we may have in general

Ik(x−1; y) = Î(k,0)(x, y). (4.6)

Let us test the conjectured relation (4.6) at level 2. From (3.9), we obtain

I2(ε−1x−1; εy) = · · · + y5

ε2x7 + y4

εx5 + y3

x3 + y2

x
ε + xyε2 + x3ε3

+
(

x4 + 2x2y2 + xy3 + 3y4 + 2y5

x
+ · · ·

)
ε4 + O(ε5) (4.7)

The terms that are singular for ε → 0 appear to form again a geometric series that we sum

· · · + y5

ε2x7 + y4

εx5 + y3

x3 + y2

x
ε = ε

y2

x

1
1 − y

εx2
(4.8)

and in this form we can re-expand at small ε to get

ε
y2

x

1
1 − y

εx2
= −ε2xy − ε3x3 − ε4 x5

y
+ O(ε5). (4.9)
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Hence, the small ε expansion is

I2(ε−1x−1; εy) =
(
−x5

y
+ x4 + 2x2y2 + xy3 + 3y4 + 2y5

x
+ · · ·

)
ε4 + O(ε5). (4.10)

and this precisely agrees with the small y expansion of the ε4 term in Î(2,0)(x, y)

− x7(x − 2y)
(x − y)2y(x + y) = −x5

y
+ x4 + 2x2y2 + xy3 + 3y4 + 2y5

x
+ 4y6

x2 + 3y7

x3 + O(y8). (4.11)

Thus, at level 2, the relation (4.6) holds although its verification is non-trivial, since we
had to resum the singular terms for ε → 0. A similar analysis may be attempted at level
3, but as expected, the resummation of the singular terms is less trivial to be guessed.

The above analysis and in particular the non-trivial relation (4.6) shows that one can
restrict the symmetric brane expansion to the form

IN (x, y) = I∞(x, y)
[
1 +

∞∑
k=1

xkN Î(k,0)(x, y)
]

, (4.12)

provided we expand in an asymmetric way the r.h.s. by first expanding in y and then in x.
A similar mechanisms holds for a simplified index of the 3d SCFTs associated to M2 branes
as discussed in the Introduction of [31]. To appreciate what is the fate of the missing terms
(k, k′) with k′ > 0, it is instructive to look at the expression multiplying yk′N , i.e.

Î(0,1)(x, y) = (x; x)2
∞

(y−1; x)∞(xy; x)∞
. (4.13)

When we replace y = q/x, the factor (x/q; x)−1
∞ is zero at all orders in the expansion in

series of q at fixed x. This suggests that all terms (k, k′) with k′ > 0 are invisible if this
order of expansions is applied, while they are fully relevant in the (symmetric) ε-expansion.

5 Enhanced degeneracies at the walls

We conclude with some comments on a question posed in [37], i.e. whether we can find
degeneracies in brane indices consistent with excited geometries, as BPS black holes or
bubbling geometries that break more supersymmetry. In that paper, it was claimed that
such degeneracies emerge as a finite remainder left after a cancellation of poles happens
at wall-crossing points where two or more fugacities collapse or satisfy some special re-
lation. Such a process of cancellation among contributions coming from different brane
configurations to produce degeneracies associated to objects such as black holes or bub-
bling geometries could be interpreted as a signal of a process by which the corresponding
stacks of branes bind and form bound states. For example, a representative example of one
such cancellation happens in the giant graviton expansion of the 1

16 -BPS index that in the
coincident limit x = y = z = w2 and p = q = w3, cf. (3.1), takes the form

IN = I∞

1 +
∞∑

n=1
w2nN

∞∑
p=0

Dn,p(N)w2n2+p

 , (5.1)

where Dn,p(N) is a polynomial of degree 3n − 1 in N [37].
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In the present case of the Schur index, it is interesting to explore this phenomenon in
the ε-expansion and compare with the known giant-graviton expansion at the special point
x = y, i.e. for the 1

8 -BPS index. This reads [41]

IN (x, x)
I∞(x, x) =

∞∑
k=0

(−1)k

[(
N + k

N

)
+
(

N + k − 1
N

)]
xkN+k2

, (5.2)

and is indeed characterized by N -dependent degeneracies. The terms in (5.2) can be
understood from our expressions as we know explain. At level 1 we have the following
contribution to the ratio in the l.h.s. of (5.2)

εN
[
xN Î(1,0)(εx, εy) + yN Î(0,1)(εx, εy)

]
. (5.3)

Expanding in ε and taking the non-singular limit y → x gives a single term.

−(N + 2)εN+1xN+1. (5.4)

Doing the same calculation at level 2 we get again a single contribution

1
2(N + 4)(N + 1)ε2N+4x2N+4. (5.5)

Finally, at level 3, we have computed just the first non vanishing contribution to the various
Î(k,k′) with k + k′ = 3 and from those terms we obtain

−1
6(N + 6)(N + 2)(N + 1)ε3N+9x3N+9. (5.6)

One can indeed check that these contributions match the k = 1, 2, 3 terms in (5.2).

Acknowledgments

We thank J.H. Lee and Y. Imamura for useful discussions. We also acknowledge financial
support from the INFN grant GSS (Gauge Theories, Strings and Supergravity).

A ε-expansion in the 1
4-BPS sector

It is instructive to consider the ε-expansion of the index for the 1
4 -BPS sector. The single-

letter index depends on two fugacities since it is obtained from (3.1) by sending p, q, z → 0.
It reads

f = x + y − xy. (A.1)

The full index has generating function [2]

∞∑
N=0

ζNIN (x, y) = 1
1 − ζ

∞∏
n=1

1
(1 − ζxn)(1 − ζyn) . (A.2)
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Taking residues in ζ one obtains the brane expansion. This gives

IN = I∞

[
1 +

∞∑
k=1

(xkN Î(k,0) + ykNI(0,k))
]

, I∞ =
∞∏

m=1

1
(1 − xm)(1 − ym) , (A.3)

with the explicit brane indices

Î(k,0)(x, y) =
∏∞

m=1(1 − ym)∏k
m=1(1 − x−m)

∏∞
m=1(1 − x−kym)

, Î(0,k)(x, y) = Î(k,0)(y, x). (A.4)

Taking the scaling limit (3.21) and expanding in ε we obtain the series expansions of the
finite N index, for instance

I1(εx, εy) = 1 + (x + y)ε + (x2 + y2)ε2 + (x3 + y3)ε3 + (x4 + y4)ε4 + · · · , (A.5)
I2(εx, εy) = 1 + (x + y)ε + (2x2 + xy + 2y2)ε2 + (x + y)(2x2 − xy + 2y2)ε3

+ (3x4 + x3y + x2y2 + xy3 + 3y4)ε4 + · · · , (A.6)
I3(εx, εy) = 1 + (x + y)ε + (2x2 + xy + 2y2)ε2 + (x + y)(3x2 − xy + 3y2)ε3

+ (4x4 + 2x3y + 3x2y2 + 2xy3 + 4y4)ε4 + · · · , (A.7)

and the expansion of the brane indices

Î(1,0)(εx, εy) =− x2ε

x− y
− x(x2 −xy + y2)ε2

x− y
− (x4 −x3y + y4)ε3

x− y
+ · · · , (A.8)

Î(2,0)(εx, εy) =− x7ε4

(x− y)y(x + y) − x5(x3 −xy2 + y3)ε5

(x− y)y2 − x3(x8 + x7y + x6y2 −x5y3 + x3y5 + y8)ε6

(x− y)y3(x + y) + · · · ,

(A.9)

Î(3,0)(εx, εy) =− x15ε9

(x− y)y3(x2 + xy + y2) − x12(x6 + x4y2 −x3y3 + y6)ε10

(x− y)y5(x2 + xy + y2)

− x9(x12 + x10y2 + 2x8y4 −x7y5 + x4y8 + y12)ε11

(x− y)y7(x2 + xy + y2) + · · · . (A.10)

In this case, the structure of the expansion is more complicated than for the Schur index.
Indeed, all terms of Î(k,0) are non-trivial rational functions of the fugacities. Of course, the
wall-crossing poles cancel to reproduce the gauge theory index. Going to the wall x = y

(we omit a discussion of the other special points like x = −y) one finds that the level k

combination
Lk = xkN Î(k,0)(x, y) + ykN Î(0,k)(x, y), (A.11)

has limit

L1|x=y = −xN [(N + 2) x + (N + 1) x2 + (N − 2) x3 + (N − 5) x4 + · · · ],
L2|x=y = −x2N [(N + 4) x4 + 2(N + 4) x5 + (4N + 15) x6 + 2(3N + 10) x7 + · · · ],
L3|x=y = −x3N [(N + 6) x9 + 2(N + 6) x10 + 5(N + 6) x11 + (9N + 53) x12 + · · · ]. (A.12)

These finite size corrections reproduce the giant graviton-type expansion of the index that
follows from (A.2). Indeed, integrating around ζ = 0 we have

IN (x, x) =
∮

dζ

2πi

1 − ζ

ζN+1

∞∏
n=0

1
(1 − ζxn)2 . (A.13)
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Deforming the contour to encircle the poles at ζ = x−k we can identify Lk at x = y with
the opposite of the residue of (A.13) at ζ = x−n

Lk|x=y = −Resk = −x−2k lim
ζ→x−k

d

dζ

1 − ζ

ζN+1

∞∏
n=0
n ̸=k

1
(1 − ζxn)2

 . (A.14)

In particular the leading term at small x is

Lk|x=y = xk(N−1)((N +1)xk−N)
∞∏

n=0
n ̸=k

1
(1−xn−k)2 −2xk(N−2)(xk−1)

∞∏
n=0
n ̸=k

1
(1−xn−k)2

∞∑
n=0
n ̸=k

xn−k

1−xn−k

=
∞∏

n=0
n ̸=k

1
(1−xn−k)2

xk(N−1)((N +1)xk−N)−2xk(N−2)(xk−1)
∞∑

n=0
n ̸=k

xn−k

1−xn−k


−

k−1∏
n=0

1
(1−xn−k)2 xk(N−1)(N−2k+O(x)) = −xkN+k2

(N−2k+O(x)), (A.15)

in agreement with the first term in (A.12). Besides, the above calculation shows that higher
order powers of x take the form

Lk|x=y = xkN+k2
∞∑

p=0
(ak,pN + bk,p) xp, (A.16)

for some numerical coefficients ak,p, bk,p, again in agreement with (A.12). The fact that
this case the enhancement of degeneracy is just linear in N is a consequence of the fact
that the singularity at x = y in the brane indices is only of the simple form 1/(x− y) with
no powers. This is due to the m = k factor in the x, y dependent infinite product in (A.4).
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