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Abstract: Considering the issue of energy consumption reduction in industrial plants, we inves-
tigated a clustering method for mining the time-series data related to energy consumption. The
industrial case study considered in our work is one of the most energy-intensive processes in the
plastics industry: the plastic injection molding process. Concerning the industrial setting, the energy
consumption of the injection molding machine was monitored across multiple injection molding
cycles. The collected data were then analyzed to establish patterns and trends in the energy consump-
tion of the injection molding process. To this end, we considered mixtures of regression models given
their flexibility in modeling heterogeneous time series and clustering time series in an unsupervised
machine learning framework. Given the assumption of autocorrelated data and exogenous variables
in the mixture model, we implemented an algorithm for model fitting that combined autocorrelated
observations with spline and polynomial regressions. Our results demonstrate an accurate grouping
of energy-consumption profiles, where each cluster is related to a specific production schedule. The
clustering method also provides a unique profile of energy consumption for each cluster, depending
on the production schedule and regression approach (i.e., spline and polynomial). According to these
profiles, information related to the shape of energy consumption was identified, providing insights
into reducing the electrical demand of the plant.

Keywords: energy profiles; plastic injection molding; clustering; mixture regression model

1. Introduction

The injection molding process, which is the core production method in the plastics
industry and is also the most energy-intensive process, requires careful consideration of
energy consumption [1]. Therefore, it is crucial to examine the opportunities for energy
saving in this process [2]. A reduction in the energy consumption of the injection molding
process leads to substantial energy savings for the entire industry [3,4].

Several types of injection molding machines (IMMs) are used in the plastics industry,
including hydraulic, electric, and hybrid machines. These machines differ in actuation
methods used for screw rotation, injection, and clamping motions [5]. Notably, all-electric
IMMs consume significantly less energy than hydraulic ones, leading to a growing trend
in their usage in the plastics industry [6]. It is crucial to explore further energy-saving
opportunities in all-electric IMMs because only a few studies have been conducted on this
topic [7–10].

Published research has primarily focused on the influence of the process parameters on
the energy consumption of hydraulic IMMs [11]. Several studies have explored the impact
of individual or a combination of parameters on the energy consumption of hydraulic
and hybrid machines. Some studies examined the effects of motor and pump types on
the energy consumption of hybrid IMMs [6]. However, it is challenging to investigate
energy consumption under real operating conditions because the methodologies in the
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literature are insufficient to accurately capture trends and patterns over time. Data mining
can provide valuable insights into trends and patterns of energy usage over time. The
energy consumption profiles of the IMMs may reveal similarities based on the specific
processes and products involved in one or more process cycles. An analysis of these energy
consumption profiles could lead to the optimization of the process settings.

Energy consumption data, expressed in kilowatt-hours (kWh) over time, constitute
time-series data that can be used to evaluate energy efficiency. Clustering, which involves
categorizing energy consumption patterns into groups and optimizing the similarity and
dissimilarity within and between groups, has been employed to identify common patterns
in energy efficiency planning [12]. A comprehensive analysis of clustering techniques and
benchmark evaluation for time-series data are presented in [13] and [14], respectively.

In this paper, we present a parametric model for clustering time-series data based on
an underlying mixture of statistical distributions. Each distribution represents a distinct
cluster and the clustering process involves assigning a mixture component (cluster) to each
time series using posterior probabilities [15]. Our implementation employs mixtures of
regression models, such as spline and polynomial functions of time, due to their ability to
model heterogeneous time series. We selected K-means and spectral clustering algorithms
as benchmark methods for our approach because of their wide availability and numerous
implementations across various fields, including energy-data clustering [16,17].

Autocorrelation, which is the relationship between the present and past values of a
variable, can have a significant impact on the analysis and modeling of time-series data.
Autocorrelation in data is often a natural and expected occurrence, such as in the case of
energy consumption, where current consumption is influenced by previous consumption.
However, autocorrelation may indicate a complex underlying process in other cases. For
instance, in the case of manufacturing data, autocorrelation can be influenced by various
factors including scheduling patterns, demand seasonality, and long-term trends.

In the case of the plastic injection molding process, the autocorrelation of energy
consumption is related to several variables, including production volume, machine settings,
and raw material properties. Understanding these relationships can enable companies
to adjust their operations to reduce their energy consumption and improve efficiency. If
autocorrelation is present in the data, it may be necessary to use more advanced techniques
to capture the dynamics of the time series accurately. Failure to account for autocorrelation
in an analysis properly can lead to biased results and incorrect conclusions. Therefore, it is
crucial to properly account for autocorrelation when analyzing time series.

To address autocorrelation in the regression model, we propose using an alternative
partial expectation-conditional maximization (APECM) algorithm, which is an improved
version of the ordinary expectation-maximization (EM) algorithm. This method is partic-
ularly useful for mixture modeling when dealing with autocorrelated observations. The
APECM algorithm is considered one of the most efficient variants of the original EM
because it employs an optimized algorithm for estimating and inverting component co-
variance matrices in the case of autocorrelated data. Our most recent study highlights
the potential of this method for clustering time-series data with autocorrelated observa-
tions [18]. In this study, we extend this research by applying a clustering approach to the
energy-consumption time series in the context of the plastic industry. A detailed discussion
of this motivating case study is presented in the next subsection.

This paper is organized as follows. In Section 2, the fundamental aspects of the
methodology are discussed. In Section 3, specific details regarding the regression mixture
model method for time-series clustering in the presence of autocorrelated observations are
provided. In Section 4, a real-world case study related to the energy consumption of the
plastic injection molding process is presented, followed by a discussion of the clustering
results. The paper concludes in Section 5.
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Motivating Example

An IMM activates its function by receiving the raw material via a hopper, which
is then heated by a heater barrel and subjected to rotation by a screw until the material
melts. The molten plastic is then injected into the mold, where it solidifies under pressure
applied by the clamping unit. Process parameters, such as barrel temperature, clamping
force, and screw rotation velocity, are remotely controlled by a computerized unit. The
injection molding process includes seven steps: (i) mold closing, (ii) clamping, (iii) injecting,
(iv) holding, (v) plastification, (vi) cooling, and (vii) ejection. The injection, clamping, and
plastification phases are the most energy-intensive stages of the injection molding cycle [19].

In this study, we focused on an industrial plastic facility that manufactures equipment
for scuba diving, freediving, snorkeling, spearfishing, and swimming. The plant utilizes a
variety of plastic components and products that are produced in IMMs and later employed
in the assembly of the final product. The production catalog encompasses fins in 32 variants,
masks in 42 variants, speargun components, regulators, and buoyancy control devices.
Nine all-electric IMMs were used to produce plastic products including fins, masks, and
thermoplastic components. These machines are powered solely by electricity and can be
remotely controlled. Their energy consumption represented 65% of the company’s total
energy consumption.

Figure 1 illustrates the production flow schema for fins, which employs two specific
IMMs (labeled machines 1 and 2). The first IMM is designated as the base product, which
is a paddle, whereas the second IMM is responsible for the colored booties. Plastic granules
are loaded into the hopper of the first IMM. Afterward, the plastic material is heated and
injected into the mold cavity. The molded product and paddles are cooled using water and
the duration of the cooling phase is configurable during the configuration phase. The cycle
time for a single puddle is 70 s. Once the paddles are manufactured, the bootie rubber is
overprinted by inserting the previously molded base parts of the fins into the molds, which
are subsequently placed into the machine. The heated colored plastic is then molded to fill
the mold cavities, and the cycle time per fin pair is 160 s. The fins are cooled, inspected for
quality, tested, and stored before packaging and shipment.

Recently, the industrial plant entered into contracts with a utility provider to supply
electricity. According to the contract terms, the plant is priced for electricity at three different
rates, depending on the time of day (7–19, 19–24, and 24–7). Therefore, the industry needs
to develop production schedules that consider the hourly energy consumption and related
costs over time. Regarding the daily energy consumption, historical data from January to
December 2021 indicate that the plant had an average daily consumption of 135.5 kWh.
The data from January to March 2022 show an average daily consumption of 156.5 kWh
for the entire plant. The energy consumption of machines 1 and 2, which are referenced in
Figure 1, was collected every hour, stored in a database, and presented in table format.

Figure 2 presents a set of 30 profiles related to the hourly energy consumption in kWh
for machine 1 over 24 h. The vertical axis indicates energy consumption in kWh. Energy
consumption in the dataset ranged from a minimum value close to zero to a maximum
value of approximately 20 kWh. The graph indicates that during the first 5 h, the energy
consumption was relatively low. From hour 6, during the first working shift of the day,
the energy consumption increased to a peak and remained high during the subsequent
16 h. However, it should be noted that this pattern is not invariant because the energy
consumption profile may exhibit different patterns that depend mainly on the production
schedule and process parameters.
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Figure 1. Process flow chart for fins production. The production of fins is managed through two IIMs
(machine 1 and 2). Machine 1 is used for the creation of the base product, namely paddles, while
machine 2 is used for colored booties. (Image courtesy of STAM and SEACSUB).

Figure 2. Historical time-series dataset comprising 30 instances of hourly energy consumption in
kilowatt-hours (kWh) on machine 1 on 24 h for 30 days. The vertical axis represents the energy
consumption in kWh, and a different color is used to distinguish between the various production
days in the dataset.
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2. The Mixture Model for the Analysis of Time Series

This section presents some preliminaries regarding the methodology of mixture mod-
els for clustering. For a comprehensive discussion, refer to Fraley and Raftery [15]. A
sample is given of n observed time series (t1, y1), . . . , (tn, yn), where yi(t) is the response
(e.g., energy consumption) for the ith individual time series given the time (predictor) t.
The time series of the index i = 1, . . . , n is observed at the time values (ti1, . . . , timi ) with
ti1 < . . . < timi . Notably, (ti1, . . . , timi ) may change from one time series to another.

A mixture model for a time series assumes that pairs (ti, yi) are obtained from K ∈ N
probability density components. A discrete random variable Z ∈ {1, . . . , K} indicates the
component from which the pair (ti, yi) is drawn. The following parametric density function
describes a general mixture model:

f (yi|ti; ϑ) =
K

∑
k=1

αk fk(yi|ti; ϑk), (1)

where the coefficients αk are defined by αk = P(Zi = k) and represent the mixing proba-
bilities such that αk > 0 for each k and ∑K

k=1 αk = 1. Additionally, ϑk (k = 1, . . . , K) is the
vector of the parameters for the kth component density fk(yi|ti; ϑk), which can be chosen
to represent the time series for each group k. In our approach, the component density is a
normal regression mixture [20] and can include spline and polynomial regression [21] and
B-spline as a special case [22].

The advantages to using spline and polynomial regression in time-series clustering include:

• Smoothing: These techniques can help smooth data and reduce noise, which can be
particularly useful when dealing with datasets that contain outliers.

• Robustness: Spline and polynomial regression are robust to missing data and differ-
ences in sampling times between time-series data.

• Ease of interpretation: The use of spline and polynomial regression can make it easier
to interpret the results of the regression analysis.

• Prediction: These techniques can be useful for predictions, particularly when dealing
with nonlinear relationships.

• Computational efficiency: Spline and polynomial regression can be computationally
efficient, particularly when dealing with large datasets.

Spline regression is a highly suitable and adaptable form of regression characterized
by its ability to account for nonlinear relationships between variables. This technique is
commonly employed when the dataset contains outliers or when the relationship between
variables cannot be accurately represented by a linear equation. In contrast, polynomial
regression is a more inflexible form of regression used to model higher-order polynomial
relationships between variables. This method is typically employed when the data have
a well-defined and predictable relationship that can be accurately modeled by a higher-
degree polynomial.

3. Regression Mixtures for Clustering Time Series with Auto-Correlated Data

For each cluster of index k, let Σk,mi
denote an mi × mi-correlation matrix. Let ρk

represent a vector of p correlation factors that ranges between −1 and 1, and let σk > 0 be
the standard deviation of autocorrelated noise.

The parameter vector ϑk = (β′k, σ2
k , ρk,1, . . . , ρk,p)

′ comprises the vector βk of r regres-
sion coefficients, noise variance σ2

k , and correlation factors of lags 1, . . . , p. The mi× r matrix
of the regressors is denoted by Ti = (ti1, ti2, . . . , timi )

′. The regression mixture is formulated
using the conditional mixture density function as follows:

f (yi|ti; ϑ) =
K

∑
k=1

αk N(yi; Tiβk, σ2
k Σk,mi

). (2)
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The vector of parameters was assessed using the expectation-maximization (EM)
algorithm presented by Chamroukhi [23]. The estimation process iteratively maximizes the
following log-likelihood function:

log L(ϑ) =
n

∑
i=1

log
K

∑
k=1

αk N(yi; Tiβk, σ2
k Σk.mi

). (3)

In the E-step of the EM algorithm, starting from an initial solution ϑ(0), we calculate
the expected log-likelihood using the current model and data. This is performed by
considering the observed time-series data and the current parameter vector ϑ(q) and is
expressed mathematically as a formula that involves the Q-function defined as follows:

Q(ϑ; ϑ(q)) =
n

∑
i=1

K

∑
k=1

π
(q)
ik log

[
αk N(yi; Tiβk, σ2

k Σk,mi
)
]
, (4)

which requires computing the posterior probabilities of the component membership π
(q)
ik .

In step M of the EM algorithm, the value of vector ϑ is updated by maximizing the
Q-function in Equation (4) with respect to the entire vector ϑk = (β′k, σ2

k , ρk,1, . . . , ρk,p)
′.

This is accomplished through a full iteration of the algorithm for a unique parameter
subset. The algorithm presented in [24], known as the APECM, employs a disjoint partition
ϑk for each component of the index k = 1, . . . , K. The algorithm implements each M
step of the EM algorithm through several conditional maximization (CM) steps, during
which each parameter is individually maximized based on the remaining parameters.
Finally, likelihood calculations are performed for all of the time series of index i. As noted
in [24,25], the APECM algorithm presents a noteworthy reduction in computing costs in
several respects.

The task of determining the number of clusters K involves striking a balance between
the flexibility of the model and the risk of overfitting, using a criterion that evaluates this
balance. To this end, an overall score function incorporating the two components was
used. The first component measures the adequacy of the model in fitting the data and is
typically represented by the log-likelihood log L(ϑModel). The second component measures
the complexity of the model and is often expressed as the number of free parameters νModel.

The Bayesian information criterion (BIC) and Akaike information criterion (AIC)
are widely used criteria for model selection, with BIC defined as the penalized log-
likelihood given by BIC(Model) = log L(ϑModel)− νModel log(n)/2 and AIC expressed as
AIC(Model) = log L(ϑModel)− νModel. These criteria are commonly employed in the statisti-
cal community and are based on the log-likelihood of the model and degrees of freedom
associated with the sample size [26,27].

The implementation of regression mixtures is based on the hypothesis of the underly-
ing probabilistic mixture model, in which the parameters are estimated using a sampling
technique. Current research on hypothesis testing for mixture models has led to the devel-
opment of various statistical methods, including the expectation-maximization (EM) test for
testing homogeneity in normal mixture models [28]. Recently, a study proposed a simple
class of hypothesis test procedures for finite mixture models based on the goodness of fit
(GOF) test [29]. However, GOF test statistics do not have asymptotic limiting distributions,
necessitating the development of a bootstrap procedure to approximate their distributions.

In this study, a statistical hypothesis test was not conducted due to the complexity
of this approach. Instead, the suitability of the mixture models was assessed through a
comparison of BIC values and the visualization of each model’s cluster centroid profile. This
straightforward approach is particularly well suited for industrial engineering practitioners
with limited statistical expertise, as it is accessible and easily understandable.
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4. Case Study

In this study, we obtained real data from the plastic industry, including the manufac-
ture of scuba gear, freediving equipment, snorkeling devices, spearfishing equipment, and
swimming accessories. The plastic components and products were fabricated using IMMs
and utilized for the final product assembly. We considered nine IMMs that operate solely
on electric power and can be remotely controlled to produce plastic products, such as fins,
masks, and thermoplastic components. Each IMM was equipped with an electrical absorp-
tion monitoring board that recorded the energy consumption every hour and transmitted
the measured values to a structured query language (SQL) database, as shown in Figure 3.

Figure 3. Collection and recording of hourly energy consumption data of nine IMMs into the SQL
database for effective data management and analysis.

From the SQL database, we collected a dataset comprising 119 daily time-series data
points from 1 January to 30 April 2023. Each time series in the dataset pertains to the 24 h
consumption of kWh for IMM no. 1. The time series exhibited various characteristics
influenced by the specific production schedule of the IMM for each day. Some days may
experience the IMM being idle or under maintenance, resulting in reduced consumption
levels compared to periods when it is operational for production. The energy profile varies
according to the current IMM production schedule.

Our research aims to establish virtual energy profiles for each cluster by grouping
the hourly energy consumption patterns of each IMM in the plant. These profiles can
subsequently be utilized for the accurate forecasting of energy consumption, even when
changes occur in the time step (e.g., from every hour to every minute). This information is
critical for effective demand-side management, resource planning, and capital budgeting.
To achieve this, mixture model algorithms, such as B-spline and polynomial regression-
based autocorrelated time-series clustering, have been proposed and applied to extract
temporal components and classify daily load curves into distinct clusters based on their
consumption patterns.

Our study employed clustering algorithms coded in MATLAB R2023a on a computing
device equipped with 16 GB of memory and a 2.6 GHz Intel Core i7 processor. The
clustering algorithms implemented in this study converged within a few iterations and
required less than 300 s for the complete series data of four-month hourly consumption data.

4.1. The Benchmark K-Means Method for Time-Series Clustering

The K-means algorithm is a widely adopted and efficient method for clustering data
and possesses numerous advantages such as simplicity, speed, robustness, and the ability to
address temporal resolution effects [30]. Furthermore, its shape-preserving capabilities ren-
der it ideal for data clustering. These characteristics make it a suitable benchmark method
for the approach proposed in this study, particularly given its widespread availability and
numerous implementations for energy data clustering [16]. However, its effectiveness is
contingent on the assumption of spherical and equally varianced clusters, which may not
be suitable for cases involving irregularly shaped clusters.

Note that the application of the K-means algorithm to a sample of n observed time
series is based on the assumption that each time series of index i = 1, . . . , n is observed
at the same time values of index j = 1, . . . , m. This assumption limits the scope of the
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approach because it may not account for time series sampled at different time indices in
actual applications [31].

A time series is represented by a generic point yi ∈ Rm assigned to a group that should
have high intracluster similarity (the sum of the squares within clusters, SSW) with the re-
maining points belonging to the same cluster, whereas it has low intercluster similarity (the
sum of the squares between clusters, SSB) with the remaining points assigned to different
groups. These two features are analytically expressed as SSW = ∑K

k=1 Nk ∑yi∈Ck
d(yi, ck)

and SSB = ∑K
k=1 Nk · d(ck, c̄), where d : Rm ×Rm → [0, ∞) is the distance metric in Rm (the

Euclidean distance in this study).
The sum of the squared distances between each data point yi and its corresponding

closed centroid, denoted by ck, is known as the within-cluster variance, SSW. The closed
centroid, ck, is the barycenter of the k-th cluster, Ck, and is calculated as the average of all
the data points in the cluster, yi, divided by the number of data points in the cluster, |Ck|.
The between-cluster variance SSB is the sum of the squared distances between the mean
positions of all centroids c̄ and the closed centroid ck. The between-cluster variance, SSB,
represents the spread of data points across all clusters.

The K-means algorithm aims to identify the cluster centers that minimize the SSW
within clusters and maximize the SSB between clusters. To achieve this goal, the algorithm
comprises two fundamental steps: (i) the uniform initialization of K centroids among the
points to be classified and (ii) the subsequent aggregation of points around the centroids
based on the distance criterion of similarity. The centroid is determined by averaging the
points in each cluster, and this procedure is repeated for each cluster. The clusters and their
respective centroids are then recalculated, and the process continues until the positions of
the centroids exhibit minimal fluctuations, which is accomplished through the repetitive
implementation of the previously mentioned steps.

4.2. The Benchmark Spectral Clustering Method for Time-Series Clustering

Unlike the K-means algorithm, which works directly on data points, spectral clustering
(SC) uses the eigenvalues and eigenvectors of a similarity matrix to group similar data
points into clusters [32,33].

The similarity matrix is a positive semi-definite matrix A ∈ Rn×n, where each entry
aij represents the affinity between data points yi and yj. A typical SC algorithm initiates
with a graph G = (T , A), with T as the set of vertices and aij as the weight of the edge
that connects yi and yj. The objective of the SC algorithm is to identify the partition of a
graph whose edge weights have low values and are contiguous. The connections between
the internal vertices are associated with high-similarity indices, and graph partitioning is
performed by assigning large edge weights to each cluster and small edge weights to each
cluster. Mathematically, this is the problem of finding eigenvectors of the graph Laplacian
from the affinity matrix and then clustering the eigenvectors into clusters.

The following steps were included in the implementation of the SC algorithm [34]:

1. A similarity matrix is constructed to quantify the similarity between each pair of
data points.

2. The eigenvalues and eigenvectors of the similarity matrix are determined.
3. A threshold value is established for the eigenvalue gap to separate data points into

distinct clusters.
4. Each data point is assigned to a cluster corresponding to its eigenvector.

The SC algorithm has several advantages over the K-means algorithm, including the
ability to handle noisy data and data with nonspherical clusters, as well as the ability to
visualize high-dimensional data in a lower-dimensional space. However, it is sensitive to
the choice of the distance metric and similarity threshold, and there is no objective method
for selecting the best threshold. In addition, it is computationally expensive, particularly for
extensive datasets. Recent studies have focused on improving the scalability and robustness
of spectral clustering for extremely large-scale datasets [35].
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4.3. Application of the Benchmark Algorithms to Case Study

In our research, the Caliński–Harabasz (CH) and Davies–Bouldin (DB) indices were
employed as validation measures to determine the optimal number of clusters (K) through
the K-means and SC algorithms.

The CH index estimates cluster validity by calculating the ratio of the between- and
within-cluster variances. This index is defined as follows [36]:

CH =
n− K
K− 1

· SSB
SSW

(5)

where n is the total number of time series and K is the number of clusters chosen in the
classification. SSB and SSW represent inter- and intracluster dispersions, respectively. A
greater CH index indicates better clustering results.

The DB index, developed by [37], is calculated using the mean distance between the
cluster elements and their respective centroids, denoted by dk, and the distance between
centroids, denoted by dk,k′ . The DB index is expressed mathematically by the following
equation, where K represents the number of clusters, and it is desirable to minimize the
DB parameter according to both compactness and separation criteria.

DB =
1
K

K

∑
k=1

max
k′ 6=k

(dk + dk′)

dk,k′
. (6)

The values of the CH and DB indices for the K-means algorithm in this case study are
presented in Table 1. Based on the values in Table 1, it can be concluded that the optimal
number of clusters K that produces the maximum value of the CH index and the minimum
value of the DB index is equal to K = 2. A visual illustration of the centroids for the two
clusters obtained through the K-means algorithm with K = 2 is shown in Figure 4.

Table 1. Values of the CH and DB indices for different values of K for the K-means algorithm in the
reference case study. The maximum value of CH and minimum value of DB are obtained for K = 2.

CH DB

K = 1 NaN NaN
K = 2 356.80 0.4507
K = 3 272.79 0.7536
K = 4 281.66 0.8234
K = 5 259.30 0.7661
K = 6 228.21 0.7605
K = 7 262.66 0.6251
K = 8 236.26 0.7108

Based on the results presented in Figure 4, it can be deduced that the implementa-
tion of the K-means algorithm in the reference case study for data mining of the energy-
consumption time series is flawed in its ability to produce effective clustering. The al-
gorithm appeared to be capable of distinguishing only between high- and low-energy
load profiles. Although the K-means algorithm is commendable for its simplicity, speed,
and capacity to provide quick results, its suitability for clustering time-series data may be
limited because of the nonspherical and heterogeneous nature of the energy consumption
clusters in the present case study.

The values of the CH and DB indices for the SC algorithm in this case study are listed
in Table 2. Based on the values in Table 2, it can be concluded that the optimal number
of clusters K that produces the maximum value of the CH index and minimum value of
the DB index is equal to K = 3. A graphical representation of the centroids for the three
clusters generated through the implementation of the SC algorithm with K = 3 is presented
in Figure 5.
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Figure 4. Graphical representation of the centroids for the two clusters generated through the
implementation of the K-means algorithm with K = 2. Varying colors differentiate profiles.

Table 2. Values of the CH and DB indices for different values of K for the SC algorithm in the
reference case study. The maximum value of CH and minimum value of DB are obtained for K = 3.

CH DB

K = 1 NaN NaN
K = 2 0.8369 7.5416
K = 3 1.5623 3.3407
K = 4 0.5670 4.4918
K = 5 0.3818 4.9000
K = 6 0.9225 3.7632
K = 7 1.3381 4.4297
K = 8 1.4708 5.0791

Based on the findings presented in Figure 5, it can be concluded that the imple-
mentation of the SC algorithm in the reference case study for energy consumption data
mining cannot form effective clusters. Nevertheless, the SC algorithm is capable of
recognizing diverse patterns of energy consumption and provides more insight than
the K-means algorithm.

4.4. B-Spline Regression Mixtures for Time-Series Clustering

An alternative algorithm for time-series clustering is regression mixtures, which
overcomes the limitations of the K-means and SC algorithms by utilizing an inference
technique based on iteratively maximizing posterior probability. Table 3 displays the BIC
values obtained by fitting the B-spline regression mixtures using time-series clustering for
various values of K (ranging from one to eight) and different B-spline orders (from two to
five). Our implementation employed spline knots that were uniformly distributed across
the time-series domain.
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Figure 5. Graphical representation of the centroids for the two clusters generated through the
implementation of the SC algorithm with K = 3. Varying colors differentiate profiles.

The maximum BIC value, which was equal to −7.7054, was obtained when a B-spline
of order three and a value of K = 6 (number of clusters) were used, as indicated in
Table 3. The log-likelihood in Equation (3) can be maximized using the APECM algorithm.
Following the implementation of the APECM algorithm, a soft partition of the time-series
data into K = 6 clusters is obtained using the estimated posterior probabilities of component
membership π

(q)
ik in Equation (4). A hard partition can be obtained by allocating each time

series to the component (cluster) with the highest posterior probability value. A graphical
representation of the resulting centroids for the B-spline model of order three for each of
the six clusters is shown in Figure 6.

Table 3. BIC values for B-spline regression mixtures for different values of K and orders. The
maximum BIC value is obtained for K = 6 and B-spline of order 3 (BIC equal to −7.7054).

Order 2 Order 3 Order 4 Order 5

K = 1 −9.8558 −9.8551 −9.8576 −9.8578
K = 2 −7.8063 −7.8004 −7.8044 −7.8031
K = 3 −7.7764 −7.7357 −7.7765 −7.7370
K = 4 −7.7549 −7.7309 −7.7510 −7.7350
K = 5 −7.7321 −7.7232 −7.7285 −7.7209
K = 6 −7.7236 −7.7054 −7.7343 −7.7227
K = 7 −7.7392 −7.7095 −7.7281 −7.7201
K = 8 −7.7317 −7.7204 −7.7663 −7.7293

Figure 6 shows that B-spline regression mixtures provide valuable information for
data mining. Specifically, three clusters with different shapes were identified to represent
the low-load energy profiles (peaks of less than or equal to 10 kWh). Clusters 1, 4, and 5
encompassed the low-load profiles. Conversely, Clusters 2, 3, and 6 represent high-load
energy profiles (peaks greater than 10 kWh and up to 15 kWh). Cluster 2 describes a
high-load profile at an interval of approximately 16 h, while Clusters 3 and 6 describe
high-load profiles with a shorter duration of approximately 7 h. Furthermore, Cluster 3
grouped energy profiles with high loads during the first half of the day, whereas Cluster 6
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grouped energy profiles with high loads during the second half of the day. This information
is of utmost importance for energy planning and consumption.

Figure 6. Graphical depiction of the centroids for each of the six clusters (1–6) resulting from the
implementation of B-spline regression mixtures. Varying colors differentiate profiles.

In the K-means and SC algorithms, the centroids of each cluster have the same dimen-
sions as points yi ∈ Rm (i.e., m = 24). In contrast, the centroids of the regression mixtures
for time-series clustering can have dimensions of M = d×m, where d is an upscaling or
downscaling factor. For example, the centroids of the regression mixtures for time-series
clustering can be represented as energy profiles with a time step of a minute, instead of
an hour (d = 60), as shown in Figure 7.

Figure 8 shows a collection of energy profiles classified as Cluster 2 (a high-load
profile recurring every 16 h), whereas Figure 9 shows a group of energy profiles grouped
as Cluster 3 (a high-load profile lasting for 7 h during the first half of the day). Figure 10
illustrates a set of energy profiles classified as Cluster 6 (a high-load profile lasting seven
hours in the second half of the day).

4.5. Polynomial Regression Mixtures for Time-Series Clustering

Polynomial regression is an alternative to B-spline regression for time-series clustering.
The resulting fourth-order polynomial models are shown in Figure 11.

Analysis of these clusters revealed distinct shapes and corresponding load profiles.
Six clusters were identified, with Clusters 1, 4, and 6 exhibiting low-load energy profiles and
Clusters 2, 3, and 5 displaying high-load energy profiles. Notably, Cluster 2 demonstrated
a high-load profile at an interval of approximately 16 h, whereas Clusters 3 and 6 revealed
high-load profiles with a shorter duration. Cluster 3 grouped energy profiles with a high
load during the first half of the day, whereas Cluster 6 grouped energy profiles with a high
load during the second half of the day. These findings are consistent with those previously
discussed for B-spline regression.
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Figure 7. Graphical representation of the B-spline of order 3 resulting from the EM algorithm
resampled at a frequency of a minute in 24 h (1440 data points).

Figure 8. Sixteen energy profiles grouped into Cluster 2, exhibiting a high-load profile spanning a
period of approximately 16 h. Varying colors differentiate profiles.
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Figure 9. Six energy profiles grouped into Cluster 3, exhibiting a high-load profile spanning a period
of approximately 7 h during the first half of the day. Varying colors differentiate profiles.

Figure 10. Five energy profiles grouped into Cluster 6, exhibiting a high-load profile spanning a
period of approximately 7 h during the second half of the day. Varying colors differentiate profiles.
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Figure 11. Graphical depiction of the centroids for each of the six clusters (1–6) resulting from the
implementation of polynomial regression mixtures. Varying colors differentiate profiles.

5. Conclusions

This study delineates a method and associated algorithms for tracking the energy
consumption in injection molding operations, which are the most energy-intensive pro-
cesses in the plastics industry. The energy profiles collected from a real industrial plant
were analyzed using data mining algorithms to identify distinct clusters that represent the
specific energy consumption profiles of various production variants.

We utilized mixtures of regression models due to their flexibility in modeling het-
erogeneous time series and clustering time series in an unsupervised machine-learning
framework. We opted to analyze the mixture models because of their robust statistical foun-
dation and the interpretability of their results. Furthermore, because clusters correspond to
the model components, the number of clusters can be easily determined by utilizing the
likelihood function for the components in the mixture model.

Mixture regression models assume that observations are independent and identically
distributed, which may not be true for time-series data. Additionally, the model assumes
that the errors are normally distributed, which may not be the case for the energy consump-
tion data. Therefore, we developed a method for clustering autocorrelated time-series data
that combines the APECM algorithm with B-spline and polynomial regressions within
a mixture regression framework. This approach has been shown to outperform popular
techniques such as the K-means and SC algorithms through its application to real-world
data. Our analysis led to the accurate grouping of the energy consumption profiles, where
each cluster was associated with a specific production schedule. The clustering method
also provides a unique profile of energy consumption for each cluster depending on the
production schedule and regression approach. Through these profiles, we identified infor-
mation related to the shape of energy consumption, which provided insights into reducing
the electrical demand of the plant.

Our research presents a parametric model-based approach that provides a precise
representation of energy consumption profiles. This method is particularly well suited
for practical industrial applications, as it is an automated, data-driven approach within
an unsupervised training framework. The selection of an appropriate model structure,
including the types and orders of the regressors and the number of clusters, is a critical
task that must be performed by the analyst. To address this challenge, we employed a
BIC-based rule for model selection.



Algorithms 2023, 16, 524 16 of 17

The primary limitation of the mixture regression models presented in this study is their
vulnerability to overfitting, particularly when the number of components is large or when
the data are noisy. Overfitting can result in poor generalization performance and inaccurate
cluster labels. In future work, we will focus on implementing techniques to mitigate
overfitting in mixture regression models for clustering time-series data. These techniques
may include the application of regularization methods, such as L1 or L2 regularization [38],
and feature selection methods, such as backward elimination or LASSO [39]. Additionally,
shrinkage methods, such as ridge regression, may be employed to penalize the coefficients
and reduce overfitting [40].

Further work in this area includes the incorporation of additional variables into the
mixture models to assess their impact on the clustering performance and the exploration
of supervised learning techniques, such as support vector machines (SVMs) or neural
networks, to determine their potential to improve the accuracy of clustering.
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