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Abstract: In this work, we investigated the structure of the airborne bacterial community obtained
by 16S rRNA gene sequencing performed on aerosol samples from different indoor and outdoor
locations. The 48-h aerosol samples were collected in two laboratories, in the corridors, and on the roof
of the Mathematics and Physics Department of the University of Salento (Italy). The investigation
was carried out through the application of an innovative compositional data analysis approach,
mainly based on a centered log-ratio transformation as a standardization procedure, the Aitchison
distance for data ordination, and the principal component analysis via singular value decomposition
for data clustering. This methodology allowed us to explore the main relationships among samples,
identifying different results between indoor and outdoor samples both at the genus level and at
the species level. Bacillus and Pseudomonas represented the most abundant genera identified in the
analyzed samples. Out of the 21 identified bacterial species with the highest abundances in the
collected aerosol samples, Acinetobacter lwoffii, Propionibacterium acnes, Diplorickettsia massiliensis, and
Corynebacterium tuberculostearicum were the only four commonly classified as human opportunistic
pathogens. Among the genera mostly associated with indoor environments, Hymenobacter and
Arthrobacter could be noted as including many species that are unique in being radiation resistant.

Keywords: compositional data; airborne microbiome; indoor aerosols; particulate matter; metage-
nomics approach; 16S rRNA gene sequencing; singular value decomposition; Aitchison distance;
centered log-ratio transformation

1. Introduction

Considering the growing interest of the scientific community in the study of the
relationships between bioaerosol particles and air quality in both indoor and outdoor
environments, different applications of DNA-based methods have been recently developed
to accurately examine and characterize the atmospheric microbiome [1]. In more detail, the
bioaerosol concentration could be significantly higher in some indoor environments due
to the presence of several sources of airborne microorganisms [2]. Therefore, particular
attention should be devoted to testing the air quality inside various types of buildings
and to studying how outdoor pollutants can affect the indoor environments while also
focusing on the effects of the type of ventilation or air conditioning on indoor air quality,
especially on the different bacterial components. To this end, Cichowicz and Dobrzanski [3]
studied the relationships between indoor and outdoor air quality in a nine-story building
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in Lodz, Poland, including the effects of the height and the location of the building and the
meteorological conditions, while Zhou et al. [4] investigated the connection between indoor
and outdoor bioaerosols and collected some aerosol samples in a building in Beijing, China.
Using these recent and innovative DNA-based techniques, several studies reported more
accurate analyses on the structure of particulate matter (PM)-associated airborne bacteria
communities at different taxonomic levels [5–11]. Although these DNA-based methods
represent an important step for a more accurate investigation of the atmospheric micro-
biome, on the other hand, the analysis of large microbiome datasets such as those from the
high-throughput sequencing (HTS) experiments presents many challenges. Among them,
one of the main aspects currently addressed by the scientific community is the appropriate
choice of the most suitable numerical tools to further summarize and explore the HTS
data [12]. This is mainly due to the compositionality of such datasets, which means that
they tend to be predefined or constrained to some constants, resulting in meaningless total
values of the data. Indeed, in the HTS process, the observed number of reads (sequencing
depth) strictly depends on the capacity of the machine (the selected sequencing platform)
and on the number of samples that are multiplexed in the run [13,14]. Therefore, analyzing
compositional data using standard techniques could be problematic. Consequently, the
innovative compositional data analysis (CoDa) approach developed by Gloor et al. [13] (see
Figure 2 of their work) can provide a valid solution in the analysis of this kind of data. The
first step of this analysis workflow started with a centered log-ratio (CLR) transformation
of the compositional dataset from HTS. As the second step, Gloor et al. [13] proposed
the Aitchison distance that was selected as the most suitable choice for the clustering
and ordination method. The third step of the developed workflow was a compositional
principal component analysis (PCA) biplot via a singular value decomposition (SVD) of the
CLR-based initial dataset, which will be used as the first exploratory tool [15]. Microbiome
data have been previously investigated using the compositional SVD-PCA biplot in some
works [16–18]. Consequently, considering the advantages introduced by the workflow
developed by Gloor et al. [13] in the analysis of HTS data, we decided to use this composi-
tional analysis methodology to investigate the 16S rRNA gene sequencing outputs from
18 aerosol samples collected at the Mathematics and Physics Department of the University
of Salento in Lecce, Italy, in different indoor and outdoor environments. The normalization
procedure of our initial dataset was based on the CLR transformation, the data ordination
was performed using the Aitchison distance, and the data clustering was based on the
compositional SVD-PCA biplot. The innovative compositional data approach was used to
define the main structural characteristics of the airborne bacterial community profiles, both
at the genus level and the species level. In addition, the selected methodology allowed us
to explore the main relationships among taxa, among samples (also studying possible dif-
ferences between indoor and outdoor samplings), and between taxa and samples, besides
identifying some pathogenic bacterial species in the collected samples.

2. Materials and Methods
2.1. Methodology Adopted for Aerosol Detection

All the aerosol samples analyzed in this work were collected using a high-volume and
dry-filter sampler called ACD-200 Bobcat (InnovaPrep, Drexel, MO, USA). A particular
feature of this portable device is that it uses 52 mm diameter electret filters made up of
dielectric polymer fibers. This type of filter allows for a high collection efficiency of airborne
biological components, such as large viruses, bacteria, pollen, moulds, and fungal spores,
with a size range between 0.1 and about 10 µm [19–21]. As suggested by King et al. [22],
during the selected time intervals, we placed the device at a height of 50 cm above the floor.
This particular height allowed us to minimize potential contamination due to the floor.
More details on the main characteristics of the ACD-200 Bobcat device were provided by
Bøifot et al. [23], while more details on the sampling methodologies applied in this work
can be found in Perrone et al. [24]. Note that several recent studies presented some results
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obtained from aerosol samples collected by the ACD-200 Bobcat both in outdoor [25–27]
and in indoor environments [28–32].

2.2. Procedure Adopted for DNA Extraction and 16S rRNA Gene Metabarcoding

DNA extraction was performed on each liquid solution obtained from the 18 aerosol
samples collected on electret filters during the monitoring campaign. In more detail, each
liquid solution was stored at −30 ◦C after the respective sampling period, and then DNA
extraction was performed using the DNeasy PowerWater kit (Qiagen, Düsseldorf, Germany)
according to the manufacturer’s recommendations. The high-throughput sequencing tests
and the initial bioinformatics proofs on the DNA extracts were carried out by the company
Genomix4life S.R.L. (Baronissi, Salerno, Italy). DNA quantity and quality were evaluated
by the NanoDropOne spectrophotometer (Thermo Scientific, Waltham, MA, USA) and
the Qubit Fluorometer 4.0 (Invitrogen Co., Carlsbad, CA, USA, respectively. Then, the
following primers were adopted for the PCR amplification of the V3 and V4 regions
within the 16S rRNA gene, Forward 5′-CCTACGGGNGGCWGCAG-3′ and Reverse 5′-
GACTACHVGGG TATCTAATCC-3′ [33], while the 16S Metagenomic Sequencing Library
Preparation (Illumina, San Diego, CA, USA) was exploited to assemble every PCR reaction.
MiSeq platform (Illumina, San Diego, CA, USA) was operated to acquire sequences from
pooled samples in a 2 × 250 paired-end format. The FASTQ software was lastly utilized
for the final quality control of the produced raw sequences. The use of some negative
controls confirmed the absence of contamination. The 16S Metagenomics app (Illumina,
Version 1.1.0) based on the Ribosomal Database Project (RDP) classifier was consulted to
execute the taxonomic classification of the amplicon 16S rRNA-gene reads [34]. More details
on the procedures adopted both for DNA extraction and for 16S rRNA gene metabarcoding
on the aerosol samples collected in this study can be found in Romano et al. [35,36].

2.3. Locations Selected for Air Sampling

Both indoor and outdoor aerosol samples examined in this study were collected at
the Mathematics and Physics Department of the University of Salento (40.33◦ N; 18.11◦ E;
30 m a.s.l.) in a suburban site of the small city of Lecce, which is located in the south-eastern
part of Italy, specifically on the flat Salento peninsula. The site is about 6 km from the city
center and has characteristics similar to other coastal sites of the Central Mediterranean
that are not affected by major sources of air pollution [37]. Therefore, the monitoring area
can be associated with a large variety of aerosol particles such as mineral dust from the
Sahara Desert (~1500 km away) and surrounding arid regions, polluted particles from
urban and industrial areas of both Northern and Eastern Europe, sea salt and spray from
the Mediterranean Sea itself or from the Atlantic Ocean, and biomass burning particles
produced by forest fires, especially in summer [38].

The 18 aerosol samples investigated in this work were collected by means of the ACD-
200 Bobcat from September 2020 to January 2021, as reported in Table 1. The samplings
were performed on the first floor of the F2 building of the Mathematics and Physics
Department, except for some outdoor samples that were collected on the department’s
roof. The first floor is mainly intended for technical purposes, while the second floor
hosts the teaching classrooms and the professors’ and students’ rooms. The height of the
rooms and laboratories on the first floor is about 4 m. The F2 building selected for this
study is surrounded by different green areas, and there is another university building at
a distance of about 100 m. Within an area of 500 m starting from the F2 building, it is
possible to find similar buildings with similar heights. In more detail, 13 out of the total
18 samples were collected in indoor environments: 4 samples in the High-energy laboratory
(denoted by “AE”), 5 samples in the Electronics laboratory (denoted by “R”), and 4 samples
in the corridors of the university department (denoted by “C”). The samplings lasted
48 h, starting at 12:00 UTC on each selected date. The AE laboratory was characterized
by the continuous presence of 3 technicians during the working hours of the selected
sampling intervals and presented an area of about 200 m2 with 3 high-volume devices



Atmosphere 2023, 14, 1529 4 of 14

that were continuously working during the measurements analyzed in this study. In
addition, this laboratory is characterized by the presence of an old aeration system based on
mechanical ventilation. The R laboratory was instead characterized by the stable presence
of 5 technicians during the working hours of the selected time intervals. It presents an area
of about 80 m2 with some low-volume devices that were working during the measurements.
It is also characterized by the presence of a modern aeration system with air conditioning.
The corridors of the selected university building present an area of about 80 m2, with a
modern aeration system with air conditioning, and are generally frequented by numerous
students, professors, and other university staff members. The remaining 5 samples were,
instead, collected from outdoor environments, namely the department’s roof, and were
denoted by “F”. A map of the selected sampling locations can be found in Supplementary
Figure S1.

Table 1. Read number (n◦) both at the genus level and species level and number of identified
bacterial genera and species in the 18 collected samples. The samplings started at 12:00 UTC on the
indicated dates and lasted 48 h. AE, R, and C refer to aerosol samples collected in the High-energy
laboratory, Electronics laboratory, and corridors of the selected university building (indoor samples),
respectively. F refers to the aerosol samples collected on the roof of the selected university building
(outdoor samples).

Sample Date
(dd/mm/yy)

n◦ Reads
(at Genus Level)

n◦ Reads
(at Species Level)

n◦

Genera
n◦

Species

AE1 21 October 2020 71,568 71,586 1308 3074
AE2 23 October 2020 83,794 83,802 1087 2329
AE3 27 January 2021 32,772 32,774 807 1750
AE4 29 January 2021 12,620 12,620 216 234

R1 10 September 2020 10,874 10,875 360 599
R2 11 September 2020 11,740 11,740 355 593
R3 14 September 2020 92,003 92,020 1487 3642
R4 30 September 2020 73,600 73,615 1201 2594
R5 3 October 2020 71,760 71,773 1270 2764

C1 2 November 2020 51,900 51,907 1095 2524
C2 4 November 2020 67,231 67,240 1149 2546
C3 6 November 2020 86,718 86,748 1494 3568
C4 9 November 2020 80,343 80,348 837 1390

F1 1 September 2020 49,246 49,256 1240 2791
F2 2 September 2020 52,886 52,897 1261 2919
F3 3 September 2020 84,884 84,897 1361 2944
F4 8 September 2020 53,014 53,023 1062 2376
F5 16 November 2020 76,994 77,022 1354 2955

2.4. Procedures Used for Compositional Data Analysis Approach

In this study, all the statistical procedures used for the data analysis were based on
the compositional data (CoDa) workflow developed by Gloor et al. [13]. Some of the
authors of this manuscript have already applied the proposed workflow to characterize
the microbiome identified in some aerosol samples collected in different departments of
a hospital [24]. Therefore, the criteria adopted in this work to select the bacterial genera
and species with the greatest number of reads in each sample in order to apply the CoDa
analysis approach are the same as reported in Perrone et al. [24]. The first step of the selected
workflow is based on a CLR (centered log-ratio) transformation [39] of the selected bacterial
genus and species reads. More information about the properties of the CLR transformation
was provided by Perrone et al. [24]. Since the CLR-transformed matrix of the dataset with
all the selected bacterial genus and species reads cannot be calculated without changing
each zero-count value, we used the approach developed by Martín-Fernandez et al. [40] as
zero-count replacement procedure. Then, we used the R package heatmap function to plot
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the respective heatmaps of the CLR-transformed and zero-replaced initial datasets. The
second step of the workflow developed by Gloor et al. [13] is represented by the calculation
of the Aitchison distance (i.e., the Euclidean distance after CLR transformation of the initial
data [41,42]) matrix among all the samples investigated in the study. Note that we used the
unweighted pair-group average to plot the dendrograms based on the Aitchison distance
matrix. The last step of the workflow used in this study was a principal component analysis
(PCA) based on a singular value decomposition (SVD) of the CLR-transformed dataset. In
more detail, the prcomp R function was adopted to perform the SVD-PCA exploratory data
analysis and investigate the relationships between bacterial genera/species and samples.
More details on this technique and an example of its usage can be found in Bian et al. [43]
and in Perrone et al. [24].

3. Main Results

The bacterial community sampled in the selected indoor/outdoor environments of
the Mathematics and Physics Department of the University of Salento in Lecce, Italy, was
analyzed in this section both at the genus and at the species level, with the main goal
of comparing the airborne microbiome from different locations and identify potential
pathogens through an innovative analytical approach, as described in the previous section.

3.1. Characterization of the Bacterial Community at the Genus Level

Firstly, the CoDa methodology was applied to the 23 genera (out of 1932 in total)
selected among those with the highest number of reads in each sample and common in at
least 50% of the 18 detected samples. The corresponding numbers of identified genera and
related reads are reported in Table 1. Figure 1a displays a color plot of the CLR heatmap of
the 23 selected genera, which are listed in the figure in addition to the 18 samples where
they were detected (see Supplementary Table S1 for the corresponding CLR values). The
dendrograms of Figure 1b and c based on the Aitchison distances (reported in Table S2)
give a first indication of the relationship between samples and between genera, respectively.
The color plot of Figure 1a shows that the CLR value associated with each genus varies
between samples because the sample taxonomic structure is strictly dependent on the
sampling location. The highest CLR values were reached by two bacterial genera, i.e.,
Bacillus and Pseudomonas, in both indoor and outdoor samples. In more detail, Bacillus
CLR values peaked in samples F4 (8 September 2020), R1 (10 September 2020), and AE2
(23 October 2020) from the roof, the Electronics, and the High-energy laboratories, respec-
tively. On the other hand, Pseudomonas was the prevailing genus in AE2, as well as in two
other indoor samples from the department corridor, C2 (collected on 4 November 2020)
and C4 (collected on 9 November 2020). Moreover, Figure 1b identifies the two main sam-
ple clusters, one predominantly made up of samples from indoor locations (AE1, AE2,
AE3, AE4, C1, C2, C3, C4, R1, R2, R3, and R4) and another one including the outdoor
samples (F1, F2, F3, F4, and F5) in addition to R5, which was collected in the Electronics
laboratory on 3 October 2020 but features a bacterial genus composition similar to that of
the outdoor samples.

The exploratory study of the CLR-based genus dataset was also achieved by the SVD-
PCA to define the relations among samples and among bacterial genera. SVD-PCA results
are strictly related to the genera having the prevalent variation in the input dataset and
permit the detection of the principal associations between samples and bacterial genera by
linking score and loading plots, which are represented in Figure 2 by sample names (colors
differ depending on the sampling location) and black arrows, respectively. In the loading
plot of Figure 2, note that the distance from the origin and the direction of each arrow is
proportional to the standard deviation of the related genus CLR value in each examined
dataset [43]. In addition, the distance between two arrows is inversely proportional to their
corresponding compositional association: the closeness between two arrows indicates that
the related genera could have similar abundances within the closest samples. Indeed, the
SVD-PCA was selected because it also represents the ideal analytical method when the
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number of input genera is higher than the related number of samples, as in our case the
number of genera is equal to 23 and the number of samples equal to 18, respectively. The
variance percentage explained by the first two PCA axes (42.90% and 15.88%, respectively)
indicates an appropriate performance of this adopted procedure. The score plot (sample
names) in Figure 2 first indicates that all five outdoor samples are on the right side of the
first PCA axis, together with four out of five samples from the Electronics laboratory (R1,
R2, R3, and R5), while the remaining samples on the left side of that axis are associated with
indoor environments. Furthermore, the loading plot (arrows) in Figure 2 points out the
rather diverse bacterial structure between the abovementioned sample groups: in particular,
the genera mainly associated with the samples from the corridors and the High-energy
laboratory, in addition to R4 from the Electronics laboratory (on the left side of the plot), are
the ones including several human opportunistic pathogenic species (e.g., Corynebacterium,
Acinetobacter, Staphylococcus, Pseudomonas and Paracoccus). As shown in Figure 1c, these
five genera are highly interrelated since they belong to the same cluster. The color plot
in Figure 1a also supports the fact that they are prevailing genera in samples from the
corridors (especially C1) and the High-energy laboratory.
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two principal components are also reported.

3.2. Characterization of the Bacterial Community at the Species Level

Twenty-one bacterial species (out of 5903 in total) were chosen among those charac-
terized by the largest number of reads in every sample and detected at least in 40% of the
18 analyzed samples. The corresponding numbers of detected bacterial species and related
reads are reported in Table 1. The heatmap plotted on the CLR values of the 21 selected
species is displayed by a color plot in Figure 3a (see Supplementary Table S3 for the CLR
values). Figure 3b,c, instead, show the Aitchison distance-based dendrograms to visualize
the associations among the collected samples and among the analyzed species, respectively
(the corresponding Aitchison distance matrix is reported in Table S4). Figure 3b allows us to
identify two main clusters of samples, which are slightly different from those in Figure 1b,
related to the bacterial genera (Section 3.1). Indeed, the first cluster is made up of four
outdoor samples, F1, F2, F3, and F4, in addition to two samples collected in the Electronics
laboratory (R3 and R5). Conversely, the second cluster includes the remaining outdoor
sample F5 and R1, R2, and R4 from the Electronics laboratory, as well as the other eight
indoor samples from the High-energy laboratory and the corridor.
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Out of the 21 identified bacterial species with the highest abundances in the collected
aerosol samples, Acinetobacter lwoffii, Propionibacterium acnes, Diplorickettsia massiliensis, and
Corynebacterium tuberculostearicum represented the only four commonly classified as human
opportunistic pathogens, according to the consulted databases and pathogen libraries, i.e.,
the EID2 (Enhanced Infectious Diseases) web-fronted relational database (https://eid2
.liverpool.ac.uk/, accessed on 17 April 2023), the NCBI (National Center for Biotechnology
Information) Taxonomy database (http://www.ncbi.nlm.nih.gov/taxonomy, accessed on
17 April 2023), and the NCBI Nucleotide database (http://www.ncbi.nlm.nih.gov/nuccore,
accessed on 17 April 2023).

We used the application of the SVD-PCA to the CLR-based species dataset to explore
how the 18 samples and the 21 species were related to each other. Figure 4 shows the
PCA score (sample names in different colors depending on the sampling location) and
loading plots (black arrows). The variance percentages explained by the first two PCA
axes are 49.81% and 11.20%, respectively, which prove an appropriate performance of the
selected method. Outdoor samples F1, F2, F3, and F4, together with R3 and R5 from the
Electronics laboratory, are on the right half-plane of the SVD-PCA area in Figure 4, while
all the remaining indoor samples are located on the left half-plane. The only exception is
represented by the R1 and R2 samples that, in addition to the outdoor sample F5, are located
very close to the first PCA axis. It is noteworthy that the four abovementioned human
opportunistic pathogenic species are the main bacteria associated with the samples from
indoor areas that are on the left side of the first PCA axis, as shown by the loading (arrows)
plot in Figure 4. On the contrary, all the species associated with the four outdoor and two
indoor samples on the right-side plane of the biplot are reportedly non-pathogenic species.

https://eid2.liverpool.ac.uk/
https://eid2.liverpool.ac.uk/
http://www.ncbi.nlm.nih.gov/taxonomy
http://www.ncbi.nlm.nih.gov/nuccore
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4. Discussion

In this section, we report a discussion about the most significant results obtained
in this work. Regarding the characterization analysis of the bacterial community at the
genus level, note that all the indoor samples (except R5) were included in the same cluster;
therefore, the different aeration systems used in the selected environments did not present
a significant effect on the bacterial communities at the genus level (see Section 3.1). Similar
results were also reported by Zhou et al. [4] and by Perrone et al. [24]. In addition, among
the genera mostly associated with indoor environments (in particular, the R and AE
laboratories), Hymenobacter and Arthrobacter, which include many species that are unique
in being radiation resistant, should be noted [44–52]. Then, regarding the characterization
analysis of the bacterial community at the species level, observe from Figure 3b that all
the indoor samples (except R3 and R5) were included in the same cluster; therefore, the
different aeration systems in the selected environments did not also present a significant
effect on the bacterial communities at the species level (see Section 3.2), which is analogous
to what was found at the genus level.

Another interesting result of this work is related to the opportunistic pathogenic
species: it is worth observing that all the four pathogenic species identified in this study
and described in the following reached the highest CLR values (i.e., the highest abundances)
in indoor samples.
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Acinetobacter lwoffii is an opportunistic pathogen isolated in immunocompromised
patients with a significant role in some nosocomial infections like septicaemia, pneumonia,
and meningitis [53]. In more detail, we found its highest CLR values in samples AE1, R4,
and, mainly, C1 collected on 2 November 2020 in the department corridor.

Propionibacterium acnes is particularly abundant in sample R4 (30 September 2020), in
addition to some samples from the corridor, while it is characterized by lower CLR values
in the High-energy laboratory. This species is a saprophyte of the skin, which generally
has been implicated in acne inflammation and pathogenesis [54]. Currently, P. acnes, also
known as Cutibacterium acnes [55], is emerging as an important opportunistic pathogen, and
it is now the second most frequent pathogen after coagulase-negative staphylococci (CoNS),
and rates of infection due to this bacterium have increased from 1.5 to 38% according to
recent studies [56–58].

Diplorickettsia massiliensis, recently isolated from Ixodes ricinus ticks, has been proven
via serological and molecular tests to cause infections in patients with suspected tick-
borne diseases [59]. It represented the prevailing species in sample C1, but it also reached
considerable abundances in AE1, AE2, AE3, and R3.

Corynebacterium tuberculostearicum generally represents a colonizer on the skin of
hospitalized patients with potential risks of infections [60]. It was predominant in the
samples from the corridor, particularly in C1, being less abundant in other indoor samples
(apart from R1 and AE3).

This study has also revealed that the SVD-PCA biplot has noticeably demonstrated
that the relations between bacterial species and samples are strictly dependent on the
respective observing places. In fact, both the Aitchison distance-based dendrograms and
the SVD-PCA biplot obtained from the bacterial genus dataset allowed us to identify two
main sample clusters, one mostly made up of samples from indoor locations and another
one including the outdoor samples in addition to a sample collected in the R laboratory with
a bacterial genus composition similar to that of the outdoor samples. On the contrary, we
obtained a different grouping of our samples through the analysis of the Aitchison distance-
based dendrogram concerning the bacterial species dataset: the first cluster included four
outdoor samples (F1, F2, F3, and F4) and two samples collected in the R laboratory (R3 and
R5), while the second cluster included the remaining outdoor sample F5 and R1, R2, and
R4 from the R laboratory, as well as the other eight indoor samples from AE laboratory and
the corridors. Therefore, the grouping of the investigated samples was not significantly
affected by the different aeration systems of the selected sampling locations.

Consistent with the SVD-PCA analysis at the genus level, the enrichment of radiation-
resistant species, in particular, Rubrobacter radiotolerans (also known as Arthrobacter radiotoler-
ans) [61] and Thermus scotoductus (phylum Deinococcota) [62], in addition to the above-cited
Acinetobacter lwoffii [63], should also be noted in indoor environments (in particular, R and
AE laboratories).

5. Conclusions

In this work, we characterized and discussed the main properties of the airborne
bacterial community structure identified in different indoor/outdoor locations of a uni-
versity building in Lecce, Italy. Considering the bacterial community profiles at both the
genus and the species level, our main goal was to compare the airborne microbiome from
different locations and identify potential pathogens using a recent analytical approach.
According to the 16S rRNA gene metabarcoding results obtained in this study, Bacillus and
Pseudomonas represented the bacterial genera with the highest abundances in both indoor
and outdoor samples. We detected four bacterial species classified as human opportunistic
pathogens among those with the highest abundances in the collected aerosol samples
(Acinetobacter lwoffii, Propionibacterium acnes, Diplorickettsia massiliensis, and Corynebacterium
tuberculostearicum). Moreover, among the taxa mostly associated with indoor environments,
genera (Hymenobacter and Arthrobacter) and species (Rubrobacter radiotolerans, also known as
Arthrobacter radiotolerans, Thermus scotoductus, and Acinetobacter lwoffii) that include strains
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that are extremely resistant to radiation should be noted. In more detail, we also proved
that these human opportunistic pathogenic species presented the largest abundances in
the indoor samples. The SVD-PCA biplot was also able to group pathogenic and non-
pathogenic species in different clusters. In conclusion, the results obtained in this study
clearly proved that both Aitchison distance-based dendrograms and SVD-PCA biplots
could be significant tools in the characterization of airborne bacterial communities and can
also provide an appropriate clustering of the samples based on their monitoring location.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/atmos14101529/s1. Figure S1: A picture of the F2 building of the
Mathematics and Physics Department of the University of Salento in Lecce (Italy) selected for the
sampling campaign is reported. Table S1: Heatmap of the 23 selected bacterial genera as a function
of the analyzed samples; Table S2: Aitchison distance matrix for the 23 selected bacterial genera;
Table S3: Heatmap of the 21 selected bacterial species as a function of the analyzed samples; Table S4:
Aitchison distance matrix for the 21 selected bacterial species.
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