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Abstract: Autonomous aircraft are the key enablers of future urban services, such as postal and
transportation systems. Digital twins (DTs) are promising cutting-edge technologies that can trans-
form the future transport ecosystem into an autonomous and resilient system. However, since
DT is a data-driven solution based on Al, proper data management is essential in implementing
DT as a service (DTaaS). One of the challenges in DT development is the availability of real-life
data, particularly for training algorithms and verifying the functionality of DT. The current article
focuses on data augmentation through synthetic data generation. This approach can facilitate the
development of DT in case the developers do not have enough data to train the machine learning
(ML) algorithm. The current twinning approach provides a prospective ideal state of the engine
used for proactive monitoring of the engine’s health as an anomaly detection service. In line with
the track of unmanned aircraft vehicles (UAVs) for urban air mobility in smart city applications,
this paper focuses specifically on the common hybrid turbo-shaft in drones/helicopters. However,
there is a significant gap in real-life similar synthetic data generation in the UAV domain literature.
Therefore, rolling linear regression and Kalman filter algorithms were implemented on noise-added
data, which simulate the data measured from the engine in a real-life operational life cycle. For
both thermal and hybrid models, the corresponding DT model has shown high efficiency in noise
filtration and a certain amount of predictions with a lower error rate on all engine parameters except
the engine torque.

Keywords: autonomous aircraft; urban air mobility; digital twins; unmanned aircraft systems;
unmanned aircraft vehicles; synthetic data generation; data for resilience; transport complex systems;
smart cities; digitalization

1. Introduction

Urban air mobility (UAM) has become a rising trend that has garnered significant
attention from scholars and practitioners, aiming to establish a sustainable and resilient
transport infrastructure. However, UAM encounters numerous technological and legisla-
tive challenges, including air traffic control, cybersecurity concerns, noise pollution [1], and
ecological considerations.

Furthermore, it is important to note that urban air mobility is a subset of NASA’s
Advanced Air Mobility (AAM) initiative, which strives to create a safe, accessible, au-
tonomous, and cost-effective air transportation system for passengers and cargo which
aims to connect previously inaccessible urban and rural areas [2].

In this article, we adopt the concept of urban air mobility (UAM) as a secure and
efficient way of transportation within urban areas considering both concerns and benefits.

Aerospace 2023, 10, 683. https:/ /doi.org/10.3390/aerospace10080683

https://www.mdpi.com/journal/aerospace


https://doi.org/10.3390/aerospace10080683
https://doi.org/10.3390/aerospace10080683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-3557-9986
https://orcid.org/0000-0003-3206-4212
https://orcid.org/0000-0002-6902-0160
https://orcid.org/0009-0001-9362-4992
https://orcid.org/0009-0005-7227-1920
https://doi.org/10.3390/aerospace10080683
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10080683?type=check_update&version=2

Aerospace 2023, 10, 683

20f17

As a concern, we have the impact of vertical take-off and landing on factors such as
engine noise, safety measures, and efficiency [3]. Additionally, UAM vehicles present
new safety challenges compared to traditional aircraft [4]. On a positive note, electrified
propulsion systems have been identified as a promising solution for fuel savings and
emission reduction [5]. Moreover, the utilization of digital twin technology has proven
effective in enhancing system and entity performance, enabling predictive maintenance,
and increasing safety standards [4,6-9].

However, digital twin (DT) technology is rapidly emerging as a means to enhance
system/entity performance and improve predictive maintenance practices with a high level
of safety [5-9]. Nevertheless, DT strongly relies on data-oriented solutions and operates
with machine learning (ML) algorithms. The primary challenge in this approach lies in ob-
taining real-life data sets to train the ML algorithms effectively. Especially in the aerospace
domain, fabricating complex and costly entities to generate real-life measurements poses a
significant obstacle. Recognizing this challenge, the main goal of this research is to explore
synthetic data generation approaches. Given the constraints of time and cost involved
in setting up physical test beds and collecting data from real-life entities, the proposed
solution is to leverage data augmentation through synthetic data generation techniques.

The main goal of this study is to investigate the generation of synthetic data using
simulated hybrid turbo-shaft engine data to predict engine behavior in various flight
scenarios. The main contribution of this research is the development of a digital twin for
the hybrid turbo-shaft engine based on augmented synthetic data. This approach can be
a facilitator in the development of DT in case the developers do not have enough data
to train the machine learning (ML) algorithm. On the other hand, the current twinning
approach provides a prospective ideal state of the engine used for the proactive monitoring
of engine health in DT as an anomaly detection service. In brief, the study aims to fill
the significant gap in real-life similar synthetic data generation in the UAV domain. This
approach begins by constructing a simulation model of the hybrid turbo-shaft engine. The
model is then linearized to increase the understanding of the relationships between the
engine’s parameters. Next, noise is added to the simulated data set to replicate real-life
noise patterns. The final step involves validating the performance of the digital twin.

The methodology section provides a detailed explanation of each step mentioned
above. The results section presents a comprehensive analysis of the generated synthetic
data, while the discussion section examines and validates the findings.

2. Literature Review

Researchers and practitioners in developing new infrastructures are actively exploring
innovative solutions to address traffic congestion and provide faster, safer, and more
efficient transportation systems. Initiatives such as hyperloop and urban air mobility (UAM)
have gained attention in this regard. Among these solutions, UAM appears to be the most
promising technology currently being implemented, offering sustainability benefits. This
section presents previous studies focusing on the urban air mobility concept, synthetic data
generation, and the significant role of digital twin technology in increasing the sustainability
and safety aspects of the vision. It is important to highlight the concept of “vertical take-
off and landing” (VTOL) vehicles, which are considered the most common solution for
infrastructure problems and traffic management in urban air mobility because VTOL
vehicles do not require such complex and costly infrastructures as regular airports [3,4,10].

Following up on this idea, today, helicopters are one of the most commonly used
VTOL vehicles. The propulsion system employed in helicopters is the turbo-shaft engine,
which is a type of gas turbine optimized for generating shaft power instead of jet thrust.
With the projected expansion of the urban air mobility (UAM) market, there is growing
concern regarding the impact of CO, emissions from aerial transportation on the global
environment. However, recent studies have indicated that the electrification of propulsion
systems will play a significant role in the development of eco-friendly aerial vehicles [11,12].
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One of the most studied electrified propulsion systems for UAM are hybrid turbo-shaft
engines. This type of engine offers several advantages in terms of energy consumption,
performance, and safety, including:

e  Longer range and endurance due to the presence of two storage systems (electric
storage and fuel storage) [12].

* Improved maintenance workability due to the reduction in the components [12].

*  Lower vibration and noise increase the engine’s lifespan [12].

* In case of engine failure, the electric backup system offers a few minutes of en-
durance [12].

Like many new technologies, ensuring a high level of safety in complex systems
requires advanced performance analyses. However, simulating such complex systems can
be computationally expensive, and it is crucial to align these analyses with the real-life
performance of the system being studied. In this context, the use of synthetic data and
encompassing different correlated parameters can be beneficial in replicating the behavior
of the system under investigation. Utilizing data-driven simulations and digital twin (DT)
technology supports building predictive models that enable real-time simulations that
help with preventing undesirable scenarios. As a result, DT affords us a clear image of the
system from a physical and operational point of view [13-17].

DT is widely used for the real-time modeling of complex systems. But even though DT
was born in the aerospace domain in the 1960s as a real-time model of Apollo 13’s oxygen
tank [18], Figure 1 shows that it is in an infantile stage in the UAS/UAV applications. The
result of a state-of-the-art review reveals the significant gap in the studies of implementing
DT in the UAV/UAS domain. In addition, digital twin models have demonstrated their
effectiveness in handling complex systems by utilizing simplified models [16]. The pro-
posed architecture of a predictive digital twin model involves five dimensions: the physical
entity, digital model, real-life measurements (input), connection, and digital twin outputs
(predictions/simulated data) [14].

A recent systematic review by Butila et al. 2022 shows UAVs play a vital role in shaping
the future of urban services [19]. They offer numerous benefits to urban environments, such
as transforming transportation and delivery services by circumventing congestion [19].
Moreover, drones contribute to emergency response, infrastructure inspection, and urban
surveillance, thereby enhancing safety and efficiency [20-22]. With the advancement of
regulations and technology, autonomous aircraft will further unlock their potential, leading
to improved efficiency and safety in urban areas [19,20]. On the other side, UAVs can
play a crucial role in further advancing the future of urban transportation. UAM vehi-
cles, including electric vertical take-off and landing (eVTOL) aircraft, share similarities
with UAVs in terms of autonomous flight, electric propulsion, and advanced sensing and
navigation systems [23]. Background literature from UAV operations studies, such as
autonomous flight control algorithms, obstacle detection and avoidance systems, and com-
munication protocols, can be used to improve the safety, efficiency, and reliability of UAM
vehicles [24]. Therefore, UAV technology research and development efforts play a key role
in forming the foundation for the successful implementation of UAM systems, bringing us
closer to a future where air transportation is seamlessly integrated into urban environments.
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Figure 1. The published research on digital twin in terms of subdomains of aerospace engineering.

State-of-the-art studies show that most of the research is from the last 5 years. The
majority of studies have been conducted on security [25,26] and navigation [27,28], and
there are a handful of articles that are experimental with a test bed to collect data [29].
This review unveils that there are a lack of test beds and experimental data in this domain.
Correspondingly, developing/testing/employing Al algorithms for DT is not possible
if there are no data for training the algorithm. This was the main motive to trigger the
research on synthetic data generation for UAS/UAVs.

As this study focuses on data processing and the accuracy of digital twin predictions,
it is suggested to implement the recursive algorithm Kalman filter in the digital twin model
and data processing. The implementation of the Kalman filter can enhance the accuracy of
predictions by adjusting the state estimate process based on previous measurements [14]
and estimations. However, due to the lack of real-life measurements/physical entities,
researchers and academics have demonstrated that mathematical models, implemented
using software such as MATLAB for study purposes, can efficiently generate data and
validate their approaches [30].

The unavailability of costly infrastructures, such as wind tunnels or physical entities,
poses a significant challenge in academia. In this regard, data generation plays a crucial
role in assisting academics with their research. In the case of UAVs, data generation allows
researchers and developers to simulate and create synthetic data to train and test algo-
rithms [31], improving the performance of autonomous flight systems, collision avoidance
mechanisms [32], and object detection algorithms [9]. By generating diverse data scenar-
ios, such as different weather conditions, terrains, and obstacle configurations, engineers
can evaluate the robustness and effectiveness of their UAV systems in a controlled and
scalable environment [32]. This approach assists engineers in assessing the behavior and
performance of designs without the need for physical prototyping or costly experiments,
saving time and resources while facilitating iterative design improvements. Overall, data
generation plays a vital role in enabling effective development, testing, and optimization of
UAVs and engineering systems when real data are scarce or inaccessible [31-33]. Therefore,
data generation techniques can be used in different contexts considering an efficient PCA
to find the most efficient parameters of the problem under study.
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Building upon these research and development backgrounds, this investigation aims
to assess the performance of a predictive digital twin model based on Kalman filtering and
ML. The model aims to predict the behavior of a hybrid turbo-shaft engine using synthetic
data with added noise.

3. Materials and Methods

In this section, the workflow of the employed synthetic data generation and DT
approach will be detailed. The pipeline architecture of the workflow is shown in Figure 2.
In the current article. The proposed DT model is founded on recursive algorithms, Kalman
filtering, and rolling linear regression, which follow the workflow of the 6 main steps. The
outline of the steps in the order is as follows: Step 1: Data linearization and referencing;
Step 2: Adding noise; Step 3: Implementation of linear regression; Step 4: Implementation
of Kalman filter; Step 5: Implementation of rolling linear regression; Step 6: Printing the
results in a function of mean squared error/mean.

In order to investigate the performance of the proposed DT model, we adopted the
simulation model that was previously published by Donateo et al. [14], which provides a
generated data set of the propulsion system (hybrid turbo-shaft engine in Figure 3) shown
in Figures 2 and 4.

Additional electric
motors torque request

Electric motors

torque request Electric Drive

v

- . .
h Pilot Power | Supervisory
Interpreter | request Controller
Mach »|  Turboshaft
Engine torque Engine
request
Actual engine
torque
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Figure 2. Hybrid electric propulsion system model flow chart [34].
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Figure 3. Overview of the hybrid electric power systems. The blue arrows illustrate the communica-
tion between DT and the supervisory system with the other entities of the system such as torque set
points, battery state, data from IoT embedded sensors in the system, etc. The concept of the system is
driven from [14].
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Figure 4. The behavior of the velocity, pressure, and power along the mission.

The information on the simulated mission of the hybrid powertrain with compressor
degradation is described in Table 1.

Table 1. Simulated mission.

TIMES (S) SPEED (m/s) ALTITUDE (m) POWER (kW)

MISSION A START 0.1 30.6 0 48
MISSION A END 1650 30.6 0 48
MISSION B START 0.1 0 1150 172

MISSION B END 1246 1 1149 152
MISSION C START 0.1 0 7 168
MISSION C END 2079 1.59 6.22 147
MISSION D START 0.1 0 7 168
MISSION D END 935 1.54 6.41 151

The generated data contains the input variables, state variables, and output variables of
the engine for both thermal and electrical systems, after cleaning the data set the modeling
of the DT will be described in the following subsections:

3.1. Data Linearization

The linearization of non-linear complex systems increases the understanding and the
study of the behavior of the system without losing the relationship between the parameters.
In the UAV domain, in particular, control system engineering of UAVs represents non-linear
dynamical systems in the form of mathematical models through a set of state variables and
I/0. If these variables are related by a first-order differential equation, the model is called
state-space form [35,36]. The state-space form of the system is formulated in the following
way [37]:

x(t) = f(x(t), u(t)) )

y(t) = g(x(t), u(t)) €

Considering x is the state vector and U is the input, there are two continuous and
differential functions in Equations (1) and (2) (fand g). Expanding the differential functions
in series around X and v, the following equations are defined where the x and u are in the
vicinity of a point (¥, i).
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f(x, u) = f(x, u) + A(x = X) + B(u — ) ®)
g(x, 1) = (%, ) + C(x — %) + D(u — 1) @)
_9f _9of

A= a x:g, b= ou x:g, (5)

u=1 u=1
c=% | p-%8 ©)

X |x=x% U|x=x

u=il u=il

We define the deviation on an equilibrium state, where:

f(x,u)=0
After defining deviations, we can model our engine as a linear time invariant

(LTT) [37-39]. The general non-linear form of the state and the output equations of the
engine are described by the following equations [40]:

%(t) = Ax(t) + Bu(t) (7)
y(t) = Cx(t) + Du(t) ®)

where:

A = State dynamic distribution matrix.
B = input-to-state distribution matrix.
C = state-to-output distribution matrix.
D = input-to-output distribution matrix.
y = output variable.

% = rate of change of state variables.

x = state variable.

u = input control variable.

3.2. Referencing Data to Take-Off Condition

The features of the data from an engine have varying scales that significantly improve
its readability.

As a consequence, the patterns between features will be hard to study. In this situation,
data normalization is an efficient solution, so we referenced all the features of the take-
off condition.

Therefore, considering the reference equations (Equations (7) and (8)), our model is
described as follows:

Nc_crefiq Nc_cref;
PT3refii1 | _ PT3ref;
TTarefi |~ M| TTares, | + [BIPLA-g0verfs ©
W frefiiq W fref;
Nc_cref;
PT3re
TQ_pt; = [C] TT4re£ + [D] PLA_goverf; (10)

W fref:
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where the explanation of each parameter is shown in Table 2.

Table 2. Engine parameters.

Parameter Explanation

Nc_c High-pressure spool speed

Nc_cref Referenced parameter value to the take-off condition
Nc_cref: Measured value of the parameter

Nc_crefiyt Predicted value of the parameter

PT3 Compressor outlet total pressure

PT3ref Referenced parameter value to the take-off condition
PT3ref; Measured value of the parameter

PT3refi11 Predicted value of the parameter

TT4 Turbine inlet total temperature

TT4ref Referenced parameter value to the take-off condition
TT4ref; Measured value of the parameter

TT4refrq Predicted value of the parameter

Wf Fuel flow rate

Wfref Referenced parameter value to the take-off condition
Wfref; Measured value of the parameter

Wfrefiiq Predicted value of the parameter

PLA_goverfs  Measured and referenced (to the take-off condition) power level angle.

TQ_pt; Measured torque value

3.3. Noise/Error Generation

In order to simulate real-life conditions for our digital twin model, we will be compar-
ing the Kalman filter’s performance with varying noise by drawing samples from a normal
(Gaussian) distribution.

flx) = —=e 207 (11)

where

e  The mean y =0 (“center”) of the distribution.
*  The standard deviation o = 0.001 (spread or “width”) of the distribution.

3.4. Prediction and Filtering
3.4.1. Rolling Linear Regression

To predict or reduce error rates, linear regression is an excellent statistical tool for
creating a predictive model using a captured set of values for the response and explanatory
variables. Rolling regression, also known as “moving period regression” or “rolling window
regression”, evaluates the changing relationships among variables over time, specifically
measuring the outputs such as correlation and standard error from linear regression. This
visualization allows for adjustments to the dataset as time progresses, whereas traditional
linear regression models assume that parameters remain constant over time. The general
procedure of linear regression is illustrated in Figure 5. The results from the rolling regres-
sion will serve as input for implementing the Kalman filter and investigating its advantages
and efficiency in filtering noise and making more accurate predictions.
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Figure 5. Outline of the steps for rolling linear regression.

3.4.2. Implementation of Kalman filter

Kalman filtering is a recursive algorithm that adjusts the process state using real-time
measurements. The reason that filtering algorithms are used is that in real-life modeling
scenarios, the measurements are not in all respects accurate. Therefore, when data-driven
methods are implemented, we need to deal with the noise that is present in the collected
data from IoT sensors. In the current study, instead of the noisy measurement, we will use
data that are produced by a simulation model with the noise that is added to the simulation
data (Section 3.3).

As mentioned earlier, the relationship between the inputs and outputs of the hybrid
turbo-shaft engine is described using a state-space model to represent the system’s state.
The difference between the actual behavior and the simulation data is attributed to uncer-
tainty in the dynamic model, known as process noise. To address errors or uncertainties in
the synthetic data generated by the simulation, the noise (already introduced in Section 3.3)
will be filtered to achieve behavior similar to real-life conditions. Therefore, to calculate
the next state, a recursive filtering algorithm will be employed, utilizing the previously
calculated estimation of the state (Figure 6).

Original Error Original
Estimate Estimate Data
: Input
M <
Errorin Errorin Previous Measured
Estimate Data Estimate Value [¢rommeee”

| A A

1. Calculate the 2. Calculate Current 3. Calculate new
Kalman Gain Estimate | Error

l |

Updated Estimate

Figure 6. The block diagram of Kalman filter version that is used in current approach.

The Kalman filter in this study has two steps:
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Ne_crefia Nc_cref;
PT3refiy1 | PT3ref;
TTarefi | — [E¢] TT4ref, + [Bt] PLA_gover f; + W; (12)
Wfrefii Wfref;
—Update
Nc_cref MEA; 1 Nc_cref;
PT3refMEA;+q | PT3ref;
TT41’€fMEAt+1 o [Ht} TT4rgft t (13)
WfTEfMEAt+1 Wfrgft

where the explanation of each parameter is shown in Table 3.

Table 3. Parameter explanation.

Parameter Explanation
Nc_cref MEA; 11 Updated high-pressure spool speed
PT3ref MEA; 11 Updated compressor outlet total pressure
TT4ref MEA; 11 Updated turbine inlet total temperature
Wfref MEA; 11 Updated fuel flow rate
F State transition model
B; Control input model
H; Observation model
W; Process noise
Vi Observation noise
4. Results

In this section, we present the results of the proposed method and provide a more
detailed explanation of our approach and its effects on the data. As mentioned in the
Methodology section (Section 3), we configured the take-off condition and added noise to
the data. Figure 7 illustrates the generation of noise on the shaft speed. It is important to
note that the added noise followed the patterns of the original data. This means that the
noise was not random or unrelated to the underlying data patterns. By aligning the noise
with the data patterns, we ensured that it did not introduce any disruptive or misleading
elements to the analysis.

Furthermore, the analysis revealed that there were no outliers present in the dataset.
Outliers are data points that deviate significantly from the overall pattern of the data. The
absence of outliers indicates that the data were relatively consistent and reliable, allowing
us to focus on the effects of the proposed methodology without any major aberrations.

Following the addition of the noise, we applied linear regression and the Kalman filter
algorithm. Figure 8 serves as an example, showcasing the results of rolling linear regression
applied to the shaft speed data. In the figure, the blue line represents the referenced
shaft speed (the original data), while the orange line represents the result of rolling linear
regression (the prediction). Notably, Figure 8 demonstrates that our predictions exhibit
accuracy even in the presence of noise, indicating the effectiveness of our approach.
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Figure 7. Shaft speed with added noise.
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Figure 8. Results of rolling linear regression for shaft speed.

Figure 9 shows the results of the rolling linear regression on noisy data with a time
window of 5000 time steps (500 s). The linear regression parameters change with time.
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Figure 9. Rolling linear regression on noisy data.

Furthermore, in the subsequent section, we will discuss the performance of the DT
model. The results reveal that the combined algorithms perform effectively across the
majority of the parameters. Specifically, the results indicate that the combined algorithms
yield a significantly lower mean squared error/mean value index. This demonstrates the
improved performance achieved through the utilization of our proposed methodology.

5. Discussion and Validation

The results of this study have provided valuable insights into the performance of the
suggested digital twin approach for a hybrid turbo-shaft engine. Through our analysis, we
have found that the DT model performs well in terms of its overall efficiency, predictions,
and noise filtration. These results have provided valuable data and knowledge related
to the DT topic for hybrid turbo-shaft engines for further studies and investigations. The
low error rate of the DT model indicates that this type of DT holds great potential for
use in a variety of applications in the urban air mobility and advanced air mobility field.
Additionally, this study has provided a DT modeling method that could help designers,
manufacturers, and academics to work on hybrid propulsion systems and to drive further
research and development.

The evaluation of the effectiveness of using an ML recursive algorithm that consists
of rolling linear regression and Kalman filtering to create synthetic data that represent
real-life similar behavior of the system is a crucial step in the current article. Since the
reference data (simulated data) are created by the simulation approach validation through
comparison with real-life data generated by a physical hybrid turbo-shaft engine is not
possible. Therefore, the suggested model was analyzed based on its overall efficiency,
accuracy in prediction, and noise filtration capabilities by mean squared error/mean
value index.

The standard deviation of distribution and the time window of the rolling linear
regression condition are shown in Table 4:
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Table 4. Gaussian distribution and rolling linear regression parameters.

Parameter Value
sigma (standard deviation of distribution) 0.1
time window 5000

After the application of the suggested DT model to different parameters of the hybrid
turbo-shaft engine and in order to study its performance, the results of the DT predictive
model and its ability to filtrate the noise with the shaft speed, compressor outlet total pres-
sure, turbine inlet total pressure, fuel flow rate, and power turbine torque are summarized
as a function of mean squared error/mean value visualized in the different figures. Results
from the thermal engine are shown in Figures 10-14.
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Figure 10. High-pressure spool speed.
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Figure 11. Compressor outlet total pressure.
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Figure 12. Turbine inlet total temperature.
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Figure 13. Fuel flow rate.

On the other hand, with the same simulation conditions in Table 4, the results from
the hybrid model are illustrated in Figures 15 and 16.
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Figure 14. Power turbine torque.
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Figure 15. Fuel flow rate.
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Figure 16. Power turbine torque.

Overall, the study provides valuable insights into the performance of the suggested
DT approach for hybrid turbo-shaft engines, as these findings would help researchers and
professionals in the field to develop more effective models and further studies regarding DT
technology use for hybrid turbo-shaft engines, urban air mobility, and various applications.
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6. Limitations and Future Study

The main limitation of this study is the absence of real-life data from a physical entity.
Therefore, the next step will be creating a test bed to perform experimental flights with a
drone (equipped with a hybrid turbos-haft engine) to collect the real-life data and compare
the synthetic data with the real-life data to validate the generation process. The other key
future research line is employing the synthetic data for anomaly detection through bringing
DT as a service (DTaaS) in action.

7. Conclusions

For both thermal and hybrid models, the DT model (rolling linear regression + Kalman
filter together) has shown efficiency in noise filtration and predictions with a lower error
rate on all the parameters except with the engine torque. The low error rate indicates the
great potential use of this approach in a variety of applications in the urban air mobility
field. The rolling linear regression alone has shown a weaker performance as a consequence
using combined ML recursive algorithms is an efficient solution to obtain a higher accuracy
rate. This approach is showing a weak performance with the engine torque; therefore, the
linear model is not optimal for the parameter. The results also show a high (mean squared
error/mean value) index for the engine torque, which means a weak performance in predic-
tion and noise filtration, indicating that the used approach was not optimal for the torque.
The rapid development and integration of autonomous systems, including autonomous
aircraft, in urban environments raise significant ethical, safety, and social concerns. The
collection and processing of large amounts of data by autonomous systems have privacy-
related concerns that potentially violate people’s privacy rights [41]. Security is also an
important aspect, as autonomous systems are vulnerable to cyber-attacks and unauthorized
access and require strong security measures to protect against potential threats [42]. In
addition, the social impacts of autonomous systems, including unemployment and eco-
nomic impacts, require careful consideration to ensure equitable distribution of benefits
and mitigation of adverse impacts. Addressing these ethics, privacy, security, and social
implications is critical to supporting the responsible development and deployment of
autonomous aircraft in urban environments.
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Abbreviations

The following abbreviations are used in this manuscript:

DT digital twin
UAV unmanned aircraft vehicle
UAS unmanned aircraft system

UAM  urban air mobility

AAM  advanced air mobility

CPS cyber-physical system
DTaaS DT as a service

SaaS software as a service

VTOL  vertical take-off and landing
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