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A B S T R A C T   

Citizen science and spatial ecology analyses can inform species distributions, habitat preferences, and threats in 
elusive and endangered species such as seahorses. Through a dedicated citizen science survey submitted to the 
Italian diving centers, we collected 115 presence records of the two seahorses occurring along the Italian coasts: 
Hippocampus hippocampus and H. guttulatus. From this dataset, we used 85 seahorse valitaded records to identify 
the ecological features of these two poorly known species and quantify the effects of human activities on their 
habitat suitability through geographic information systems and species distribution modelling. Our results 
indicated a continuous suitable area for both seahorses along the Italian coasts, with a single major gap in the 
central Adriatic Sea (Emilia-Romagna and Marche regions). They co-occurred in most of their Italian range, 
particularly in the central and southern Tyrrhenian coasts, and their ecological niches resulted to be significantly 
similar, although not equivalent. The least-cost paths of both species were concentrated in southern Italy (Apulia, 
Calabria, and Sicily), suggesting that more data is needed to improve the spatial resolution of the available 
information, especially in the northern and central Italy. Human activities influenced 38% and 42% of the 
habitat suitability of H. hippocampus and H. guttulatus, respectively, while only 25% and 30% of their potential 
distributions, respectively, are protected by Italy's existing conservation area system, in accordance with the 
global average for seahorses. In particular, the central Adriatic Sea represents a critical area where the occur
rence of these seahorses is lower and the anthropic impact is higher. Considering all the Italian regions, fishing 
effort is the main human activity impacting both species. These findings will support the implementation of more 
efficient conservation actions. We encourage the application and interaction of citizen science and spatial 
ecology analyses to facilitate the assessment and sustainable management of elusive organisms.   
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1. Introduction 

Citizen science consists in the active and direct involvement of 
members of the general public in scientific research, particularly data 
collection, analysis, and monitoring, to increase scientific knowledge 
(Fraisl et al., 2022). In the last decade, increasing partnerships between 
citizens and scientists have improved public engagement and conser
vation efforts worldwide (Kelly et al., 2020). Scuba divers are the marine 
users that contribute the most to some marine citizen science initiatives, 
both in terms of quantity and duration (Lucrezi et al., 2018; Martin et al., 
2016). They can help speed up the scientific process by allowing more 
information to be obtained with reduced costs, time, and resources for 
tasks that would otherwise require more substantial efforts to be per
formed at the required temporal or spatial scales (e.g., Lucrezi et al., 
2018). In addition to data gathering, scuba divers can contribute to data 
analysis and dissemination activities (e.g., Martin et al., 2016). Collab
orations between citizens, scientists, and local stakeholders can increase 
the success of conservation initiatives as they improve access to local 
and traditional knowledge, inspire conservation-minded behaviours, 
foster relationship-building, and raise the credibility of the science and 
data used (Ballard et al., 2017; Fulton et al., 2018; Kelly et al., 2019; 
Ottinger, 2010). Marine citizen science can bridge gaps in scientific 
information by using “people skills” to collect data in remote areas, in 
real time, and in large quantities, as shown in the Secchi Disk Project 
(Seafarers et al., 2017), Redmap Australia (Pecl et al., 2019) and iSea
horse (Lourie et al., 1999). The latter initiative is an online database of 
seahorse sightings developed by researchers at the University of British 
Columbia, which takes advantage of the power of citizen science to 
gather data for research and conservation. Seahorses' sighting is a 
worldwide growing form of ecotourism focused on observing seahorses 
underwater either by snorkelling or scuba diving (e.g., Freret-Meurer 
et al., 2018; Giglio et al., 2019; Loh et al., 2016; Najera-Medellin et al., 
2023) and can contribute substantially to increasing knowledge on the 
distribution of these fishes. 

Seahorses (Hippocampus spp.) are iconic and charismatic animals 
whose conservation is of global concern (Camins Martinez et al., 2023; 
Vincent et al., 2011; Zhang and Vincent, 2018; Zhang and Vincent, 2019a). 
Protecting seahorses is tightly linked to preserving their diverse habitats, 
such as seagrasses (for example, Posidonia oceanica and Zostera marina), 
mangroves, coral reefs, estuaries, and seaweeds, and all the organisms that 
live therein. Due to their popularity in collective imagery, these fish are 
interesting attractions in the wildlife viewing sector, are commonly used as 
flagship species for global conservation efforts, and are particularly 
effective in drawing citizen towards community science initiatives (Vin
cent et al., 2011, iSeahorses). Hippocampus guttulatus and H. hippocampus 
are currently distributed in Europe and North Africa, including the Atlantic 
Ocean, Mediterranean Sea, and Black Sea (Pierri et al., 2022). They are 
included in the IUCN Red List of Threatened Species, where both species 
are assessed as Data Deficient (Pollom, 2014; Pollom, 2017). These ani
mals are vulnerable to anthropogenic activity, including habitat loss 
caused by commercial, residential, and touristic coastal development as 
well as unintentional by-catch through destructive fishing gear such as 
trawls and dredges (Woodall et al., 2018). Due to their apparently scat
tered distribution, low density, and cryptic behavior, ecological data on 
seahorses are limited (Foster and Vincent, 2004). All these characteristics 
make seahorses particularly challenging to survey, evaluate, and track the 
state of their populations to improve their conservation status. Under
standing the threats, distribution, and habitat preferences of these fishes is 
key to their conservation (Camins Martinez et al., 2023; Monteiro et al., 
2023; Zhang and Vincent, 2018; Zhang and Vincent, 2019b) and requires 
detailed knowledge about their geographical distributions. In fact, 
obtaining a good resolution of their distribution is crucial to validating 
their presence and identifying hotspots and potential risks. Finally, 
increasing habitat-preference knowledge is essential to protecting species 
at the local scale, where conservation actions are more easily implemented 
and effective (Zhang and Vincent, 2018; Zhang and Vincent, 2019a). 

Spatial ecological analyses of elusive species such as seahorses are 
particularly useful to assess how they can be impacted by current and 
future environmental and anthropogenic drivers of climate change 
(Monteiro et al., 2023; Zhang and Vincent, 2018; Zhang and Vincent, 
2019b). Geographic Information System (GIS) analysis and Species 
Distribution Models (SDMs) provide quantitative descriptions of the 
relationship among species occurrences, ecological requirements, and 
potential threats that can be easily visualised on geographic maps and 
provide useful and accessible information to plan efficient conservation 
actions (IUCN Standards and Petitions Subcommittee, 2017; Zhang and 
Vincent, 2018; Zhang and Vincent, 2019a). 

Here, we aim to contribute to the effective monitoring and man
agement of seahorses by providing crucial information on their distri
bution, habitat preference, the degree of protection currently granted by 
marine protected areas, and anthropogenic threats affecting the two 
Hippocampus species inhabiting this area of the Mediterranean Sea. We 
combined solid presence data on H. guttulatus and H. hippocampus ob
tained through an accurate citizen science survey in Italy with advanced 
GIS and SDM methodologies. Previous studies described some of these 
features in these species at a small spatial scale (e.g., Gristina et al., 
2015; Lazic et al., 2018, 2023; Spinelli et al., 2020; Vivas et al., 2023) or 
through a citizen science approach (Goffredo et al., 2004; Lazic et al., 
2022). However, the spatial resolution of these studies was rather 
limited, and they did not provide more accessible and detailed infor
mation, such as geographically-referenced presence/absence records, 
as, for example, in a map. Then, we integrated citizen science as well as 
spatial ecological analysis tools for the analysis of distribution in the 
Italian H. guttulatus and H. hippocampus populations as a case study for 
more solid and evidence-based conservation actions as an example to 
use in other countries. 

2. Materials and methods 

2.1. Presence records 

H. guttulatus and H. hippocampus (Fig. 1) records were collected 
through a dedicated citizen science survey using a questionnaire sub
mitted to Italian diving centers. To fully capture the biological features 
and spatial distribution of both seahorses, we involved the most 
important Italian diving associations, such as the Professional Associa
tion of Diving Instructors (https://www.padi.com) and Professional 
Scuba Schools (https://www.pssworldwide.org), that together represent 
the main Italian diving centers, Italian seahorse experts, and included 
the known species' information from literature (e.g., Lourie et al., 2004). 
The questionnaire form is freely accessible at https://docs.google.co 
m/forms/d/e/1FAIpQLScZh-lPR8-kgBCra7lZbQf7fkIgjfxNqlAj7mNK 
5kTJdrNi5A/viewform. Data collection started on January 7th and 
ended on November 3rd in 2022. The questionnaire was sent by email to 
the Italian diving centers after being described through online seminars 
dedicated to the associations' members, shared on social media (Face
book, Twitter, and Instagram), and submitted through an interview 
during the main European diving event such as EuDi (European Diving) 
Show 2021 (https://www.eudishow.eu/site/) that includes also non- 
recreational divers. We received 115 replies to our questionnaires 
including geographical coordinates of H. guttulatus and H. hippocampus 
sightings. As citizen scientists typically have varying types and levels of 
expertise, to ensure data accuracy and quality, all the reported occur
rences were visually inspected using Google Earth Pro v. 7.3.2 (https:// 
www.google.it/earth/download/gep/agree.html) to retain only the 
points falling in areas that were consistent with the known species' 
geographical distribution shown by Zhang and Vincent (2018). Unde
fined, unclear (for example, points fell on land or in the high sea, far 
from the coasts), ambiguous, or duplicate records were excluded from 
our analyses. For the modelling analysis, we only used occurrences that 
exceeded the following procedures: 1) photo-identification, the 
respondent provided a seahorse’ picture; 2) if the reporter previously 
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demonstrated a reliable ability to discriminate between the two sea
horses when completing the questionnaire; 3) if the record fell “in” or at 
a “maximum of 1 km away” from the habitat suitability binary maps of 
H. guttulatus and H. hippocampus previously published by Zhang and 
Vincent (2018). Lastly, to avoid redundancy, we removed the spatially 
auto-correlated points from our dataset, deleting all the records falling 
within a distance of 1 km by using the Spatially Rarefy Occurrence Data 
tool of SDMtoolbox v. 2.5 (Brown et al., 2017, hereafter SDMtoolbox) in 
ArcGIS v. 10.8 (http://www.esri.com/software/arcgis, hereafter Arc
GIS). The final datasets used for H. guttulatus and H. hippocampus 
modelling analyses included 46 and 39 points, respectively (Figs. S1 and 
S2). This sample sizes are well above the minimum requirement of 20 
generally deemed to be suited for SDMs (Guisan et al., 2017; Merow 
et al., 2014). Further details on how to get our presence data can be 
found in the Data Availability section. The questionnaire included also 
details on sightingh sites such as habitat features and number of 
encountered specimens, and percentages on the total number of re
sponses were computed for each of these values. 

2.2. Environmental predictors 

To investigate the current potential distribution of H. guttulatus and 
H. hippocampus, we considered a set of 72 benthic marine variables at an 
average depth extracted from the Bio-ORACLE database (Assis et al., 
2018, https://www.bio-oracle.org/index.php), the bathymetry from the 
Global ocean & land terrain models (GEBCO, Tozer et al., 2019, http 
s://www.gebco.net/data_and_products/gridded_bathymetry_data), and 
the habitat availability maps from the European Marine Observation and 
Data Network Seabed Habitat (https://emodnet.ec.europa.eu/geoviewe 
r/). 

Bio-ORACLE is a set of GIS rasters providing geophysical, biotic, and 
environmental data for surface and benthic marine realms. The Bio- 

ORACLE values are averaged over 14 years (2000 to 2014). The data 
are available for global-scale applications at a spatial resolution of 5 
arcmin (approximately 9.2 km at the equator). As seahorses are benthic 
animals (Correia et al., 2018), we chose our predictors from the avail
able benthic layers. The benthic layers were produced with an inter
polation process that considers the geographic position and depth of 
cells, as inferred from a bathymetric layer. The downscaling process for 
benthic layers considered the geo-graphical position and depth of cells 
as inferred from the general bathymetric chart of the oceans (GEBCO). 
Given that focal cells included a range of depth values, the benthic layers 
were produced for the minimum, average, and maximum depths of 
GEBCO. The current gridded bathymetric data set, the GEBCO_2023 
Grid, is a global terrain model for ocean and land, providing elevation 
data, in meters, on a 15 arc-second interval grid. Habitat availability 
maps are outputs of habitat distribution modelling at a spatial resolution 
of 30 arc-second (approximately 1 km at the equator). 

We clipped all the predictors on Italian coasts through the tool “clip” 
and converted them into ASCII files using the conversion tool “raster to 
ASCII” in ArcGIS. Then, all predictors were converted to 1 km resolution 
using the resample tool in ArcGIS to get all the variables at the same 
spatial resolution. We used bilinear interpolation to resample the pre
dictors, a method that computes the value of each pixel by averaging 
(weighted for distance) the values of the surrounding four pixels, and is 
suitable for continuous data such as our environmental data. The model 
predictors and resolution were selected according to the available bio
logical knowledge on these species, with a special focus on distribution, 
home range, feeding, and swimming requirements (Foster and Vincent, 
2004; Monteiro et al., 2023; Zhang and Vincent, 2018). Then, we 
generated a Pearson's correlation matrix with the SDMtoolbox (version 
2.2) (Brown et al., 2017) in ArcGIS and selected only the variables for 
which r < 0.7 to remove the highly correlated ones. This led to a final set 
of eight predictors used for our seahorse models: mean temperature (◦C), 

Fig. 1. Hippocampus guttulatus (left) and Hippocampus hippocampus (right). Pictures courtesy of Fabio Russo.  
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mean salinity (PSS), mean current velocity (m/s), mean phytoplankton 
(umol/m3), bathymetry (m), habitat availability of Posidonia oceanica, 
coral reefs, and maerl (presence values ranging from 0 to 1). 

2.3. Species distribution models 

The potential distribution of H. guttulatus and H. hippocampus was 
modeled using the maximum entropy method (Maxent, Phillips et al., 
2006, https://biodiversityinformatics.amnh.org/open_source/maxent/ 
), a presence-background algorithm that performs with high predictive 
accuracy, stability, and sensitivity (Duan et al., 2014; Elith et al., 2006; 
Valavi et al., 2022). This algorithm typically results in good predictive 
models compared with other presence-only models or ensemble models 
(e.g., Ahmadi et al., 2023; Hao et al., 2020; Kaky et al., 2020; Montoya- 
Jiménez et al., 2022; Valavi et al., 2022; Wilkes et al., 2023; Zhao et al., 
2021) and and is especially suited to deal with scarce presence-only data 
as elusive species like seahorses (e.g., Ali et al., 2021; Jha et al., 2022). 
Maxent is one of the most widely used SDMs (e.g., Jha et al., 2022; Liu 
et al., 2022; Martínez-Díaz and Reef, 2023; Shi et al., 2023; Sutton and 
Martin, 2022) and produces results that are both predictable (extrapo
lative) and complex (interpolative) and may be considered an excellent 
method to cope with imbalanced-biased data in species distribution 
modelling approaches (Ahmadi et al., 2023). An important issue in the 
modelling procedure concerns the use of a single algorithm model, such 
as Maxent, or an ensemble model, such as Biomod2 (Thuiller et al., n.d.) 
or sdm (Naimi and Araujo, 2016), but it has been widely demonstrated 
that there is no significant difference between using ensembles and 
single algorithm models (e.g., Hao et al., 2020; Kaky et al., 2020). The 
most impactful step on the reliability of species predictions remains a 
scrupulous parameter selection (Morales et al., 2017; Zhu and Qiao, 
2016). For this reason, we used the R package ENMeval (Muscarella 
et al., 2014) to detect the optimal Maxent setting for modelling current 
distribution of H. guttulatus and H. hippocampus (ENMeval R script is 
published in the supplementary materials, Appendix 1). In our analysis, 
a range of regulation multipliers from 0 to 5 (with increments of 1) 
combined with different feature combination selections (Hinge, Linear, 
Linear-Quadratic, Linear-Quadratic-Hinge, Linear-Quadratic-Hinge-Pr 
oduct and Linear-Quadratic-Hinge-Product-Threshold) were tested, 
resulting in 30 possible combinations. Since we have fewer than 50 
occurrence points for both seahorse species, we used the jackknife by 
random k-fold method. We used the delta from the Akaike Information 
Criterion (AIC), AICc, the difference between training and testing AUC 
(AUC. DIFF) and the 10% training omission rate (OR10) to evaluate the 
model's fitting degree and complexity on species distribution (Shi et al., 
2023). The AIC corrected for small sample sizes reflects both model 
goodness-of-fit and complexity. The model with the lowest AICc value (i. 
e. ΔAICc = 0) is considered the best model out of the current suite of 
models; all models with ΔAICc <2 are generally considered to have 
substantial support (Muscarella et al., 2014). The model parameter 
settings with the lowest AICc values (ΔAICc = 0) for both H. guttulatus 
and H. hippocampus were chosen to establish the final Maxent models 
(ENMeval outputs in supplementary materials, Appendix 2). 

The following parameters were used in Maxent: random seed; 
remove duplicate presence records; write plot data; regularisation 
multiplier (obtained from ENMeval analysis); 5000 maximum iterations, 
this value was increased to 5000 to allow the model time to converge 
(Bulgarella et al., 2014); 10,000 background points obtained by using 
buffer distance from observation points (further details in the ENMeval 
analysis in Appendixes 1 and 2); cloglog format, i.e., this output appears 
to be the most appropriate for estimating the probability of presence 
(Sillero et al., 2019; Zarzo-Arias et al., 2019) regularisation multiplier 
and bias file (obtained from ENMeval analysis, Appendixes 1 and 2) 70% 
and 30% for training and testing data, respectively; 100-replicated run 
type selected as bootstrap, i.e., replicate sample sets chosen by sampling 
with replacement. We choose bootstrap as the replicated run type as this 
method offers the best performance and robust results of Maxent models 

obtained with a limited presence-only dataset (e.g., Butler and Sander
son, 2022; Chaitanya and Meiri, 2022; Henderson et al., 2023). The 
remaining model values were set as defaults. 

Our maps were binarised into presence-absence values using a 
threshold that maximised both sensitivity (the percentage of correctly 
predicted presence) and specificity (the percentage of correctly pre
dicted absence, Liu et al., 2005). Such a threshold has been often used (e. 
g., Salinas-Ramos et al., 2021) and constitutes one of the most accurate 
approaches. To obtain the hotspot map, we overlapped the Maxent bi
nary maps of H. guttulatus and H. hippocampus producing two classes of 
species richness: a) 1 species; and b) 2 species. We assigned values of 
0 and 1 to areas of absence and presence, respectively. Then, we sum
med the maps by using the “Raster calculator” tools in ArcGIS. 

2.4. Model validation 

The model's performance was evaluated using the Area Under the 
receiver-operator Curve (AUC). The AUC values range from 0 to 1, 
where values closer to 1 indicate a higher accuracy of model prediction 
(Fielding and Bell, 1997). In addition to the AUC, the True Skill Statistics 
(TSS) was calculated. TSS values range between − 1 and + 1. A TSS value 
of +1 means complete agreement between observed and predicted dis
tributions, whereas values of ≤0 denote no better than random perfor
mance (Allouche et al., 2006). AUC and TSS are the methods most 
commonly used to assess the model performance in species distribution 
model studies (e.g., Gaier and Resasco, 2023; Mondanaro et al., 2023; 
Song and Estes, 2023). 

To further assess the accuracy of our seahorse models, we created an 
independent dataset using H. guttulatus and H. hippocampus' presence 
records obtained from widely used open access biodiversity databases 
such as Global Biodiversity Information Facility (https://www.gbif. 
org/, GBIF, 2022a, 2022b), Ocean Biodiversity Information System 
(OBIS, https://obis.org/), INaturalist (https://www.inaturalist.org/), 
AquaMaps (https://www.aquamaps.org/, Kaschner et al., 2007), and 
from literature such as Zhang and Vincent (2018) to achieve model 
validation (e.g., Konowalik and Nosol, 2021; Westwood et al., 2020). 
The maps of all H. guttulatus and H. hippocampus' presence records ob
tained from the open access biodiversity database are available in the 
supplementary materials (Figs. S3 and S4). We calculated the distance 
between all the occurrences in the above-mentioned dataset and their 
binary maps by using the “Near” tool in ArcGIS. To achieve this aim, we 
converted all the records and the seahorse binary maps into a point 
feature. As suggested in the ArcGIS Help section, we selected the 
geodetic methods to calculate all the distances to consider the curvature 
of the spheroid and correctly deal with data near the dateline and poles. 
Then, we assigned a score of 0 (poor prediction), 0.5 and 1 (good pre
diction) depending on whether the seahorse records fell at a greater 
distance from 1 km, in a distance range from 0 to 1 km and inside (0 
distance) the presence pixel of the seahorse binary maps, respectively. 
We chose the threshold of 1 km in relation to the resolution of the 
environmental predictors used to run the models. Finally, we calculated 
a mean value and assessed the performance of our models following the 
slightly modified method by Konowalik and Nosol (2021). Three per
formance classes were considered: poor (0–0.335), medium 
(0.336–0.665), and good (0.666–1). 

2.5. Niche analysis 

To investigate niche similarity between the H. guttulatus and 
H. hippocampus, we performed a niche overlap analysis (Di Cola et al., 
2017). This analysis included three steps: (1) estimating the density of 
occurrences of each species along the environmental axes using a multi
variate analysis; (2) measurement of niche overlap along the gradients of 
this multivariate analysis; (3) testing for niche equivalency and similarity. 

For the first step, the PCAENV approach (Broennimann et al., 2012) 
was applied using the eight selected variables (Table 1) and the two 
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species' occurrences. The environmental space was divided into a grid of 
100 × 100 cells and the frequency of species occurrences for each 
combination of environmental conditions in each grid cell of the envi
ronmental space was calculated using a kernel smoother density func
tion (Di Cola et al., 2017). Then, we calculated the differences in 
occurrence densities between the two species and estimated the degree 
of niche overlap using the ecospat R package (v. 3.2, Di Cola et al., 2017) 
and the Schoener's D metric (Schoener, 1968), which ranges from 0 (no 
overlap) to 1 (complete overlap). Finally, we used the species' density in 
the environmental space to test whether niches of the two compared 
species are equivalent (show constant overlap as estimated by the 
Schoener's D metric, p-value <0.05) or different (no overlap) when oc
currences are randomly shuffled 100 times across the ranges (Broenni
mann et al., 2012; Warren et al., 2008). Similarly, the niche similarity 
test estimated if the niches of the target species are more similar than 
expected by chance using 100 repetitions while taking into account the 
environmental conditions of the geographic space across the study area, 
a main limitation of the niche equivalence test (Warren et al., 2008). 
Niche analysis script is in the supplementary materials, Appendix 3. 

2.6. Least-cost paths 

The paths of H. guttulatus and H. hippocampus were identified by 
computing the least-cost paths through the tool “Calculate Least-Cost 
Corridors and Paths” of SDMtoolbox in ArcGIS. This tool creates a 
polyline shapefile of least-cost paths between pair-wise combinations of 
input points. A single least-cost path between sites can oversimplify 
landscape processes, while habitat heterogeneity and its varying roles in 
dispersal can be better captured by using categories of cost paths that 
include paths with slightly more costly path lengths (relative to the least- 
cost paths). To do this, we created a friction layer for both seahorses 
through the tool “Invert SDM/ENM” of SDMtoolbox in ArcGIS. A friction 
layer is a raster that depicts the ease of dispersal from each locality 
through the landscape. This tool inverts a SDM for use as a friction 
surface. Areas of high suitability were converted to areas of low 
dispersal cost. All the presence records of two seahorses obtained from 
the open access biodiversity database (described in the model validation 
paragraph) that completely fell into the binary maps of H. guttulatus and 
H. hippocampus were used as inputs. 

2.7. Conservation gap analysis 

A conservation gap analysis based on the binarised potential distri
bution maps (e.g., Ramirez-Villegas et al., 2022; Southwell et al., 2022; 

Wang et al., 2023) was used to assess the degree of protection granted to 
H. guttulatus and H. hippocampus by all the protected areas in Italy. We 
overlaid the map of each seahorse and the hotspot map with the shape 
files containing the boundaries of all Marine Protected Areas in Italy. 
The shape files of all the protected areas in Italy were downloaded from 
the UNEP's World Conservation Monitoring Centre (www.protectedp 
lanet.net, downloaded in May 2023). Further details, for example, on 
the size and distribution of the Marine Protected Areas can be found at 
https://www.protectedplanet.net/en/thematic-areas/marine-protecte 
d-areas. 

2.8. Assessing the impact of anthropic activities on habitat suitability of 
H. guttulatus and H. hippocampus 

We generated risk maps to assess the impact of anthropic activities 
on the potential distribution of H. guttulatus and H. hippocampus along 
the Italian coasts. To achieve this aim, we used the binary map of both 
the seahorses and the shapefiles of the Italian regions (from the Italian 
National Institute of Statistics, https://www.istat.it/ambiente/cartogra 
fia), and anthropic activities (from the EMODnet map viewer, 
https://emodnet.ec.europa.eu/geoviewer/). We considered the main 
anthropogenic activities threatening the conservation of seahorses such 
as fishing effort, discharge, dredging, cable, port, oil, and natural gas 
exploration (IUCN, 2016; Pollom et al., 2021). Further layer details can 
be found in the metadata file available in the EMODnet map viewer by 
clicking on each of the shapefiles here considered. Then, we assessed the 
amount of seahorse's suitable habitat that overlapped the EMODnet 
human activities through the “Intersect” tool in ArcGIS. To do this, we 
first converted the binary maps into features. The tool computes a 
geometric intersection of the input features. Features or portions of 
features that overlap in all layers and/or feature classes were written in 
the output feature class. Furthermore, we overlaid the hotspot map and 
the six layers of human activities to quantify their effects on the seahorse 
richness distribution. Risk maps for H. guttulatus and H. hippocampus in 
Italy were obtained for all the human activities that fell into the seahorse 
binary maps for each Italian region. Then, we split the results obtained 
for each region into five classes (e.g., Zhang and Vincent, 2019a) by 
using the Natural Breaks – Jenks methods in ArcGIS. The Natural Breaks 
classes are created in a way that best groups similar values together and 
maximizes the differences between classes. The features are divided into 
classes whose boundaries are set where there are relatively big differ
ences in the data values. We used the same procedure for producing the 
risk maps for H. guttulatus and H. hippocampus paths. However, we used 
only paths with 1 km of length as seahorses have usually very short 
home ranges (Foster and Vincent, 2004). 

3. Results 

3.1. Citizen science 

According to our surveys, divers mainly encountered few speciemens 
of H. guttulatus and H. hippocampus at a depth of 6–15 m and 0–10, 
respectively, both in mixed and rocky substrates in presence of seaweeds 
and Posidonia oceanica (Table 1). 

3.2. Species distribution models 

Our results indicate that the mean temperature (80.78%), habitat 
suitability of P. oceanica (14.12%), and bathymetry (3.61%) were the 
main drivers of the potential distribution of the Italian populations of 
H. guttulatus. In particular, this species is more likely to occur where the 
mean temperature ranges between 18 and 21 ◦C, P. oceanica is more 
abundant, and in shallow waters (< 50 m). Our model predicted a 
suitable area of 25,285 km2 and high probability of occurrence along the 
entire Italian coasts, mainly in the Tyrrhenian, Ionian, Sardinia and 
Sicily seas. Few areas at low probability were found along Marche and 

Table 1 
Details on the H. guttulatus and H. hippocampus' sightingh sites reported in the 
citizen science survey.  

Type Value H. guttulatus 
(%) 

H. hippocampus 
(%) 

Depth 0–5 m 21.82 37.50  
6–10 m 38.18 31.25  
11–15 m 25.45 12.50  
16–20 m 7.27 16.67  
> 20 m 7.27 2.08 

Substrate Artificial 5.45 6.25  
Mixed subtsrate 41.82 50.00  
Rocky 29.09 22.92  
Sandy 23.64 20.83 

Habitat Coralligenous 25.45 18.75  
Other marine 
plants 10.91 14.58  
Posidonia oceanica 29.09 25.00  
Seaweed 34.55 41.67 

Number of 
specimens 1–3 89.09 81.25  

4–10 9.09 18.75  
> 10 1.82 0  
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Emilia-Romagna coasts (Fig. 2a and c). Considering only the Italian 
regions with access at sea, the highest values of habitat suitability were 
observed in Sicily, Sardinia, Apulia, Tuscany, Calabria, Lazio, and 
Campania (> 1500 km2), whilst Veneto, Friuli Venezia Giulia, and 
Emilia-Romagna regions exhibited the lowest areas of suitable habitat 
(< 100 km2). In H. hippocampus, the mean temperature (73.06%) 
emerged as the main contributor of its Italian distribution, followed by 
the habitat suitability of P. oceanica (10.37%), bathymetry (9.14%) and 
habitat suitability of coral reefs (5.50%). This seahorse exhbited a 
preference for areas with mean temperature ranges between 19 and 
21 ◦C, bathymetry <50 m and high values of habitat suitability of 
P. oceanica and/or coral reefs. Our model predicted a suitable area of 
20,169 km2 and high probability of occurrence along the entire Italian 
coast, mainly in the Tyrrhenian, Ionian, Sardinia, and Sicily seas. A gap 
in H. hippocampus' habitat suitability was found from the northern coast 
of Abruzzo to Emilia Romagna (Fig. 2b and d). Sicily, Sardinia, Apulia, 

Calabria, Tuscany, and Campania regions (> 1500 km2) had the highest 
values of suitable areas for H. hippocampus while the lowest one (< 100 
km2) were found in Molise, Emilia-Romagna, and Marche regions. 

The hotspot map showed that the areas that included a single Italian 
Hippocampus species had an extension of 6249 km2 and were located 
mostly in the north of the Tyrrhenian and Adriatic seas (Fig. 3). The 
areas with both seahorses' species were in the southern areas of Italy and 
along the coasts of Lazio and Tuscany regions (Fig. 3) for a total surface 
of 19,602 km2. Sicily, Sardinia, Apulia, Calabria, Campania, Tuscany, 
and Lazio (> 1500 km2) were the regions with the highest values of 
suitable areas for both the seahorses' species, while the lowest ones (<
100 km2) were found in Veneto, Friuli Venezia Giulia, Molise, Emilia- 
Romagna, and Marche regions. 

Fig. 2. Hippocampus guttulatus (a and c) and Hippocampus hippocampus (b and d) continuous (up) and binary (down) maps of habitat suitability. Continuous values 
close to 1 indicate an area with high probability of seahorse's presence, close to 0 suggest a low probability of seahorse's presence. Binary maps: red areas = presence; 
white areas = absence. Italy's boundaries are denoted by the black continuous line. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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3.3. Model validation 

SDMs showed an excellent level of predictive performance, as indi
cated by the AUC and TSS values of 0.91 ± 0.02 (mean ± standard de
viation) and 0.68 ± 0.02 in H. guttulatus and 0.92 ± 0.03 and 0.69 ±
0.03 in H. hippocampus. 

The high predictive performance of our models was confirmed by 
validation using multiple databases (Table 2). 

3.4. Niche analysis 

The first and second principal component of the ecospat PCA of both 
species explained 35.4% and 22.2% of the variability in the study area, 
respectively (Figs. 4a-g). The correlation plot showed that the mean 

temperature, mean currents velocity and habitat availability of 
P. oceanica and maerl were positively correlated, while bathymetry and 
mean salinity were negatively correlated (Fig. 4d). 

The similarity tests showed that the niches of the two seahorses were 
significantly similar (Table 3, Figs. 4e and f) but not equivalent, as 
indicated by the equivalency tests (Fig. 4g), despite the mean Schoener's 
D index indicated high overlap (Table 3). 

3.5. Least-cost paths 

We obtained 8125 polylines for H. guttulatus with the least-cost-path 
cost values ranging from 0.011 to 234.985 and the least-cost-path dis
tance values ranging from 1 km to 3946 km (Fig. S5). In H. hippocampus, 
we calculated 4454 polylines with least-cost-path cost values ranging 
from 0.008 to 229.120 and a least-cost-path distance values ranging 
from 1 km to 4163 km (Fig. S6). Since we selected only the path <1 km, 
we obtained 23 and 19 paths in H. guttulatus and H. hippocampus, 
respectively (Tables S1 and S2). The least-cost paths were found mainly 
in Apulia, Calabria and Sicily regions in Southern Italy for both the 
seahorses (H. guttulatus = ca. 87%; H. hippocampus = ca. 95%). 

3.6. Conservation gap analysis 

The overlay between the existing system of conservation areas in 
Italy and the binary map of the H. guttulatus or H. hippocampus potential 
distribution showed that around 30% and 25% of their potential habitats 
were protected, respectively. Areas were both of the twospecies were 
protected represented 25% of their co-occuring distribution (Fig. 5). 

Specially Protected Areas of Mediterranean Importance (31.95%), 
and International significance Natural Marine Area (26.28%), and 
Special Areas of Conservation (18.38%) were the main types of pro
tected areas that overlapped the binary map of H. guttulatus, while 
Special Areas of Conservation (27.73), and International significance 
Natural Marine Area (26.04%) were the most effective in the protection 
of H. hippocampus' habitat suitability map. Hotspot maps, where both 
species co-occurred, were covered mainly from Special Areas of Con
servation (27.20%), Specially Protected Areas of Mediterranean 
Importance (26.34%), and International significance Natural Marine 
Area (20.16%); and Specially Protected Areas of Mediterranean 
Importance (38.82%) and International significance Natural Marine 
Area (33.66%) in the case of one species. Further details and names of 
the protected areas where our model predicted the potential presence of 
the seahorses can be found in the supplementary materials (Tables S3 – 
S6). 

Around 9% and 26% of H. guttulatus and H. hippocampus paths were 
covered by protected areas, respectively. 

3.7. Assessing the impact of human activities on habitat suitability and 
paths of H. guttulatus and H. hippocampus 

Around 42% and 38% of H. guttulatus and H. hippocampus' habitat 
suitability, respectively, was affected by anthropic activities (Fig. 6a and 
c) Considering all the Italian regions, fishing effort (mean = 96%), port 
(mean = 2%), oil and natural gas exploration (mean = 1%) were the 
main anthropic activities that impacted H. guttulatus (Fig. 6b), while 
fishing effort (mean = 97%), discharge (mean = 1%), and natural gas 
exploration (mean = 1%) mainly fell in H. hippocampus' binary maps 
(Fig. 6d). Dredging was the human activity with the lowest potential 
impact for both seahorses (Fig. 6b and d). 

The regions where H. guttulatus faced the highest potential risk of 
being impacted by human activities were Emilia Romagna (63%), 
Abruzzo (54%), Sicily (50%), and Marche (49%), while Basilicata 
(30%), Veneto (8%), and Friuli Venezia Giulia (5.71) were the regions 
characterised by the lowest potential risk (Fig. 7a and Table S7)). 
Instead, we found that Emilia Romagna (61%), Marche (60%), Abruzzo 
(51%), and Campania (45%) were the regions with the highest potential 

Fig. 3. Hotspot map of potential seahorse species richness in Italy. We defined 
two categories as follows: a) 1 species (blue areas); and b) 2 species (red areas). 
Italy's boundaries are denoted by the black continuous line. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 2 
Performance classes' evaluation of the presence records of H. guttulatus and 
H. hippocampus obtained from different sources: GBIF, INaturalist, OBIS, 
AQUAMAPS, and Zhang and Vincent (2018). Three performance classes were 
considered: poor (0–0.335), medium (0.336–0.665) and good (0.666–1).  

Source H. guttulatus (class) H. hippocampus (class) 

GBIF 0.77 (good) 0.82 (good) 
INaturalist 0.74 (good) 0.73 (good) 
OBIS 1.00 (good) 1.00 (good) 
AQUAMAPS 0.70 (good) 0.85 (good) 
Zhang and Vincent (2018) 0.90 (good) 1.00 (good)  
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risk for H. hippocampus, while Tuscany (28%), Friuli Venezia Giulia 
(20%), and Veneto (14%) were the regions at lowest risk (Fig. 7b and 
Table S8). 

The joint risk map of both seahorse species was similar to the 
H. hippocampus one (Fig. 7b). 

H. guttulatus' paths were impacted by the presence of ports (33%), 
dredging (27%), and discharge (27%), while discharge (30%), fishing 
effort (26%), and ports (21%) affected the H. hippocampus ones. 

4. Discussion 

The Mediterranean seahorses H. guttulatus and H. hippocampus are 
elusive species that have been assessed as Data Deficient by the IUCN 
Red List of Threatened Species (Pollom, 2014; Pollom, 2017). Here, we 
contributed to increase the urgently needed ecological knowledge on 
these fishes through citizen science, GIS and SDMs applications in Italy. 
We provided spatially-explicit information on their distribution at an 
unprecedented resolution on the whole national territory, aiding efforts 
to improve their conservation and limit detrimental anthropic impacts. 

4.1. Species distribution models, niche analysis and least-cost paths 

Our SDMs successfully estimated the current Italian distributions of 
H. guttulatus and H. hippocampus, respectively, as shown by validation 
with the other biodiversity platforms (Konowalik and Nosol, 2021) as 
well as the AUC and TSS values, which are among the highest reported in 

Fig. 4. Niche similarity and equivalency between H. guttulatus and H. hippocampus: a) Environmental occupancy plot along the two-first axis of the PCA-env of 
H. guttulatus; b) Environmental occupancy plot of H. hippocampus; c) Niche overlap (blue) between H. guttulatus (green) and H. hippocampus (red); d) PCA predictor 
correlation circle, labels as follows: temperaturemean = mean temperature; salinitymean = mean salinity; velocitymean = mean current velocity, phytoplankton =
mean phytoplankton; bathy_30s = bathymetry; posidonia = habitat availability of Posidonia oceanica; maerl = habitat availability of maerl; Coral: habitat availability 
of coral reefs; e-g) Histograms of the simulated values for the niche similarity and equivalency tests. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 3 
Niche overlap metric (Shoener's D) and the equivalency and similarity 
tests among the species Hippocampus guttulatus (Sp1) and Hippocampus 
hippocampus (Sp2). Significant P values (P < 0.05) are shown in bold.  

Test H.guttulatus - H.hippocampus 

Shoener's D 0.63 
Equivalency P = 0.353 
Similarity 1 - > 2 P ¼ 0.039 
Similarity 2 - > 1 P = 0.056  

Fig. 5. Percentage of protected habitat suitable for Hippocampus guttulatus and 
Hippocampus hippocampus in Italy. 
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published models (e.g., Ahmadi et al., 2023; Buonincontri et al., 2023; 
Di Febbraro et al., 2023; Rubanschi et al., 2023). Our results indicated 
that Italy hosts highly suitable areas for both species, consistent with 
earlier research (Monteiro et al., 2023; Ready et al., 2010; Zhang and 
Vincent, 2018). Specifically, our maps showed a greater amount of 
habitats in Italy that are suitable for both species close to the coasts of 
the Tyrrhenian Sea and Southern Italy than previous SDMs for seahorses 
in the Mediterranean basin. Here, previous analyses did not show suit
able zones in areas where the presence of both seahorses has been 
confirmed, such as in the Mar Piccolo in Taranto (Southern Italy, Apulia, 
Pierri et al., 2022), the Messina Strait (data collected from our Citizen 
Science survey), and the Tyrrhenian coast from Campania to Sicily. Our 
models highlighted a potential distribution gap in both species from 
Abruzzo to Emilia-Romagna, in line with the current knowledge on these 
species, while Monteiro et al. (2023) considered the whole Northern 
Adriatic Sea as suitable. The discordance among our and previous 
findings is likely the result of differences in geographic scale and reso
lution, which were improved in our study. Additionally, we considered 
benthic predictors linked to bathymetry, while Zhang and Vincent 
(2018) and Monteiro et al. (2023) used the surface layers (a constant 0.5 
m depth, Assis et al., 2018), which are less representative of benthic 

species associated to the sea bottom such as H. guttulatus and 
H. hippocampus (Correia et al., 2018). The accurate selection of pre
dictors is a major methodological concern affecting model performance 
and needs to be highly representative of the biology of the target species 
when using SDM outputs in conservation prioritization (Franklin, 2023). 

Our niche analyses showed that H. guttulatus and H. hippocampus' 
niches were similar but not equivalent. Although these two seahorses 
share a wide surface (> 97%) in terms of geographic extension (a 
bidimensional space), they occupied different niches when the multi
dimensionality of predictors was taken into account. H. hippocampus 
resulted to be associated with more open habitats, while H. guttulatus is 
mostly positively correlated with vegetation coverage, possibly indi
cating divergence in feeding opportunities and predation risk (Foster 
and Vincent, 2004). Our models showed that on a larger spatial scale, 
H. guttulatus and H. hippocampus can be found in a variety of habitats (e. 
g., seagrasses meadow of Posidonia oceanica, coral reefs, and maerl) with 
varying degrees of complexity in terms of their ecological requirements, 
for example, the presence of phytoplankton, temperature, and current 
velocity (Pierri et al., 2022). However, at the local scale, seahorse 
populations may adapt to different micro-habitats, opting for an alter
native niche that eventually becomes their first choice (e.g., artificial 

Fig. 6. Overlap between binary maps (green) and human activities (red), and details on anthropic impact in each Italian region in Hippocampus guttulatus (a and b) 
and Hippocampus hippocampus (c and d). 
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structures), thereby increasing the seahorse's plasticity to habitat 
changes (Correia et al., 2018). The existence and abundance of seahorses 
are directly influenced by habitat availability; hence, it is crucial to 
undertake protective measures (such as Marine Protected Areas) in 
order to maintain healthy habitats and high standards for biodiversity. 
Our habitat results of the citizen science survey are consistent with the 
current seahorse ecological knowledge in Italy; however, we noted that 
the majority of the respondents sighted a few specimens of H. guttulatus 
and H. hippocampus during the diving. Beyond a possible oversight on 
the divers' part due to mimetic capacity of the seahorses, it could means 
which there is a currently decline of the Italian Hippocampus pop
ulations, mainly due to habitat loss and degradation caused by coastal 
development and destructive fishing gears such as trawls and dredges, in 
accordance with IUCN analysis (e.g., Pollom et al., 2021). 

In both species, the Least-Cost paths were found mainly in three 
Italian regions: Apulia, Calabria, and Sicily, in line with the higher 
number of observations reported in these areas in our citizen science 
survey. In fact, this spatial analysis is strongly related to the number of 
presence records and the biology of the target species (Lazic et al., 
2023). Our results highlighted that monitoring and research efforts on 
the two Italian seahorse species have focused on these areas, and this 
local data is particularly informative (e.g., Pierri et al., 2022). Addi
tionally, H. guttulatus and H. hippocampus are characterised by a sparse 
distribution, low mobility, and small home ranges, similarly to all the 
Hippocampus species (Foster and Vincent, 2004); thus, a larger amount 
of presence data at low spatial resolution (<1 km) is needed throughout 
their distribution range to increase monitoring and conservation actions 
in seahorses. To this aim, citizen science surveys, social media, diving 
centers, fishing events, and questionnaires, together with joint research 
efforts and improved scientific data sharing, can help to cost- and time- 
effectively obtain and analyse a large amount of solid information on 
species occurrences (Kelly et al., 2019, 2020). 

The assessment of conservation status has largely focused on 
terrestrial species and involved only few marine organisms, which are 
often classified as Data Deficient (Luypaert et al., 2020). Our findings 
indicated that citizen science is a solid source of occurrence data that can 

directly inform the distribution, niche composition and paths of elusive 
species such as seahorses and facilitate the evaluation of their risk of 
extinction. Our H. guttulatus and H. hippocampus maps can be used to 
plan new citizen science surveys in Italy to improve detailed knowledge 
of local distributions. Our study emphasizes how reliable citizen science 
data can help to derive more accurate SDMs, and in turn, these spatial 
ecology approaches can help extrapolating spatially-restricted infor
mation at a larger geographic scale, i.e., from local observation of single 
divers to national maps of habitat suitability. 

4.2. Conservation gap analysis and risk map 

Protecting seahorses has a cascade effect across local ecosystems and 
contributes to preserving many other marine species and habitats 
(Monteiro et al., 2023; Tabugo et al., 2023; Ternes et al., 2023). 

Our conservation gap analysis highlighted the need for improved 
management and conservation planning in H. guttulatus and 
H. hippocampus, particularly in the face of ongoing climate change and 
anthropic impact. In fact, only 30% and 25% of the potential distribu
tion of H. guttulatus and H. hippocampus, respectively, is under different 
levels of protection in Italy within marine protected areas, national 
parks, special areas of conservation and specially protected areas of 
Mediterranean importance. The amount of protection granted in Italy is 
in line with the worldwide seahorses' average (Zhang and Vincent, 
2019a). Previous studies on the whole distribution showed similar 
(H. guttulatus = 25% and H. hippocampus = 30%, Zhang and Vincent, 
2019b) or substantially lower values of granted protection (5% in both 
seahorses, Monteiro et al., 2023), possibly due to the lower spatial res
olution. Contrarily to marine species with large distributions and 
extended migratory routes, adult seahorses typically show low mobility 
and small home range (Foster and Vincent, 2004). Therefore, their 
protection is aided mostly by spatial analyses at high resolution (≤ 1 
km), as the ones shown in this study. Our results can guide more efficient 
monitoring plans and conservation actions such as increasing the 
extension of protected areas and/or creating a more inter-connected 
network (e.g., Franklin, 2023). In fact, preserving ecological corridors 

Fig. 7. Risk map for Hippocampus guttulatus (a) and Hippocampus hippocampus (b) in Italy due to human activities. Regions without access to sea are shown in grey.  

L. Bosso et al.                                                                                                                                                                                                                                    



Ecological Informatics 79 (2024) 102402

11

or refugia could assist range shifts and support species' persistence in the 
face of climate change or to avoid human activities impact. 

Limited economic and human resources require careful prioritization 
and management of conservation efforts; risk maps such as the ones 
provided in this study can identify areas that require special attention 
and assist local stakeholders and policymakers in the decision-making 
processes directly. We provided the first quantitative assessment of the 
potential detrimental effects of human activities on H. guttulatus and 
H. hippocampus's suitable habitat. Fishing emerged as the main anthropic 
threat in Italy, similarly to field observations in other species Vincent 
et al. (2011) and Cohen et al. (2017). This factor includes direct and 
indirect fishing activities such as intentional fishing aimed at the use of 
Hippocampus spp. specimens as food or medicine, and unintentional 
fishing as bycatch, which needs to be mitigated urgently (Cohen et al., 
2017; Vincent et al., 2011). Biodiversity managers are advised to allo
cate more resources to address this stressor in Italy. Pollution is the 
second predictor known to affect seahorses globally. However, its 
negative impact on the Italian populations of H. guttulatus and 
H. hippocampus is less clear. In fact, conspicuous groups of these species 
have been reported repeatedly in the Mar Piccolo (Taranto, Apulia), a 
heavily polluted area with trace metals, hydrocarbons, pesticides, and 
organic wastes affecting both biotic and abiotic matrices (Cotecchia 
et al., 2021; Gristina et al., 2015; Tiralongo and Baldacconi, 2014). In 
the central Adriatic Sea, our findings suggested that Emilia-Romagna, 
Marche and Abruzzo host few suitable areas that are strongly 
impacted by human activities for both the seahorses. Here, we recom
mend a close and continuous monitoring of these smaller populations 
that could potentially be critically endangered. 

5. Conclusions 

Our findings highlight the importance of taking advantage of citizen 
science and SDMs based on biologically informative layers in marine 
species assessed as Data Deficient to achieve the sufficient level of in
formation needed to correctly assess their conservation status. We used 
H. guttulatus and H. hippocampus in Italy as study models to show how 
such an approach can substantially boost the ecological knowledge of 
elusive species such as seahorses. In turn, the use of charismatic species 
such as seahorses in citizen science or outreach activities can enhance 
public engagement, reduce potential conflicts with socioeconomic ac
tivities (e.g., fishermen), and facilitate successful conservation initia
tives for the marine ecosystems. Furthermore, our maps can be used to 
identify areas of research interest where to deepen knowledge on pres
ence, abundance, habitat preference, impact of human activities, and 
status of seahorses as well as also to validate future Italian seahorse 
datasets. The risk maps may help conservationists and landscape plan
ners to identify zones of conservation concern to be prioritised in Italy. 
Further high-resolution citizen campaigns, SDM analyses and risk maps 
at population-level and in other countries and for other species will 
provide a more comprehensive view of distributions and threats in en
dangered, data deficient species. 
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