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Abstract: In this work, the state -space nonlocal strain
gradient theory is used for the vibration analysis of mag-
neto thermo piezoelectric functionally graded material
(FGM) nanobeam. An analysis of FGM constituent proper-
ties is stated by using the power law relations. The refined
higher order beam theory and Hamilton’s principle have
been used to obtain the motion equations. Besides, the
governing equations of the magneto thermo piezoelectric
nanobeam are extracted by developed nonlocal state-
space theory. And to solve the wave propagation pro-
blems, the analytical wave dispersion method is used.
The effect of magnetic potential, temperature gradient,
and electric voltage in variant parameters are presented
in graph.

Keywords: wave propagation, functionally graded mate-
rials, nonlocal strain gradient state-space theory, mag-
neto piezoelectric nanobeam

1 Introduction

Functionally graded materials (FGMs) are a type of com-
posites initiated by a group of Japanese scientists to con-
trol the volume fraction of the mixture of two or more
materials. The nonlinear vibration of the piezoelectric
nanobeamsbased on the nonlocal and Timoshenko theory,

the influence of the nonlocal parameter, temperature
change, and external electric voltage on the size depen-
dent nonlinear vibration characteristics of the piezo elec-
tric nanobeam are exposed [1]. Researchers [2] studied
the natural frequencies along withmechanical and thermo
electric vibration of piezoelectric nanobeams based on the
nonlocal theory. Ebrahimi [3] reported the scattering of
waves of FG nanobeamof viscoelastic nature. In the frame-
workof third-order shear deformation theory [4], the vibra-
tion characteristics of functionally graded (METE-FG)
nanobeams were analyzed. And the free vibrations of
FGnanoplates resting on elastic foundation viaHamilton
principle was dealt in detail [5]. Alibeigi et al. [6] intro-
duced the buckling retaliation of nanobeams on the basis
of the Euler–Bernoulli beam model with the von Kármán
geometrical nonlinearity. Bending of flexo electric mag-
neto-electro-elastic (MEE) nanobeams lying over Winkler–
Pasternak according to nonlocal elasticity theory has been
studied [7]. Several studies were conducted on [8–10]
hygro-thermal loading, the bending analysis of mag-
neto-electro piezoelectric nanobeams system, dynamic
analysis of smart nanostructures, and frequency analysis
of thermally post buckled FGM thin beams. Stress-driven
vs strain-driven elastic nanobeams have been discussed
via integral elasticity [11,12]. Using the kinematic model,
Kiani and Eslami [13] reported the buckling of beams
made of FG under different types of thermal loading.
The propagation of wave of infinite functionally graded
plate in thermal environment was reported by Sun and
Luo [14]. A consistent refined HSDT is designed to probe
the free vibration of GF plates on elastic foundation and
the influence of boundary condition on the natural fre-
quency [15]. The different working conditions of the nano
sized elements were studied by Thai et al. [16]. By con-
sidering the nonlocal elasticity [17], a prediction has
been made that the essential behaviors of the nanostruc-
tures cannot be same as the macro scale structures. The
Euler–Bernoulli beamtheorywasused tostudy thebending
analysis of microtubules (MT) by Eringen [18]. Based on
Euler–Bernoulli beam theory, the bending analysis of MT
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was studied using the method of Differential Quadrature
(DQ) by Civalek andDemir [19]. Usingfinite elementmethod
(FEM) [20], the nonlinear bending in nanobeams were dis-
cussed. Reddy and El-Borgi [21] investigated the dispersion
of waves with the effects of surface stresses in smart piezo-
electric nanoplates. Bi-directional FGM nanobeamswith the
characteristics of bending, buckling, and vibrational non-
local elements were concentrated in some of the previous
studies [22–24]. The natural frequency variation located on
a viscoelastic sheet was surveyed by using the nonlocal
theory [25]. The size-dependent elements of beamwere ana-
lyzed by Ebrahimi and Barati [26]. Nonlocal elasticity and its
running conditions are discussed in details in the literature
[27]. Based on the nonlocal strain gradient theory (NSGT)
[28], the thermo-mechanical buckling problem of graphene
sheets was proposed. Stiffness, softening, and hardening
effect of FG beam were studied by Li et al. [29]. Solving the
wave dispersion problem of nanoplates was accomplished
by Ebrahimi and Dabbagh [30] with the application of
infusing NSGT and surface-related elasticity for responsive
piezoelectric materials. With the small-scale effect, the free
vibration of 3D FGMEuler–Bernoulli nanobeamwas studied
by Hadi et al. [31]. Alibeigi et al. [32] exposed the buckling
response of a nanobeam on the basis of the Euler–Bernoulli
beammodelusingacouple stress theoryunder various types
of thermal loading and an electrical and magnetic field.
Timoshenko beam theory was investigated by Ke and
Wang [33]with the rise in uniform temperature,magnetic
potential, and external electric potential via nonlocal
form to MEE vibrations. Bending of MEE nanobeam was
studied in detail by Ebrahimi et al. [34]. Along with that,
Ebrahimi et al. [35] investigated the bending of MEE
nanobeams relating the nonlocal elasticity theory under
hygro-thermal loading embedded in Winkler–Pasternak
foundation. The size dependent problems using nonlocal
elasticity theory, nonlocal couple stress theory, and shear
deformation theory were reported [36,37]. Ebrahimi et al.
[38] discussed the effects of various parameters on the
wave dispersion characteristics of size-dependent nano-
plates. The thermal effects on thebuckling and free vibration
of the FG nanobeams is documented well in the literature
[39]. Ebrahimi and Barati [40] discussed the damping vibra-
tion characteristics of the hygro-thermally affected FG vis-
coelastic nanobeams. The thermal effect on buckling and
free vibration characteristics of size-dependent Timoshenko
nanobeams, and the free vibration of curved FG nano size
beam in thermal environment been discussed in the litera-
ture [41,42]. The buckling and vibration properties of sand-
wich FG beams were studied by Vo et al. [43]. Jalaei et al.
[44] studied the thermal and magnetic effects on the FG
Timoshenko nanobeam. Studies over the hygro-thermal

wave characteristic of nanobeam of an inhomogeneous
material with porosity under magnetic field is notable [45].

Hence, this work shows the wave propagation ana-
lysis of FG nanobeam with the help of a nonlocal state-
space strain gradient viscoelasticity. The magneto thermo
material properties of the nanobeam also graded and
implemented via power law relations and the motion
equations are deduced through the Hamilton’s principle.
Furthermore, the dispersion for computed external elec-
tric voltage, magnetic effect, and the gradient of tempera-
ture are presented with graphical solution.

2 Mathematical formulations

Based on the state-space nonlocal strain gradient theory,
the length L, width b, and thickness h of a viscoelastic FG
nanobeam has been investigated (Figure 1). The two parts
of constituent FGM are composed of ceramic part and
metallic part. The components of FGM are considered to
be temperature dependent to evolve a realistic visco-
elastic study.

In this section, power-law relations have been used
to compute the properties. To calculate the temperature
variable towards the thickness direction, the volume frac-
tion of each phase must be calculated by using the
power-law model. Hence, the volume fraction of ceramic
partis given as follows:

⎛
⎝

⎞
⎠

= +V z
h

1
2

,
p

c (2.1)

where the thickness h and the exponential power law p
probe each phase in the material with its distribution of
properties. By considering any desired material property
at the local temperature
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Figure 1: Vibration analysis of FG nanobeam.
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where
−

P P P P P, , , ,0 1 1 2 3 are the coefficients of material
phases. The volume fraction of the metallic phase gives
the volume fraction of the ceramic phase by = −V V1m c.

According to Eringen’s nonlocal theory, the stress
state at a point inside a body is a function of the strains
at all points in the neighboring regions. The basic equa-
tions with zero body force can be defined as follows:

(∣ ∣ )[ ( ) ( ) ( )

] ( )

(∣ ∣ )[ ( ) ( ) ( )

] ( )

(∣ ∣ )[ ( ) ( ) ( )

] ( )

∫

∫

∫

= ′ − ′ − ′ − ′

− ′

= ′ − ′ − ′ + ′

− ′

= ′ − ′ + ′ + ′

− ′

σ α y y τ C ε y e E y Ω y

C α T V y

D α y y τ e ε y E y Ω y

T V y

B α y y τ ε y E x χ Ω y

λ T V y

,

Δ d

,

Δ d

,

Δ d ,

ij

v

ijkl kl mij m n

ijkl kl

i

v

ikl kl m n

i

v

kl m ni n

i

(2.3)

whereσ ε D E, , ,ij ij i i, respectively, represent the stress, strain,
electric displacement, and electric field and B Ω,i i are
the magnetic induction and magnetic field. αkl and TΔ
stand for thermal expansion and temperature differ-
ence. C e,ijkl mij, and χij are the elastic, piezoelectric, and
magnetic constants, respectively, and = /τ e a l0 defines
the scale coefficient, e0 is the material constant, and a
and l are the characteristic length in the internal and
external sides.

Thegoverningequationsof thenanobeamsareobtained
by an accurate kinematic theory. Higher order shear defor-
mation theory also reveals stress-strain changes in solid
bodies. From the previous study [8], we can take the refined
shear deformable beam’s displacement as follows:
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where Π , wb, and ws are the longitudinal displacement,
bending, and shear components of the transverse displa-
cement. Furthermore, in order to distribute the shear
strain, ( )∗f z is the shape function which is designed as
follows [4]:
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To capture the shear strain and stress, the deformed
structural cross section is uncertain with this function.
At free surfaces, it is required to satisfy the assumption
of shear strain nonexistence. By continuum infinitesimal
strain tensor, the nonzero strains can be measured as
follows:
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where ( ) ( )
= −g z 1 f z

z
d

d .

2.1 Motion equations

In accordance with Hamilton’s principle, the extended
Lagrangian can be given as follows:

∏= − +

⋅

⋅

⋅ ⋅

L T V , (2.7)

So, the Hamilton’s principle can be given as follows:
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In Eq. (2.8), variables ∏ V, , and T are the strain energy,
work done, and kinetic energy, respectively. Hence, the
virtual strain energy can be given as follows:
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where = +D e γ e Ex xz x15 11 and = +D e ε e Ez xx z31 33 . The
variation in electric potential in the x direction is =β

( )/π h ϕ x t; , ˜ ; V0 and Ω are the external electric voltage
and natural frequency of the piezoelectric nanobeam,
respectively.

By infusing Eq. (2.6) in Eq. (2.9),
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and the stress resultants can be obtained as follows:

[ ] [ ( )]∫=N M M z f z σ A, , 1, , d ,
A

xxb s (2.12)
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A

xz (2.13)

The kinetic energy of the system can be determined as
follows:

( )⎛
⎝

⎞
⎠

∫=

∂

∂

∂

∂

+

∂

∂

∂

∂

∀

T ρ z Π
t

Π
t

Π
t

Π
t

Vδ ˜
δ

˜ ˜
δ

˜ d ,x x z z
(2.14)

Nonlocal state-space strain gradient wave propagation of nanobeam  3



Infusion of Eq. (2.4) in Eq. (2.14) results in the following:
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In accordance with the magnetic and temperature effect,
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where fB, η, A, and Ωx stand for the magnetic force, mag-
netic field permeability, cross sectional area of the nano-
beam, and the magnetic potential of the longitudinal
magnetic field. For an FG nanobeam, it is assumed that
the temperature can be distributed uniformly across its
thickness and the temperature gradient at stress free state
is TΔ .

In the above definition, the inertia of mass moments
can be defined as follows:
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and the work done Nx with a temperature gradient of
thermal effect can be defined as follows:
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By inserting the Eqs. (2.11) and (2.15) in Eq. (2.8), the
equation of the beam in Euler–Lagrange can be derived
and the outcome can be coupled as follows:

∂

∂

=

∂

∂

−

∂

∂ ∂

−

∂

∂ ∂

N
x

I Π
t

I w
x t

J w
x t˜ ˜ ˜

,0
⁎

2

2 1
⁎

3
b
2 1

⁎
3

s
2 (2.17)

⎜ ⎟⎜ ⎟

( )

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

∂

∂

=

∂ +

∂

+

∂

∂ ∂

−

∂

∂ ∂

−

∂

∂ ∂

− +

∂

∂

+

∂

∂

M
x

I w w
t

I Π
x t

I w
x t

J w
x t

N N w
x

ηΩ w
x

˜ ˜ ˜

˜
,x T x

2
b

2 0
⁎

2
b s

2 1
⁎

3

2 2
⁎

4
b

2 2

2
⁎

4
s

2 2

2

2
2

2

2 (2.18)

⎜ ⎟

⎜

⎜ ⎟⎟

⎛
⎝

( )

⎞
⎠

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

∂

∂

+

∂

∂

−

∂

∂

=

∂ +

∂

+

∂

∂ ∂

−

∂

∂ ∂

−

∂

∂ ∂

− +

∂

∂

+

∂

∂

M
x

Q
x

N w
x

I w w
t

J Π
x t

J w
x t

K w
x t

N N w
x

ηΩ w
x

˜ ˜ ˜

˜
,

x

x T x

2
b

2

2

2

0
⁎

2
b s

2 1
⁎

3

2 2
⁎

4
b

2 2

2
⁎

4
s

2 2

2

2
2

2

2

(2.19)

⎡
⎣⎢

( )⎛
⎝

⎞
⎠

⎤
⎦⎥

( )∫=

∂

∂

+

−

ϕ βz Dx
x

β βz Dzδ cos sin .
h

h

2

2

(2.20)

3 Nonlocal state-space model

This section demonstrates the nonlocality stress and
strain effects on the time–space domains, when the wave
length or excitation frequency interferes with time and
intrinsic characteristic length. Nonlocal time–space vis-
coelasticity problems are based on the combination of the
Boltzmann superposition integral and the Eringen con-
cept of nonlocal elasticity. Accordingly, integral stress in
nonlinear state and strain equations are stated as follows:
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where σij and εkl are the stress and strain tensor arrays
and the nonlocal kernel functions are ( | |)− − ′K t τ r r˜ ,σ
and ( | |)− − ′K t τ r r˜ ,ε . Eq. (3.1) can be read in the fol-
lowing form via Fourier, inverse Fourier, and Taylor
series,
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To balance the absence of stiffness-hardening behavior,
the nonlocal strain gradient elasticity must be incorpo-
rated in the equation. The following relation can be used
to derive the nonlocal strain gradient viscoelasticity with
fraction.
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The Kelvin–Voigt relation of viscoelastic material with
three parameters in a solid state is given as follows:
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4 Governing equations

Eqs. (3.5)–(3.10) must be substituted in equations (2.17)–
(2.20). Now the governing equations are as follows:
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5 Analytical solution

The governing equation obtained in Section 4 will be
solved in this section. The analytical wave dispersion
method is used in this case to solve the problems of
wave propagation for various types of structures, including
beams, plates, and shells. A higher order beam’s solution
function can be in the form as follows:
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where Π w, b, and ws are the anonymous amplitudes of
propagating waves. Here ω & β are frequency and wave
number, respectively. By substituting the above expres-
sion in Eqs. (4.1)–(4.3), the achieved form will be as
follows:
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where damping and mass matrices are given by [ ]K , [ ]C ,
and [ ]M respectively. The components of these symmetric
matrices are as follows:
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6 Results and discussion

This section illustrates the magneto-thermo vibration of
FG nanobeam with the numerical examples. The material

properties are composed of BaTiO3 and CoFe O2 4, which
are presented in Table 1. Table 2 shows the comparison of
the buckling load for various power-law exponent values.
Whereas, Table 3 gives the variation in the magnetic
potential and electric voltages with the varying and
increasing nonlocal parameter. Since an increasing non-
local parameter shows a decrement with the magnetic
potential (Ω) and the electric voltage (V ).

Now, Figures 2 and 3 highlight the effect of external
voltage (V) with the variation in the rising temperature
(ΔT ) and the gradient index (p) for =μ 1.0 & 1.5. Whereas,
with the increase in the external voltage (V = 0, 0.5, and
1), the temperature gradually decreases with respect to
the gradient index (p) and nonlocal parameter. Figure 4
shows the decrement in the buckling load with an
increase in the magnetic effect (Ω) and the nonlocal
value (μ). Also, when there is no magnetic effect found,
the buckling load at some point decreases with the
increse in the value of the nonlocal (μ). Figure 5 presents
the variation in the dimensionless buckling load with
the nonlocal parameter (μ) in the effect of the external
voltage (V). Since there is an increase in the voltage (V),
the dimensionless buckling load declines and gets neu-
tralized at some point of the nonlocal parameter. Figures
6 and 7 depict the effect of gradient index with respect to
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V=0
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Figure 2: External voltage with the presence of rising temperature to
gradient index for μ = 1.0.

Table 1: MEE coefficients of material properties

Material Properties

BaTiO3 E (Pa) 166 e33 (N/m2 K) (7.124 × 10−9)
ρ (kg/m3) 5,800 e15 (c/m2) 14.1
ν (–) 1.1945

OCoFe2 4 E (Pa) 286 e31 (c/m2) −(4.1)
ρ (kg/m3) 5,300 e11 (c/V m) (5.841 × 10−9)
ν (–) 1.167

6  Rajendran Selvamani et al.



the presence of the dimensionless buckling load and
magnetic potential for different nonlocal values. There-
fore, with the surge effect of the gradient index (p), there
is an increase in the magnetic potential with the decrease
in the dimensionless bucklingload and ampilifies over the
nonlocal parameter (μ). Figures 8 and 9 represent the
impact of the electric voltage and dimensionless buckling
load in the presence of the gradient index p = 0, 1, 5 over

nonlocal parameter (μ). Hence, when the gradient index is
null, there is no fluctuation in the buckling load and forms
a linear effect and nonlocal values ampilify the buckling
load. So, if the gradient index rises, then the electric vol-
tage increases with the decrease in buckling load gradu-
ally. Figures 10 and 11 interpret that temperature (ΔT )
stabilizes with an increase in the gradient index andmag-
netic potential. Thus, when the magnetic potential =Ω 0,

Table 2: Comparison of FGM beam non-dimensional buckling for various power-law exponents

L/h p = 0 p = 0.5 p = 1 p = 2 p = 5 p = 10

5 Nguyen et al. (2015) 48.8406 32.0013 24.6894 19.1577 15.7355 14.1448
Present 48.835 31.967 24.6870 19.1605 15.7401 14.13

10 Nguyen et al. (2015) 52.3083 34.0002 26.1707 20.3909 17.1091 15.5278
Present 52.3082 34.0087 26.1727 20.3936 17.1118 15.5291

Table 3: Dimensionless frequency of an FG nanobeam varies with nonlocal parameters, electric voltages, and magnetic potentials

µ p = 0.2 p = 1 p = 5

V = −5 V = 0 V = +5 V = −5 V = 0 V = +5 V = −5 V = 0 V = +5

0 Ω = −0.05 8.34927 7.68726 7.24086 8.3637 7.69636 7.24398 8.3781 7.70545 7.24711
Ω = 0 8.34708 7.68034 7.22898 8.36151 7.68946 7.23212 8.37592 7.69856 7.23525
Ω = −0.05 8.34489 7.67343 7.21709 8.35933 7.68255 7.22023 8.37373 7.69166 7.22337

1 Ω = −0.05 7.96429 7.33365 6.9088 7.97941 7.34319 6.91208 7.9945 7.35273 6.91536
Ω = 0 7.96199 7.32641 6.89636 7.97712 7.33596 6.89964 7.99222 7.3455 6.90293
Ω = −0.05 7.95969 7.31915 6.88389 7.97483 7.32872 6.88718 7.98993 7.33827 6.89047

2 Ω = −0.05 7.62789 7.02471 6.61874 7.64368 7.03468 6.62216 7.65944 7.04462 6.62558
Ω = 0 7.6255 7.01715 6.60575 7.64129 7.02712 6.60917 7.65705 7.03708 6.6126
Ω = −0.05 7.6231 7.00958 6.59273 7.6389 7.01956 6.59617 7.65466 7.02953 6.5996

3 Ω = −0.05 7.33065 6.75176 6.3625 7.34708 6.76213 6.36606 7.36347 6.77248 6.36962
Ω = 0 7.32816 6.74389 6.34898 7.34459 6.75427 6.35255 7.36099 6.76463 6.35612
Ω = −0.05 7.32566 6.73601 6.33544 7.3421 6.7464 6.33902 7.3585 6.75678 6.34259

0 Ω = −0.05 8.55703 8.31260 8.37748 9.43205 8.84645 8.55259 10.2325 9.34987 8.72418
Ω = 0 8.41640 7.88376 7.67745 9.30465 8.44476 7.86815 10.1152 8.97075 8.05433
Ω = −0.05 8.27337 7.43021 6.90683 9.17548 8.02299 7.11820 9.99651 8.57489 7.32348

1 Ω = −0.05 8.08984 7.91790 8.03872 9.01035 8.47664 8.22104 9.84516 9.00077 8.39941
Ω = 0 7.94094 7.46642 7.30630 8.87690 8.05654 7.50644 9.72317 8.60629 7.70137
Ω = −0.05 7.78919 6.98583 6.49177 8.74141 7.61329 6.71622 9.59964 8.19284 6.93341

2 Ω = −0.05 7.67792 7.57252 7.74446 8.64241 8.15496 7.93354 9.50958 8.69849 8.11823
Ω = 0 7.52087 7.09911 6.98123 8.50319 7.71737 7.19042 9.38323 8.28964 7.39369
Ω = −0.05 7.36046 6.59180 6.12362 8.36165 7.25342 6.36107 9.25516 7.85955 6.58997

3 Ω = −0.05 7.31058 7.26690 7.48595 8.31777 7.87198 7.68141 9.21554 8.43377 7.87201
Ω = 0 7.14545 6.77216 6.69332 8.17302 7.41771 6.91123 9.08510 8.01142 7.12247
Ω = −0.05 6.97642 6.23831 5.79324 8.02566 6.93375 6.04369 8.95277 7.56553 6.28416

Nonlocal state-space strain gradient wave propagation of nanobeam  7
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Figure 3: External voltage in the presence of temperature with
respect to gradient index for μ = 1.5.
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Figure 4: Magnetic potential on the dimensionless buckling with
respect to nonlocal parameter.
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Figure 6: Gradient index with the presence of rising dimensionless
buckling load to magnetic potential for μ = 1.0.
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Figure 5: External voltage on the dimensionless buckling load with
respect to nonlocal parameter.
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Figure 7: Gradient index in the presence of dimensionless buckling
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Figure 8: Gradient index in the presence of dimensionless buckling
load to electric voltage when μ = 1.0.
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the temperature calms down and stabilizes at some point
with respect to an increase in the gradient index (p) and
nonlocal values. Figures 12 and 13 show the effect of an
internal damping factor (τ) in the existence of wave
number and wave frequency over nonlocal parameter (μ).

In these figures, the damping factor with ≥τ 1.5 shows a
raising linear value and when ≤τ 0.5, there is an oscilla-
tion in the wave number and wave frequency.

7 Conclusion

The above study shows the wave propagation analysis of
piezoelectric FGM nanobeam. Magneto thermo properties
of the FG nanobeam are considered to be the function of
thickness according to the power-law model. The gov-
erning equations are extracted by substituting the structure
displacementfield equations in thebeam’s Euler–Lagrange
equations and are framed as symmetric matrices compo-
nents to arrive at required solutions. Hence, the upshots of
the work are as follows:
• The stability behaviors of FGM nanobeam are affected
.by magneto thermo piezo electricity and nonlocal values.
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Figure 9: Gradient index in the presence of dimensionless buckling
load to electric voltage when μ = 1.5.
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respect to gradient index for μ = 1.0.
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• Physical variants could be controlled via applying a
suitable value of damping factor.

• Natural frequency reduces, while the nonlocal para-
meter and gradient index of the FG nanobeam amplify.

• The increase in power-law index softens the volume
fraction.

• The bending rigidity and phase velocities are high in
amplified wave numbers and get reversed in low wave
numbers.
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