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Abstract
Given a set-theoretical solution of the pentagon equation s : S × S → S × S on a set
S and writing s(a, b) = (a · b, θa(b)), with · a binary operation on S and θa a map
from S into itself, for every a ∈ S, one naturally obtains that (S, ·) is a semigroup.
In this paper, we focus on solutions defined in Clifford semigroups (S, ·) satisfying
special properties on the set of all idempotents E(S). Into the specific, we provide a
complete description of idempotent-invariant solutions, namely, those solutions for
which θa remains invariant in E(S), for every a ∈ S. Moreover, we construct a family
of idempotent-fixed solutions, i.e., those solutions for which θa fixes every element in
E(S) for every a ∈ S, from solutions given on each maximal subgroup of S.
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Introduction

If V is a vector space over a field F , a linear map S : V ⊗ V → V ⊗ V is said to be
a solution of the pentagon equation on V if it satisfies the relation

S12S13S23 = S23S12, (1)

where S12 = S ⊗ idV ,S23 = idV ⊗S,S13 = (idV ⊗ �)S12 (idV ⊗ �), with � the
flip operator on V ⊗ V , i.e., �(u ⊗ v) = v ⊗ u, for all u, v ∈ V . The pentagon
equation arose at first at the beginning of the ’80s in [5] as the Biedenharn–Elliott
identity for Wigner 6 j-symbols and Racah coefficients in the representation theory
for the rotation group. Maillet [21] showed that solutions of the pentagon equation
lead to solutions of the tetrahedron equation [32], a generalization of the well-known
quantum Yang–Baxter equation [4, 30]. Moreover, in [25, Theorem 3.2], Militaru
showed that bijective solutions on finite vector spaces are equivalent to finite Hopf
algebras, so the classification of the latter is reduced to the classification of solutions.
In the subsequent years, the pentagon equation appeared in literature in several forms
with different terminologies according to the specific research areas. We highlight
some interesting works as [2, 3, 11, 13, 15–17, 22, 25, 27–29, 31], just to name a few.
For a fuller treatment of some applications in which the pentagon equation appears,
we suggest the recent paper by Dimakis and Müller-Hoissen [10] (along with the
references therein), where the authors dealt with an infinite family of equations named
polygon equations.

As well as Drinfel’d in [12] translated the study of solutions of the Yang–Baxter
equation into set-theoretical terms, Kashaev and Sergeev in [19] began the study of
the pentagon equation with a set-theoretical approach. Namely, if S is a set, a map
s : S × S → S × S satisfying the following “reversed" relation

s23s13s12 = s12s23, (2)

where s12 = s×idS , s23 = idS ×s, s13 = (idS ×τ) s12 (idS ×τ), and τ(a, b) = (b, a),
for all a, b ∈ S, is said to be a set-theoretical solution of the pentagon equation, or
briefly solution, on S. If, in particular, s is a solution on a finite set S, then the linear
map S : FS×S → FS×S defined by S( f )(a, b) = f (s(a, b)), for all a, b ∈ S, is
a solution of (1) on the vector space FS of all functions from S to F . The problem
of classifying all possible solutions to the pentagon equation is a fascinating question
that is a long way off from being solved. Nevertheless, some partial results have been
obtained.

For their purposes, the authors in [19] investigated only bijectivemaps. This class of
solutions was also studied by Kashaev and Reshetikhin in [18], where it is shown that
each symmetrically factorizable Lie group is related to a bijective solution. Among
these solutions, a description of all those that are involutive, i.e., s2 = idS×S , has been
recently given by Colazzo, Jespers, and Kubat in [9].

One of the key steps in the classification problem is the fact that every set S admitting
a solution s is inherently endowed with a semigroup structure (see [6, Proposition 8]):
if we write s(a, b) = (a · b, θa(b)), then (S, ·) becomes a semigroup (hereinafter,
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we will use juxtaposition for the product in a semigroup). Therefore, the study of
solutions (S, s) undoubtedly passes through an exhaustive analysis of the impact of
s on the structural description of S. In this vein, in [6, Theorem 15] the authors
provide a description of all solutions on a group by means of its normal subgroups.
Moreover, in [7], we can find several constructions of solutions defined in the matched
product of two semigroups, that is a semigroup including the classical Zappa–Szép
product. Furthermore, in [23], the first author studies idempotent solutions, namely,
maps satisfying the property s2 = s, and describes this kind of solutions on monoids
having central idempotents. In light of these results, it is becoming more and more
clear that idempotents in a semigroup play a prominent role in the study of solutions.

The next natural step is to try to extend the property of idempotents being central
to a wider class of semigroups. In this light, this paper aims to begin with the study of
solutions on Clifford semigroups, i.e. inverse semigroups whose idempotent elements
are central (see the seminal monographs [20] and [26] for a full treatment on inverse
semigroups). Bearing in mind that the behaviour of Clifford semigroups is very close
to that of groups, the description of solutions on groups in [6] is of great utility in
the problem of classifying all solutions on a Clifford semigroup. More concretely, it
is easy to check that every solution on a group G satisfies that θa(1) = 1, for every
a ∈ G. Therefore, it motivates us to consider both classes of solutions on a Clifford
semigroup S such that θa , respectively, fixes every idempotent or remains invariant on
every idempotent, for every a ∈ S. We call them, respectively, idempotent-fixed and
idempotent-invariant solutions.

The main results of this paper are the following. Firstly, we provide a complete
description of the first class of solutions on a Clifford semigroup S, which includes
that made in the context of groups. To this aim, we introduce the kernel of an arbitrary
solution on S, which turns out to be a normal subsemigroup, that is a subsemigroup
containing the idempotents and closed by conjugation. Secondly, for the second class,
considering that any Clifford semigroup is a union of a family of pairwise disjoint
groups {Ge}e∈E(S), we give a construction of solutions obtained starting froma solution
on each group Ge.

Finally, we raise some questions aimed at continuing the study of the solutions in
this class of semigroups.

1 Preliminaries

This section aims to briefly introduce some basics of set-theoretical solutions of the
pentagon equation. Initially, we recall some notions related to Clifford semigroups
useful for our purposes. For a more detailed treatment of this topic, we refer the reader
to [8] and [20].

1.1 Basics on Clifford semigroups

Recall that S is an inverse semigroup if for each a ∈ S there exists a unique a−1 ∈
S such that a = aa−1a and a−1 = a−1aa−1. They hold (ab)−1 = b−1a−1 and
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(a−1)−1 = a, for all a, b ∈ S. Moreover, E(S) = { aa−1 | a ∈ S } and one can
consider the following natural partial-order relation

∀ e, f ∈ E(S) e ≤ f ⇐⇒ e = e f = f e.

An inverse semigroup S is Clifford if aa−1 = a−1a, for any a ∈ S, or, equivalently,
the idempotents are central in the sense that commute with every element in S.

Given a Clifford semigroup S, we introduce the following relations and the prop-
erties involved themselves. They are an easy consequence of the fact that all Green’s
relations coincide in S and they characterize the structure of S itself. If a, b ∈ S, we
define

1. a ≤ b if, and only if, aa−1 ≤ bb−1, which is an extension of the natural partial
order in S;

2. aR b if, and only if, a ≤ b and b ≤ a.

It follows that ≤ is a preorder on S and R is an equivalence relation on S such that

Gaa−1 := [a]R = {b ∈ S | bb−1 = aa−1}

is a group with identity aa−1, for every a ∈ S. On the other hand, for all a, b ∈ S,

a ≤ b ⇐⇒ ∃ u ∈ S a = ub ∨ a = bu. (3)

Moreover, ≤ induces an order relation on the equivalence classes of R, namely, for
all e, f ∈ E(S), Ge ≤ G f if, and only if, e ≤ f . The following theorem describes
Clifford semigroups.

Theorem 1 Let S be a Clifford semigroup. Then,

1. S is a union of a family of pairwise disjoint groups {Ge}e∈E(S);
2. the map ϕ f ,e : G f → Ge given by ϕ f ,e(b) = eb, for every b ∈ G f , is a group

homomorphism, for all e, f ∈ E(S) such that e ≤ f ;
3. for all e, f , g ∈ E(S) such that e ≤ f ≤ g, then ϕg,e = ϕ f ,eϕg, f .

As a consequence of the previous theorem, the product in Clifford semigroups can be
written through the group homomorphisms ϕe, f , namely,

ab = (e f a)(e f b) = ϕe,e f (a) ϕ f ,e f (b) ∈ Gef ,

for all a ∈ Ge, b ∈ G f . In particular, for all a ∈ S, e ∈ E(S) such that a ≤ e, one has
ae = ea = a.
For the sake of completeness, the converse of Theorem 1 is also true.

1.2 Basics on solutions

Kashaev and Sergeev [19] first dealt with solutions from an algebraic point of view.
Recently, the study of these solutions has been recovered in [6, 7, 9, 23]. Following
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the notation introduced in these works, given a set S and a map s from S × S into
itself, we will write

s(a, b) := (ab, θa(b)),

for all a, b ∈ S, where θa is a map from S into itself, for every a ∈ S. Then, s is briefly
a solution on S if, and only if, the following conditions hold

(ab)c = a(bc) (P1)

θa(b)θab(c) = θa(bc)

θθa(b)θab = θb (P2)

for alla, b, c ∈ S. Thus, thefirst identity naturally gives rise to a semigroup structure on
S, which leads the study of solutions to focus on specific classes of semigroups. When
describing solutions, it serves to distinguish those solutions that are not isomorphic.

Definition 2 Let S, T be two semigroups and s(a, b) = (ab, θa(b)), t(u, v) =
(uv, ηu(v)) two solutions on S and T , respectively. Then, s and t are isomorphic
if there exists an isomorphism ψ : S → T such that

ψθa(b) = ηψ(a)ψ(b), (4)

for all a, b ∈ S, or, equivalently, (ψ × ψ)s = t(ψ × ψ).

The following are easy examples of solutions used throughout this paper.

Examples 1

1. Let S be a set and f , g : S → S idempotent maps such that f g = g f . Then,
s(a, b) = ( f (a) , g (b)) is a solution on S (cf. [24]).

2. Let S be a semigroup and γ ∈ End(S) such that γ 2 = γ . Then, the map s given by
s(a, b) = (ab, γ (b)) , for all a, b ∈ S, is a solution on S (see [6, Examples 2-2.]).

Let us observe that every Clifford semigroup S gives rise to the following solutions

I(a, b) = (ab, b), F(a, b) =
(
ab, bb−1

)
, E(a, b) = (ab, e), (5)

where e ∈ E(S) is a fixed idempotent of S, belonging to the class of solutions in 2. of
Examples 1.

In [1], solutions of (1) are defined on Hilbert spaces in terms of commutative
and cocommutative multiplicative unitary operators (see [1, Definition 2.1]). These
operators motivate the following classes of solutions in the set-theoretical case.

Definition 3 A solution s : S×S → S×S is said to be commutative if s12s13 = s13s12
and cocommutative if s13s23 = s23s13.
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Solutions in Examples 1-1. are both commutative and cocommutative. In [9, Corollary
3.4], it is proved that if s is an involutive solution, i.e., s2 = idS×S , then s is both
commutative and cocommutative.
Convention: In the sequel, we assume that S is a Clifford semigroup and simply write
that s is a solution on S instead of s(a, b) = (ab, θa(b)), for all a, b ∈ S.

2 Properties of solutions on Clifford semigroups

In this section, we show the existence of a normal subsemigroup associated to any
solution s on S. We point out that the properties we proved are consistent with those
given in the context of groups [6].

Proposition 4 Let s be a solution on S. Then, the following statements hold:

1. θa
(
a−1

) = θaa−1 (a)−1,

2. θa
(
a−1a

) = θa
(
a−1

)
θa

(
a−1

)−1 ∈ E(S),
3. θaa−1 = θθa−1(aa−1)θa−1 ,

for every a ∈ S.

Proof Let a ∈ S. Then, by (P1), we have

θa

(
a−1

)
θaa−1 (a) θa

(
a−1

)
= θa

(
a−1a

)
θa

(
a−1

)
= θa

(
a−1a

)
θaa−1a

(
a−1

)

= θa

(
a−1aa−1

)
= θa

(
a−1

)

and θaa−1 (a) θa
(
a−1

)
θaa−1 (a) = θaa−1

(
aa−1

)
θaa−1 (a) = θaa−1

(
aa−1a

) =
θaa−1 (a) , hence θa

(
a−1

) = θaa−1 (a)−1, so 1. is satisfied.

Moreover, by 1., we get θa
(
a−1a

) = θa
(
a−1

)
θaa−1 (a) = θa

(
a−1

)
θa

(
a−1

)−1
,

thus θa
(
a−1a

)
is an idempotent of S.

Finally, by (P2), θaa−1 = θθa−1(aa−1)θa−1aa−1 = θθa−1(aa−1)θa−1 , which is our
claim. ��
Note that the previous result also holds in any inverse semigroup that is not necessarily
Clifford.

Now, let us introduce a crucial object in studying solutions on Clifford semigroups.

Definition 5 If s is a solution on S, the following set

K = {a ∈ S | ∀ e ∈ E(S) e ≤ a ⇒ θe(a) ∈ E(S)}

is called the kernel of s.

Consistently with [6, Lemma 13], our aim is to show that K is a normal subsemigroup
of the Clifford S, namely, E(S) ⊆ K and a−1Ka ⊆ K , for every a ∈ S. To this end,
we first provide a preliminary result.
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Lemma 6 Let s be a solution on S and K the kernel of s. Then, they hold:

1. θa(e) ∈ E(S), for all a ∈ S and e ∈ E(S) such that a ≤ e;
2. θea(k) ∈ E(S), for all a ∈ S, k ∈ K, and e ∈ E(S) such that e ≤ a, e ≤ k.

Proof Let a ∈ S and e ∈ E(S). If a ≤ e, by (P1), we obtain θa(e) = θa(e)θae(e) =
θa(e)2, hence 1. follows. Now, if k ∈ K and e ≤ a, e ≤ k, then θe(k) ∈ E(S) and, by
(P2),

θea(k) = θθa−1 (ea)θa−1ea(k) = θθa−1 (ea)θe(k).

If we prove that θa−1 (ea) ≤ θe(k), by 1., we obtain that θea(k) ∈ E(S). We get

θa−1 (ea) = θa−1

(
eakk−1

)
= θa−1 (ea) θa−1ea

(
kk−1

)
= θa−1 (ea) θe

(
kk−1

)

= θa−1 (ea) θe (k) θek

(
k−1

)
.

Hence, by (3), θa−1 (ea) ≤ θe (k). Therefore, the claim follows. ��

Corollary 7 Let s be a solution on S. If a, b ∈ S are such that a ≤ b, then θa(b) ∈
Gθa(bb−1). Moreover, they hold θa(bb−1) = θa(b)θa(b)−1 and θa(b)−1 = θab(b−1).

Proof If a, b ∈ S are such that a ≤ b, then a ≤ bb−1 and by Lemma 6-1., θa(bb−1) ∈
E(S). Now,

θa(b) = θa

(
bb−1b

)
= θa

(
bb−1

)
θabb−1(b) = θa

(
bb−1

)
θa(b)

and θa
(
bb−1

) = θa(b)θab
(
b−1

)
. Thus, by (3), θa(b) ≤ θa(bb−1) and θa(bb−1) ≤

θa(b), i.e. θa(b) ∈ Gθa(bb−1). In addition, by the equality θa
(
bb−1

) = θa
(
b−1b

) =
θa

(
b−1

)
θab−1 (b) and the previous paragraph, it follows that θa(b), θa(b−1), and

θa(bb−1) are in the same group with identity θa(bb−1). Moreover, θa(b)−1 =
θab

(
b−1

)
, which completes the proof. ��

Theorem 8 Let s be a solution on S. Then, the kernel K of s is a normal subsemigroup
of S.

Proof Initially, by Lemma 6-1., E(S) ⊆ K . Now, if k, h ∈ K and e ∈ E(S) are such
that e ≤ kh, then e ≤ k and e ≤ h and thus, θe(k), θe(h) ∈ E(S). By Lemma 6-2., we
obtain that θek (h) ∈ E(S), and so that θe (kh) = θe (k) θek (h) ∈ E(S).

Now, if a ∈ S, k ∈ K , and e ∈ E(S) are such that e ≤ a−1ka, then e ≤ a, e ≤ a−1,
and e ≤ k. Then, θe(k) ∈ E(S). Besides,

θe

(
a−1ka

)
= θe

(
a−1

)
θea−1(k)θea−1k(a).
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By Lemma 6-1., θe
(
a−1

) ∈ E(S) and, by Lemma 6-2., θea−1(k) ∈ E(S). Furthermore,
also θea−1k(a) ∈ E(S). In fact, by (P2),

θea−1k (a) = θθk−1a(ea
−1k)θk−1aea−1k (a) = θθk−1a(ea

−1k)θe (a)

and, since

θk−1a

(
ea−1k

)
= θk−1a

(
ea−1kaa−1

)
θk−1a

(
ea−1k

)
θk−1aea−1k

(
aa−1

)
=

= θk−1a

(
ea−1k

)
θe (a) θea

(
a−1

)
,

we obtain that, by (3), θk−1a

(
ea−1k

) ≤ θe (a). So, as before, by Lemma 6-1., we
obtain θea−1k (a) ∈ E (S). Therefore, the claim follows. ��

We conclude the section by describing the commutative and cocommutative solu-
tions on Clifford semigroups. It is easy to check that a solution s(a, b) = (ab, θa(b))
is commutative if, and only if,

acb = abc (C1)

θa = θab (C2)

and s is cocommutative if, and only if,

aθb(c) = ac (CC1)

θaθb = θbθa (CC2)

for all a, b, c ∈ S.

Proposition 9 Let s be a solution on S. Then,

1. s is commutative if, and only if, S is a commutative Clifford semigroup and θa = γ ,
for every a ∈ S, with γ ∈ End(S) and γ 2 = γ .

2. s is cocommutative if, and only if, θa(b) = b, for all a, b ∈ S, i.e., s = I.
Proof At first, we suppose that s(a, b) = (ab, θa(b)) is a commutative solution. Then,
by (C1), taking a = cc−1, we obtain that S is commutative. Moreover, by (C2), we
get θa = θab = θba = θb. Hence, θa = γ , for every a ∈ S, and by the definition
of solution we obtain the rest of the claim. The converse trivially follows by 2. in
Examples 1.

Now, assume that s(a, b) = (ab, θa(b)) is a cocommutative solution. Then, by
(CC1), taking a = cc−1, we obtain

cc−1θb(c) = c, for all b, c ∈ S.
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Set e0 := θb(c)θb(c)−1, it follows that cc−1 ≤ e0. On the other hand, again by
(CC1), eθb(c) = ec, for every e ∈ E(S). In particular, θb(c) = e0θb(c) = e0c. Thus,
e0 ≤ cc−1 and so e0 = cc−1. Therefore, we get θb(c) = c, that is our claim. ��

3 A description of idempotent-invariant solutions

In this section, we provide a description of a specific class of solutions on a Clifford
semigroup, the idempotent-invariant ones, which includes the result contained in [6,
Theorem 15].

Definition 10 A solution s on S is said to be idempotent-invariant or E (S)-invariant
if it holds the identity

θa(e) = θa( f ), (6)

for all a ∈ S and e, f ∈ E(S).

An easy example of E(S)-invariant solution is E(a, b) = (ab, e) in (5), with e ∈ E(S).

Example 2 Let us consider the commutative Clifford monoid S = {1, a, b} with
identity 1 and such that a2 = a, b2 = a, and ab = b. Then, other than the map
E in (5), there exists the idempotent-invariant solution s(a, b) = (ab, γ (b)) with
γ : S → S the map given by γ (1) = γ (a) = a and γ (b) = b, which belongs to the
class of solutions in 2. of Examples 1.

Next, we show how to construct an idempotent-invariant solution on S starting from
a specific congruence on S. Recall that the restriction of a congruence ρ in a Clifford
semigroup S to E(S) is also a congruence on E(S), called the trace of ρ and usually
denoted by τ = tr ρ (for more details, see [14, Section 5.3]).

Proposition 11 Let S be a Clifford semigroup, ρ a congruence on S such that S/ρ is
a group and R a system of representatives of S/ρ. If μ : S → R is a map such that

μ (ab) = μ (a) μ (a)−1 μ (ab) , (the product considered is the operation in S) (7)

for all a, b ∈ S, and μ(a) ρ a, for every a ∈ S, then the map s : S× S → S× S given
by

s(a, b) =
(
ab, μ (a)−1 μ (ab)

)
,

for all a, b ∈ S, is an E(S)-invariant solution on S.

Proof Let a, b, c ∈ S. Set θa(b) := μ (a)−1 μ (ab), by (7), we obtain

θa(b)θab(c) = μ (a)−1 μ (ab) μ (ab)−1 μ (abc) = μ (a)−1 μ (abc) = θa(bc).
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Now, if we compare

θθa(b)θab(c) : = μ
(
μ (a)−1 μ (ab)

)−1
μ

(
μ (a)−1 μ (ab) μ (ab)−1 μ (abc)

)

= μ
(
μ (a)−1 μ (ab)

)−1
μ

(
μ (a)−1 μ (abc)

)
by (7)

and θb(c) := μ(b)−1μ(bc), to get the claim it is enough to show that

μ(x)−1μ(xy) = μ(y),

for all x, y ∈ S. Indeed, by [14, Proposition 5.3.1], tr ρ = E(S) × E(S), and so

μ(x)−1μ(xy) ρ x−1xy ρ y−1yy ρ y ρ μ(y).

Finally, if a ∈ S and e, f ∈ E(S), we obtain that

μ(ae) ρ ae ρ a f ρ μ(a f ),

hence μ (ae) = μ (a f ). Thus, θa(e) = μ(a)−1μ (ae) = μ(a)−1μ (a f ) = θa( f ).
Therefore, the claim follows. ��

Our aim is to show that all idempotent invariant solutions can be constructed exactly
as in Proposition 11. Firstly, let us collect some useful properties of these maps.

Lemma 12 Let s be an E (S)-invariant solution on S. Then, the following hold:

1. θe = θ f ,
2. θae = θa,
3. θa (e) ∈ E (S),
4. θeθa = θe,
5. θa (b) = θa (eb),
6. θe(a)−1 = θea

(
a−1

)
,

for all e, f ∈ E (S) and a, b ∈ S.

Proof Let e, f ∈ E(S) and a, b ∈ S.

1. Since θe = θθ f (e)θ f e = θθ f ( f e)θ f f e = θ f e and, similarly θ f = θe f , it yields that
θ f = θe.

2. We have that

θae = θθa−1 (ae)θaa−1e

= θθa−1 (a)θa−1a(e)
θaa−1 aa−1e ∈ E (S)

= θθa−1 (a)θa−1a(a
−1a)θaa−1 by (6)

= θθa−1 (a)θaa−1 = θa .
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3. According to 2., it follows that θa (e) = θa (ee) = θa (e) θae (e) = θa (e) θa (e),
i.e., θa (e) ∈ E (S).

4. According to 2., we obtain that θe = θθa(e)θae = θeθae = θeθa .
5. Note that, by 2., θa (b) = θa

(
bb−1b

) = θa
(
bb−1

)
θabb−1 (b) = θa (e) θae (b) =

θa (eb).
6. Applying 1., we get θe (a) θea

(
a−1

)
θe(a) = θe

(
aa−1

)
θeaa−1(a) = θe(a) and,

on the other hand,

θea

(
a−1

)
θe(a)θea

(
a−1

)
= θea

(
a−1

)
θe

(
aa−1

)
= θea

(
a−1

)
θeaa−1

(
aa−1

)

= θea

(
a−1

)
.

Therefore, the claim follows. ��
To prove the converse of Proposition 11, we need to recall the notion of the congru-

ence pair of inverse semigroups that are Clifford (see [14, p. 155]). Given a Clifford
semigroup S, a congruence τ on E(S) is said to be normal if

∀ e, f ∈ E(S) e τ f �⇒ ∀ a ∈ S a−1ea τ a−1 f a.

If K is a normal subsemigroup of S, the pair (K , τ ) is named a congruence pair of S
if

∀ a ∈ S, e ∈ E(S) ae ∈ K and (e, a−1a) ∈ τ �⇒ a ∈ K .

Given a congruence ρ, denoted by Ker ρ the union of all the idempotent ρ-classes, its
properties can be described entirely in terms of Ker ρ and tr ρ.

Theorem 13 (cf. Theorem 5.3.3 in [14]) Let S be an inverse semigroup. If ρ is a
congruence on S, then (Ker ρ, tr ρ) is a congruence pair. Conversely, if (K , τ ) is a
congruence pair, then

ρ(K ,τ ) = {(a, b) ∈ S × S |
(
a−1a, b−1b

)
∈ τ, ab−1 ∈ K }

is a congruence on S. Moreover, Ker ρ(K ,τ ) = K, tr ρ(K ,τ ) = τ , and ρ(Ker ρ,tr ρ) = ρ.

Lemma 14 Let s be an E (S)-invariant solution on S, τ = E(S) × E(S), and K the
kernel of s. Then, (K , τ ) is a congruence pair of S.

Proof At first, let us observe that the kernel K of s can be written as

K = {a ∈ S | ∀ e ∈ E(S) θe(a) ∈ E(S)}.

Now, let a ∈ S and e ∈ E(S) such that ae ∈ K . To get the claim it is enough to show
that if f ∈ E(S), then θ f (a) ∈ E (S), i.e., a ∈ K . By 1. and 5. in Lemma 12, we
obtain that

θ f (a) = θe f (a) = θe f (ae) ∈ E(S),
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which is our claim. ��

The following result completely describes idempotent-invariant solutions.

Theorem 15 Let s be an E (S)-invariant solution on S. Then, the map θe satisfies (7),
for every e ∈ E(S), and

θa(b) = θe(a)−1θe(ab),

for all a, b ∈ S and e ∈ E (S). Moreover, there exists the congruence pair (K , τ ), with
K the kernel of S and τ = E(S)×E(S), such that θe (S) is a system of representatives
of the group S/ρ(K ,τ ) and (θe (a) , a) ∈ ρ(K ,τ ), for all e ∈ E(S) and a ∈ S.

Proof Initially, (7) is satisfied since

θe(a)−1θe(a)θe(ab) = θe(a)−1θe(a)θe(a)θea(b) = θe(a)θea(b) = θe(ab),

for all a, b ∈ S and e ∈ E (S). Besides,

θa(b) = θa

(
a−1ab

)
by Lemma 12-5.

= θa

(
a−1

)
θaa−1(ab)

= θaa−1(a)−1θaa−1(ab), by Proposition 4-1.

= θe(a)−1θe(ab) by Lemma 12-1.

for all a, b ∈ S and e ∈ E (S). Moreover, by Lemma 14, (K , τ ) is a congruence pair
and so, by Theorem 13, ρ(K ,τ ) is a congruence such that τ = tr ρ(K ,τ ). Besides, by
[14, Proposition 5.3.1], since tr ρ(K ,τ ) = E(S) × E(S), S/ρ(K ,τ ) is a group. Now,
let a ∈ S and e ∈ E (S) and let us check that (θe (a) , a) ∈ ρ(K ,τ ) by proving that
a−1θe (a) ∈ K , i.e., θe

(
a−1θe (a)

) ∈ E (S). To this end, note that

θe

(
a−1θe (a)

)
= θeθa

(
a−1θe (a)

)
by Lemma 12-4.

= θe

(
θa

(
a−1

)
θaa−1θe (a)

)

= θe

(
θa

(
a−1

)
θaa−1 (a)

)
by Lemma 12-4.

= θe

(
θa

(
a−1

)
θa

(
a−1

)−1
)

, by Proposition 4-1.

hence, by Lemma 12-3., θe
(
a−1θe (a)

) ∈ E (S). Now, let us verify that θe (S) is
a system of representatives of S/ρ(K ,τ ). Clearly, θe (S) �= ∅ since θe (e) ∈ E (S).
Besides, if (θe (b) , a) ∈ ρ(K ,τ ) we have that a ρ(K ,τ ) b, since (θe (a) , a) ∈ ρ(K ,τ ).
Thus, ab−1 ∈ K and so θe

(
ab−1

) ∈ E (S). This implies that
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θe (b) = θe

(
bb−1

)
θebb−1 (b)

= θe

(
bb−1

)
θθe(ab−1) (b) by Lemma 12-1.

= θeθe

(
ab−1

)
θθe(ab−1)θeab−1 (b) by (6) and Lemma 12-4.

= θe

(
ab−1

)
θab−1 (b) by Lemma 12-4.

= θe

(
ab−1

)
θeab−1 (b) by Lemma 12-2. and (P2)

= θe

(
ab−1b

)

= θe (a) . by Lemma 12-5.

Therefore, the claim follows. ��
Proposition 16 Let s(a, b) = (ab, θa(b)) and t(u, v) = (uv, ηu(v)) be two E(S)-
invariant solutions on S. Then, s and t are isomorphic if, and only if, there exists an
inverse semigroup isomorphism ψ of S such that ψθe = ηeψ , i.e., ψ sends the system
of representatives θe(S) into the other one ηe (ψ(S)), for every e ∈ E(S).

Proof Indeed, making explicit the condition (4), we obtain

ψ
(
θe(a)−1θe(ab)

)
= ηe (ψ(a))−1 ηe (ψ(ab)) , (∗)

for all a, b ∈ S and e ∈ E(S). Taking b = a−1, we get

ψ
(
θe(a)−1

)
= ψ

(
θea

(
a−1

))
by Lemma 12-6.

= ψ
(
θea

(
a−1

)
θe

(
aa−1

))
by Lemma 12-1.

= ψ
(
θe(a)−1θe

(
aa−1

))
by Lemma 12-6.

= ηe (ψ(a))−1 ηe

(
ψ

(
aa−1

))
by Lemma (*)

= ηeψ(a)

(
ψ(a)−1

)
ηe

(
ψ

(
aa−1

))
by Lemma 12-6.

= ηeψ(a)

(
ψ(a)−1

)
by Lemma 12-1.

= ηe (ψ(a))−1 by Lemma 12-6.

Hence, since ψ is an inverse semigroup homomorphism, ψθe = ηeψ , for every e ∈
E(S). Thus, the claim follows. ��

4 A construction of idempotent-fixed solutions

In this section, we deal with a class of solutions different from the idempotent-invariant
ones, what we call idempotent-fixed solutions. Bearing in mind that a Clifford semi-
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group can be seen as a union of groups satisfying certain properties, it is natural to
contemplate whether it is possible or not to construct a global solution in a Clifford
semigroup from solutions obtained in each of its groups. In this regard, in the case of
idempotent-fixed solutions, we manage to construct a family of solutions obtained by
starting from given solutions in each group.

Definition 17 Let s be a solution on S. Then, s is idempotent-fixed or E(S)-fixed if

θa(e) = e, (8)

for all a ∈ S and e ∈ E(S).

The maps I(a, b) = (ab, b) and F(a, b) = (
ab, bb−1

)
in (5) are idempotent-fixed

solutions on S. Clearly, if S is a Clifford that is not a group, i.e., |E(S)| > 1, then a
solution on S can not be both idempotent-fixed and idempotent-invariant.

The next results contained several properties of idempotent-fixed solutions.

Proposition 18 Let s be an idempotent-fixed solution on S. Then, θe = θeθae, for all
a ∈ S and e ∈ E(S). In particular, θe is an idempotent map.

Proof It follows by θe = θθa(e)θae = θeθae, for all a ∈ S and e ∈ E(S). Taking a = e,
we obtain that the map θe is idempotent. ��
Proposition 19 Let s be an idempotent-fixed solution on S. Then, the following hold:

1. θa(b) = bb−1θa(b),
2. θa (b) θa (b)−1 = bb−1,
3. θa(b) = θabb−1(b),

for all a, b ∈ S.

Proof Let a, b ∈ S. Then, θa (b) = θa (b) θab
(
b−1b

) = θa (b) bb−1. Moreover, we
have that θa (b)−1 = θab

(
b−1

)
since

θa (b) θab

(
b−1

)
θa (b) = θa

(
bb−1

)
θa (b) = bb−1θa (b) = θa (b)

and

θab

(
b−1

)
θa (b) θab

(
b−1

)
= θab

(
b−1

)
θa

(
bb−1

)
= b−1b θab

(
b−1

)

= θab

(
bb−1

)
θabb−1b

(
b−1

)
= θab

(
b−1

)
.

It follows that θa (b) θa (b)−1 = θa (b) θab
(
b−1

) = θa
(
bb−1

) = bb−1. Finally, by 1.,
we have that

θabb−1 (b) = bb−1θabb−1 (b) = θa

(
bb−1

)
θabb−1 (b) = θa (b)

that completes the proof. ��
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As a consequence of Proposition 19-1., if s is an idempotent-fixed solution on the
Clifford S, it follows that every group in S remains invariant by θa , for all a ∈ S. Thus,
motivated by the fact that solutions on groups are well-described, it makes sense to
provide a method to construct this type of solutions from solutions on each group in
S. To this end, the inner structure of a Clifford semigroup makes clear that conditions
relating to different solutions on the groups of S must be considered. For instance,
Proposition 19-3. shows that θa (b) = θϕe, f (a) (b), for all e, f ∈ E(S), with e ≥ f ,
and all a ∈ Ge, b ∈ G f . In light of these observations, we provide the following
family of idempotent-fixed solutions.

Theorem 20 Let s[e](a, b) =
(
ab, θ

[e]
a (b)

)
be a solution on Ge, for every e ∈ E(S).

Moreover, for all e, f ∈ E(S), let εe, f : Ge → G f be maps satisfying

εe, f = ϕe, f , texti f e ≥ f , (9)

θ
[h]
εe f ,h(ab)

= θ
[h]
εe,h(a)ε f ,h(b)

, (10)

ε f ,hθ
[ f ]
εe, f (a)(b) = θ

[h]
εe,h(a)ε f ,h(b), (11)

for all e, f , h ∈ E(S) and a ∈ Ge and b ∈ G f , set

θa(b) := θ
[ f ]
εe, f (a)(b),

for all a ∈ Ge and b ∈ G f , then the map s : S × S → S × S given by s(a, b) =
(ab, θa(b)) is an idempotent-fixed solution on S.

Proof Let e, f , h ∈ E(S), a ∈ Ge, b ∈ G f , and c ∈ Gh . Then, since s[ f h] is a solution
on G f h , we obtain

θa (bc) = θa
(
ϕ f , f h (b) ϕh, f h (c)

) = θ
[ f h]
εe, f h(a)

(
ϕ f , f h (b) ϕh, f h (c)

)

= θ
[ f h]
εe, f h(a)ϕ f , f h (b) θ

[ f h]
εe, f h(a)ϕ f , f h(b)

ϕ f , f h (c) .

Besides, we have that

θa (b) θab (c) = θ
[ f ]
εe, f (a) (b) θ

[h]
εe f ,h(ab)

(c) = ϕ f , f hθ
[ f ]
εe, f (a) (b) ϕh, f hθ

[h]
εe f ,h(ab)

(c) .

Hence, noting that, by (10),

θ
[ f h]
εe, f h(a)ϕ f , f h (b) = θ

[ f h]
εe, f h(a)ε f , f h (b) = ε f , f hθ

[ f ]
εe, f (a) (b) = ϕ f , f hθ

[ f ]
εe, f (a) (b)
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and

θ
[ f h]
εe, f h(a)ϕ f , f h(b)

ϕ f , f h (c) = θ
[ f h]
εe, f h(a)ε f , f h(b)

ε f , f h (c)

= θ
[ f h]
εe f , f h(ab)

ε f , f h (c) by (10)

= εh, f hθ
[h]
εe f ,h(ab)

(c) by (11)

= ϕh, f hθ
[h]
εe f ,h(ab)

(c) ,

it follows that (P1) is satisfied. In addition,

θθa(b)θab (c) = θ
θ

[ f ]
εe, f (a)

(b)
θ

[h]
εe f ,h(ab)

(c)

= θ
[h]
ε f ,hθ

[ f ]
εe, f (a)

(b)
θ

[h]
εe f ,h(ab)

(c)

= θ
[h]
θ

[h]
εe,h (a)

ε f ,h(b)
θ

[h]
εe,h(a)ε f ,h(b)

(c) by (11) and (10)

= θ
[h]
ε f ,h(b)

(c) s[h]is a solution on Gh

= θb (c) ,

thus (P2) holds. Finally, by [6, Lemma 11-1.], θa( f ) = θ
[ f ]
εe, f (a)( f ) = f and so s is

idempotent-fixed. ��
The following is a class of idempotent-fixed solutions on S that can be constructed

through Theorem 20 and includes the solutions I(a, b) = (ab, b) and F(a, b) =(
ab, bb−1

)
in (5).

Example 3 Let s[e] (a, b) = (
ab, γ [e] (b)

)
be the solution on Ge as in 2. of Examples

1 with γ [e] an idempotent endomorphism of Ge, for every e ∈ E(S). Assume that for
all e, f ∈ E(S), with e ≥ f , the group homomorphisms ϕe, f : Ge → G f satisfy
ϕe, f γ

[e] = γ [ f ]ϕe, f . Take εe, f = ϕe, f if e ≥ f and εe, f (x) := f , otherwise. Then,
conditions (10) and (11) are satisfied. Hence, the map

s(a, b) =
(
ab, γ [ f ](b)

)
,

for all a ∈ Ge and b ∈ G f , is a solution on S.

As a consequence of Theorem 20, the following construction provides a subclass
of idempotent-fixed solutions in Clifford semigroups in which each group G f is an
epimorphic image of Ge, whenever f ≤ e, for all e, f ∈ E(S).

Corollary 21 Let S be a Clifford semigroup such that ϕe, f is an epimorphism, for all

e, f ∈ E(S) with f ≤ e. Let s[e](a, b) =
(
ab, θ [e]

a (b)
)
be a solution on Ge and set

Ne := ∏
f ≤e

ker ϕe, f , for every e ∈ E(S). Suppose that
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1. θ
[e]
a = θ

[e]
b , for all e ∈ E(S) and all a, b ∈ Ge with aNe = bNe,

2. ϕe, f θ
[e]
a (b) = θ

[ f ]
ϕe, f (a)ϕe, f (b), for all e, f ∈ E(S) with f ≤ e, and all a, b ∈ Ge.

Set θa(b) := θ
[ f ]
b′ (b), with b′ ∈ G f such that ϕ f ,e f (b) = ϕe,e f (a), for all e, f ∈ E(S),

and all a ∈ Ge, b ∈ G f . Then, the map s : S × S → S × S given by s(a, b) =
(ab, θa(b)) is an idempotent-fixed solution on S.

Proof Initially, by 1., note that θa iswell-defined, for everya ∈ S. Now, let e, f ∈ E(S)

and consider Te, f a system of representatives of ker ϕ f ,e f in G f . Since ϕ f ,e f is an
epimorphism, for every a ∈ Ge, we can define a map εe, f (a) := x ∈ Te, f , with
ϕe,e f (a) = ϕ f ,e f (x). Specifically, in the case that f ≤ e, it follows that εe, f = ϕe, f .

Therefore, for all e, f ∈ E(S) and all a ∈ Ge, b ∈ G f , it holds θa(b) = θ
[ f ]
εe, f (a)(b).

Note that, by 1., the last equality is independent of the choice of Te, f . Moreover,
applying properties in Theorem 1 of homomorphisms ϕe, f , for all e, f ∈ E(S) with
f ≤ e, and the assumptions, it is a routine computation to check that conditions (10)
and (11) of Theorem 20 are satisfied. ��

Let us observe that the kernel of an idempotent-fixed solution s can be rewritten as

K = {a ∈ S | ∀ e ∈ E(S), e ≤ a, θe(a) = aa−1}.

Denoted by Ke the kernel of each solution s[e] on Ge, i.e., the normal subgroup

Ke = {a ∈ Ge | θ [e]
e (a) = e}.

of Ge, we have the following result that clarifies the previous construction in Theorem
2 20 is not a description.

Proposition 22 Let s be an idempotent-fixed solution on S constructed as in Theorem
20 and suppose that εe, f (e) = f , for all e, f ∈ E(S)with e ≤ f . Assume that each Ge

admits a solution s[e] and let Ke be the kernel of such a map s[e], for every e ∈ E(S).
Then, K =

⋃
e∈E(S)

Ke.

Proof Indeed, let a ∈ K ∩ Ge. Then, we get e = aa−1 = θe(a) = θ
[e]
e (a). Thus,

a ∈ Ke. On the other hand, if a ∈ Ke and f ∈ E(S) is such that f ≤ a, then, since
εe, f (e) = f , we obtain θ f (a) = θ

[e]
ε f ,e( f )

(a) = θ
[e]
e (a) = e, i.e., a ∈ K . ��

In light of the previous discussion, the following question arises.

Question 1 Complete a description of all the idempotent-fixed solutions.

To conclude, we observe that not every solution on S lies in the class of idempotent
invariant or idempotent-fixed solutions. Indeed, even in Clifford semigroups of low
order, it is possible to construct such an example.
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Example 4 Let S = {1, a, b} be the Clifford monoid in Example 2. Then, the maps

θ1(x) = a, for every x ∈ S,

θa = θb : S → S, given by θa(1) = 1, θa(a) = θa(b) = a

give rise to a solution on S that is neither idempotent invariant nor idempotent fixed.

Question 2 Find and study other classes of solutions on Clifford semigroups, includ-
ing, for instance, the map in Example 4.
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