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Abstract. We build upon previous models for differential pricing
in social networks and fair price discrimination in markets, consid-
ering a setting in which multiple units of a single product must be
sold to selected buyers so as to maximize the seller’s revenue or the
social welfare, while limiting the differences of the prices offered to
social neighbors. We first consider the case of general social graph
topologies, and provide optimal or nearly-optimal hardness and ap-
proximation results for the related optimization problems under vari-
ous meaningful assumptions, including the inapproximability within
any constant factor on the achievable revenue under the unique game
conjecture. Then, we focus on topologies that are typical of social
networks. Namely, we consider graphs where the node degrees fol-
low a power-law distribution, and show that it is possible to obtain
constant or good approximations for the seller’s revenue maximiza-
tion with high probability, thus improving upon the general case.

1 INTRODUCTION

The study of differential pricing in economics can be traced back to
the beginning of the 20th century [34, 36, 38, 39], and it is progres-
sively attracting increasing interest. In fact, this feature is nowadays
widely used in several settings, like in raising the price of the tickets
as time approaches the related event, in assigning different prices for
the same products in geographically apart markets, in offering dis-
counts to premium customers, and so forth. Several works outlined
various levels of price discrimination [37], while others tried to fig-
ure out proper forms that buyers can perceive as fair [3, 4, 27, 28].
Another related concept of customers’ satisfaction widely investi-
gated in markets is envy-freeness. Namely, buyers, given the bun-
dle of goods they receive and the assigned prices, should not prefer
other bundles or bundles provided to other buyers. Seminal works
in the field are [7, 13, 22, 30, 31], where authors describe logarith-
mic approximation algorithms for maximizing the seller’s revenue
under various assumptions, while hardness of approximations com-
plementing the previous results can be found in [12, 16, 17, 18, 24].
Many variants can be also found in the works of [5, 9, 19, 20, 21, 27].
None of these works however considered discriminatory pricing poli-
cies, except for a mild form called bundle pricing, in which non-
proportional or lower average prices are assigned to bundles of big-
ger sizes. However, each bundle preserves a unique price for all the
buyers.

1.1 Our contribution

In this paper we build upon previous works dealing with explicit
forms of differential pricing [3, 4, 28]. Namely, like in [3, 4] we as-
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sume that buyers are members of a social population and that the
difference of the prices offered to social neighbors must be suit-
ably bounded. Like in [28], we model the underlying scenario as a
multi-unit market with relaxed fair price discrimination constraints.
This type of markets has been largely investigated [11, 27, 29, 35],
also for the purpose of determining good approximating incentive-
compatible mechanisms [25, 33], as well as in other related auctions
[2]. In fact, it is typical of many real-world situations where homoge-
neous items are on sale, like in commodity markets. We adopt one of
the most investigated envy-freeness notions in this setting, proposed
in [30], according to which each buyer must be assigned a bundle
which maximizes her utility, i.e., the difference between her valua-
tion for the item and its price.

We study four different cases arising by considering i. social wel-
fare or seller’s revenue maximization, and ii. single-minded or gen-
eral valuations. Our results comprise approximation algorithms and
hardness of approximation results for all the above-mentioned cases,
including the inapproximability within any constant factor on the
achievable revenue under the unique game conjecture (see Table 1).
It is worth mentioning that such a UGC-hardness result applies also
to the model of [4], thus strengthening their APX-hardness.

Furthermore, we consider the case of specific topologies, focusing
on the fundamental property that has been shown to characterize real
world social networks, i.e., graphs where the node degrees follow
a power-law distribution [15, 26]. In particular, we provide polyno-
mial time algorithms able to achieve constant approximations on the
maximum revenue with high probability, both for single-minded and
general valuations (see Table 2). To the best of our knowledge, this
is one of the first results on the social influence in markets showing
that, assuming a paradigmatic social topology, better approximations
(from logarithmic to constant) can be accomplished with respect to
the general unrestricted case. On this respect, we further remark that
the previous work in this setting considered topologies, like bounded
treewidth, that while yielding efficient solutions, are more represen-
tative of situations in which social relationships are structured in a
non-spontaneous way or according to external factors.

Due to space constraints, some of the less significant proofs are
omitted and left to the full version of this paper.

Single-Minded General Valuations

Social Welfare
NP-hard (Thm. 4) strong NP-hard (Thm. 10)
FPTAS (Thm. 4) 2 (Thm. 9)

Revenue
ω(1) (Thm. 6) ω(1) (Cor. 12)

O(logn) (Cor. 5) O(logn+ logm) (Cor. 11)

Table 1. Our hardness results (first and third row) and approximation
results (second and fourth row).
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Apx. Prob.

Single-Minded (Unl. Supply) (Thm. 15) O(1) 1− n−1

Single-Minded (Thm. 17) O(1) 1− e−w , ∀w > 0
General Valuations (Thm. 17) O(1) 1− e−w , ∀w > 0

Table 2. Approximation results for the problem of maximizing the revenue
with high probability (n denotes the number of buyers).

1.2 Related work

Envy-freeness in multi-unit markets has been investigated in [27],
where the authors studied budgeted buyers with additive valuations
and considering progressively stronger levels of price discrimination.
After showing that the different levels correspond to increasing max-
imum revenues, they proved that the revenue maximization problem
is NP-hard, and provided a polynomial time 2-approximation algo-
rithm for item-pricing without discrimination.

Monaco et al. [35] investigated multi-unit markets with buyers
having no budgets and gave hardness and approximation results for
the revenue maximization problem in several cases arising by assum-
ing different notions of envy-freeness, item- or bundle-pricing, and
single-minded or general valuation buyers.

Social influence in markets has been recently considered in [1, 23,
29], where the authors focused on a relaxed notion of social envy-
freeness restricting envy only to social neighbors, and applied it to
problems like cake cutting, distributed negotiation, and multi-unit
markets. The authors of [3, 4, 9, 10] considered also the possibility of
dismissing some of the buyers from the market, which translates into
limiting the social awareness acting on the social graph topology.

Frameworks more related to the present paper have been studied in
[3, 4, 28]. In particular, in [3] the authors defined a form of price dis-
crimination constrained by a social graph, precisely requiring a dif-
ference bounded by an additive constant in the prices offered to two
social neighbors. In their setting, every node contributes a revenue
which is equal to a given function of the assigned price. The authors
gave an optimal revenue maximizing algorithm if buyers preselection
is not allowed, while with preselection and arbitrary revenue func-
tions they proved that the problems is hard to approximate within
n1−ε for any fixed ε > 0, where n is the number of buyers, and NP-
hard even for constant and single-valued revenue functions, this last
family being the one considered in this paper. Finally, they provided
polynomial time algorithms for trees and bounded treewidth graphs.
However, unlike in our paper, they assumed that prices can belong to
a given finite set.

Along this line of research, the authors of [4] proved that the rev-
enue maximization problem remains NP-hard even if we restrict the
revenue functions to be only single value (and not constant), and
gave improved approximation results, especially when the number
of distinct prices is small. Moreover, they showed the APX-hardness
for the special case in which neigbbor prices must be identical. Fi-
nally, they extended the model of [3] to allow the assignment of more
than one item per node, which corresponds to multi-unit markets with
single-minded buyers and unlimited supply. Various approximation
algorithms are given also in this setting. Our inapproximability result
applies even to their basic model.

A related model of fair price discrimination in multi-unit markets
has been investigated in [28]. While it extends the above frameworks
by allowing general valuations, and thus with the possibility of allo-
cating bundles of different sizes to a single buyer, it does not allow
the exclusion of buyers, and it does not consider any slackness in fair
pricing. The authors investigated the computational complexity of

the social welfare and the revenue maximization problems, provid-
ing hardness and approximation results under various assumptions
on the buyers’ valuations and on the social graph topology.

As already mentioned, we borrow the model of fair price discrim-
ination from [28] and extend it with the features of buyers’ prese-
lection and additive slackness in fairness constraints of [3, 4]. This
allows to generalize in a unified framework all the above models in
different respects. In particular, while the notion of fair pricing is of
[3], generalizing [28], buyers with single-minded valuations are able
to incorporate the extended model of [4]. Moreover, as in [28], our
model is able to express the further constraint of a limited supply
of items and general buyers’ valuations, according to which buyers
are not interested in a single bundle, but have different utilities for
different sizes. We remark that, without limited supply and general
valuations, the envy-freeness constraints are meaningless, and as it
happens in some previous related papers, can be ignored.

We finally stress that preselection of buyers should not be intended
in the negative sense of excluding some of them, but rather in the
positive way that is able to capture common real world situations in
which offers are not made to all customers, but only to prospective
or promising ones. This normally happens in the new targeted mar-
keting strategies, that deliver individualized messages and product
offerings, thanks to profiling and data analysis techniques. Hence,
exclusion should be more properly interpreted as inclusion of buyers
receiving offers.

2 PRELIMINARIES

We define a multi-unit market μ as a tuple (N,M, (vi)i∈N ), where
N = {1, . . . , n} is a set of n buyers, M is a set of m homogeneous
items, and each vi is the valuation function of buyer i ∈ N . Items in
M are considered identical by the buyers, so that for every i ∈ N , we
can represent vi as a vector vi = (vi(1), . . . , vi(m)) expressing, for
each natural number j ∈ {1, . . . ,m}, the maximum amount vi(j) ∈
R that i is willing to pay for a subset of items X ⊆M of size j. We
assume vi(0) = 0 and vi(j) ≥ 0 for every i ∈ N and j, 1 ≤ j ≤ m.

We consider both the single-minded case, in which every buyer i is
interested only in bundles of a preferred bundle size mi, and general
valuations, i.e., the unrestricted case.

We adopt a classical pricing scheme, which is natural in case of
identical items, usually referred as item-pricing. In such a scheme,
the seller assigns a single non-negative price per item pi ∈ R to each
buyer i. Thus, buyer i owes pi · |X| for a bundle of items X and her
utility for receiving X is given by ui(X, pi) = vi(|X|) − pi · |X|.
We denote by p = (p1, . . . , pn) the vector of all the prices assigned
to the buyers in the market.

We assume buyers to be individuals of a population and we rep-
resent this by means of a directed social graph G = (N,E). Such a
graph captures the notion of buyers’ awareness of the prices proposed
to other buyers, more precisely a buyer i is only aware of the prices
that the seller proposes to her neighbors N(i) = {k ∈ N |(i, k) ∈
E}. As in previous models for fair price discrimination, we assume
that arcs of G are weighted according to a given slackness function
α specifying, for each arc (i, k) ∈ E, a slackness factor α(i, k) ≥ 0.
Starting from G, it is possible to define the following concept of fair
price discrimination.

Definition 1. A price vector p is fair w.r.t. the social graph G =
(N,E) if pi ≤ pk + α(i, k) for every (i, k) ∈ E.

We define an allocation vector as an n-tuple X = (X1, . . . , Xn)
such that Xi ⊆ M is the set of items sold to buyer i, and we call a

M. Flammini et al. / Inequity Aversion Pricing in Multi-Unit Markets92



pair (X, p) an outcome. (X, p) is a feasible outcome for market μ if
it satisfies the supply constraint

∑n
i=1 |Xi| ≤ m. Moreover, a feasi-

ble outcome (X, p) is envy-free if Xi ∈ argmaxX⊆M ui(X, pi) for
every buyer i ∈ N . Notice that, for every i ∈ N , since vi(0) = 0,
envy-freeness implies the classical assumption of individual rational-
ity of the buyers, that is, ui(Xi, pi) ≥ 0.

We are now ready to define the solutions to our markets, i.e., fair
outcomes.

Definition 2. A feasible outcome (X, p) is fair under the social
graph G if it is envy-free and its price vector p is fair with respect
to G.

We study the (fair) pricing problems of determining fair out-
comes that maximize two fundamental metrics: i. The social wel-
fare sw(X, p) =

∑n
i=1 vi(|Xi|). ii. The seller’s revenue r(X, p) =∑n

i=1 pi · |Xi|.
We denote as optsw(μ,G) (resp. optr(μ,G)) the maximum pos-

sible social welfare (resp. revenue) achievable by an outcome for μ
fair under G.

By the individual rationality constraint, for any feasible outcome
(X, p), it holds sw(X, p) ≥ r(X, p), so that also optsw(μ) ≥
optr(μ) and optsw(μ,G) ≥ optr(μ,G).

As in previous models of fair price discrimination, we consider
the additional option of preselecting subsets of buyers admitted to
the market. In fact, this feature allows the seller to break transitivity
chains of price dependencies in the social graph, considerably in-
creasing the revenue achievable in some cases. Formally, we model
this by introducing a distinguished bottom price ⊥ for buyers to be
excluded, yielding a corresponding price vector p ∈ (R ∪ {⊥})n.
The notion of fair pricing is then extended as follows:

Definition 3. A price vector p is fair with respect to the social graph
G = (N,E) and the slackness function α if pi ≤ pk + α(i, k) for
every (i, k) ∈ E such that pi �= ⊥ and pk �= ⊥.

The social welfare and the seller’s revenue are then computed con-
sidering only buyers not receiving bottom prices.

The following preliminary result shows the effectiveness of allow-
ing the exclusion of buyers in terms of achievable performance of
fair outcomes.

Proposition 1. Let μ and G be respectively a market and its corre-
sponding social graph. Allowing bottom prices in μ can increase the
optimal social welfare and revenue of fair outcomes by a multiplica-
tive factor equal to m, and such a bound is tight.

For the sake of brevity, we call (SINGLE,WELFARE)-pricing
(resp. (GENERAL,WELFARE)-, (SINGLE,REVENUE)- and
(GENERAL,REVENUE)-pricing) the pricing problem restricted
to the instances of multi-unit markets with single-minded valuations
and social welfare maximization (resp. general valuations and social
welfare maximization, single-minded and revenue maximization,
and general valuations and revenue maximization).

Let us finally stress that in multi-unit markets, while the size of the
representation of an instance with general valuations is polynomial in
m, as different valuations must be specified for every different bundle
size, in single-minded instances the dependence is logarithmic in m,
as for each buyer it is sufficient to specify the size of her unique
preferred bundle, together with the corresponding valuation. Thus,
neither hardness results for single-minded buyers directly extend to
general valuations, nor approximation bounds for general valuations
automatically transfer to single-minded instances.

3 SINGLE-MINDED

We first provide optimal results for the social welfare.

Theorem 4. (SINGLE,WELFARE)-pricing is NP-hard, but admits an
FPTAS.

Proof (sketch). Both the hardness and the FPTAS are obtained by
showing a direct correspondence between this problem and KNAP-
SACK.

Regarding revenue maximization, an approximation algorithm can
be obtained with the same approach used in Theorem 5 of [28] for
the same case without bottom prices.

Corollary 5. (SINGLE,REVENUE)-pricing admits a log n-
approximation algorithm.

The approximation factor above presented is nearly optimal, as the
following negative result holds.

Theorem 6. It is Unique-Game-hard to approximate
(SINGLE,REVENUE)-pricing within any constant factor.

In order to prove our claim, we resort on known hardness results
on the INDEPENDENT SET problem on graphs with maximum degree
bounded by δ. Such a problem has been shown to be Unique-Game-
hard to approximate within a factor of Ω( δ

log2 δ
) [6] (see [32] for

details on the Unique-Game conjecture and hardness). We first ex-
ploit the bound on the node degrees of the input graph in order to
find a good partition of the nodes. More precisely:

Definition 7. Let H = (V, F ) be a graph, and let S = {S1, . . . , Sκ}
be a partition of V . We say that S is a good partition for H if:

i. (Coloring) ∀Si ∈ S, ∀u, v ∈ Si, (u, v) /∈ F .
ii. Each node u ∈ V has at most one neighbor in each subset Si ∈ S.

When the maximum degree of H is bounded by δ, the following
result holds:

Lemma 8. Any graph H = (V, F ) with node degrees at most δ
admits a good partition S which can be found in polynomial time
and such that |S| ≤ δ2 + 1.

Proof of Lemma 8. Consider the graph H2 = (V, F 2), where:

F 2 = F ∪ {{u, v} ∈ V 2|k ∈ V, {u, k}, {k, v} ∈ F}.

By construction H2 has degree at most δ2. By the Brooks’ Theorem
[14] H2 can be colored using at most δ2 + 1 colors, and such a
coloring can be found in polynomial time. Let S be the partition of
V induced by such a coloring. Since F ⊆ F 2, property i. holds.
Suppose then by contradiction that property ii. does not hold for S,
that is, there exists w ∈ V that has two neighbors v, u belonging to
Si ∈ S. Since v and u share a neighbor in H , {v, u} ∈ F 2, but this
implies that S is not induced by a coloring of H2: a contradiction.

We are ready to prove Theorem 6.

Proof of Theorem 6. Consider the following reduction from INDE-
PENDENT SET instances H = (V, F ) with bounded degree δ to in-
stances (μ,G) of (SINGLE,REVENUE)-pricing:
i. Find a good partition S = {S1, . . . SD} of H , with D ≤ δ2 + 1.
ii. For each node u ∈ Sd add a set Nu of 2d single-minded buyers
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with valuation 2−d only for bundles of size 1.
iii. For each v ∈ V and pair of buyers i, h ∈ Nv add in the social
graph G arcs (i, h), (h, i) with α(i, h) = α(h, j) = 0.
iv. For each edge {u, v} ∈ F , with u ∈ Sd, v ∈ Sd′ and d < d′, add
to G all arcs (i, h) such that i ∈ Nu and h ∈ Nv with α(i, h) = 0.
v. Consider unlimited supply (or equivalently set it to |V |2D).
We are going to prove our claim by showing that (⇒) if H admits
an independent set of cardinality k, then the reduced instance admits
revenue at least k; and (⇐) if the reduced instance admits revenue k,
then H has an independent set of cardinality at least k

2
.

(⇒) Let I ⊆ V be an independent set of H having cardinality
k. Consider the outcome (X, p) for the reduced instance in which
|Xi| = 1 and pi = 2−d if i ∈ Nv , v ∈ Sd and v ∈ I , otherwise
|Xi| = 0 and pi = 2−d.

Notice that p is fair under G. In fact, by construction of G,
the set of the neighbors of buyer i ∈ Nv in G is a subset of
Nv ∪ ⋃

u∈Δ(v)Nu, where Δ(v) denotes the set of the neighbors
of node v in H . Then, if v /∈ I , pi = ⊥ and no fairness constraints
on pi must hold. If instead v ∈ I , all neighbors of i in Nv get the
same price, and, since I is independent, pk = ⊥ for all buyers k in⋃

u∈Δ(v)Nu. Therefore, p is fair. Furthermore, (X, p) is envy-free,
since a price equal to their valuation is proposed to all buyers receiv-
ing a bundle of cardinality 1, while all the ones not receiving any
item get price ⊥. Finally observe that for each v ∈ I with v ∈ Sd,
there are 2d buyers buying at price 2−d, ensuring revenue 1 for each
node in I . Therefore, r(X, p) = k.

(⇐) Assume that the reduced instance admits an outcome (X, p)
with revenue k. Since we are under the hypothesis of unlimited sup-
ply, without loss of generality we can assume that |Xi| = 1 for each
buyer i such that pi ≤ vi(1), as this can only increase the revenue.
Similarly, as p is fair, if a price pi �= ⊥ is proposed to a buyer i ∈ Nv ,
then the price proposed to all the other buyers in Nv must be either
pi or ⊥. Thus, we can assume that pk = pi and a bundle is assigned
to all the buyers in k ∈ Nv . Under these assumptions (X, p) can be
described by means of a vector π ∈ (R∪{⊥})|V |, where component
πv is equal to the price proposed to all buyers inNv .

After these preliminary remarks, let us construct a suitable subset
of nodes I ⊆ V as follows: i. Consider all the subsets Sd ∈ S in
an inverse order with respect to their index d. ii. For each v ∈ Sd

such that πv �= ⊥, add v to I , set πv = ⊥ and set πu = ⊥ for all
u ∈ Δ(v).

Since each time that we add a node to I we set πu = ⊥ for all
its neighbors, it is not possible to add to I two adjacent nodes in
H , and thus I is independent. We now prove that |I| ≥ k

2
. Let

ρ =
∑

v∈V πv|Nv|, considering πv as 0 if πv = ⊥. Clearly, be-
fore starting running the building procedure described above, ρ = k,
as it coincides with the revenue of outcome (X, p). Moreover, after
I is built, ρ = 0, since all πv = ⊥. Furthermore, after adding node
v ∈ Sd to I , ρ decreases by exactly

∑
u∈{v}∪Δ(v) πu|Nu|. By the

fairness constraints and since we are considering subset of nodes in
a decreasing order, in this step πu ≤ πv for all u ∈ Δ(v), and as
vi(1) = 2−d for all the buyers i ∈ Nv , we have that:

∑
u∈{v}∪Δ(v)

πu|Nu| ≤ 2−d
∑

u∈{v}∪Δ(v)

|Nu| ≤ 2−d
d∑

d′=1

2d
′ ≤ 2,

where the second inequality derives from the fact that a node v cannot
have more than one neighbor in the same subset Sd. We then have
that ρ decreases by at most 2 each time a node is added to I , and thus
|I| ≥ k

2
.

We observe that the above reduction is polynomial if δ is constant

with respect to the input size. Finally, since INDEPENDENT SET with
maximum degree δ is Unique-Game-hard to approximate within a
factor of tδ

log2 δ
for some constant t > 0, and because of the above

polynomial reduction, we have that, for any fixed c ≥ 1, there ex-
ists a sufficiently large integer δ such that any c-approximation al-
gorithm for (SINGLE,REVENUE)-pricing can be polynomially turned
into a tδ

log2 δ
-approximation algorithm for INDEPENDENT SET with

maximum degree δ, and this shows the inapproximability of (SIN-
GLE,REVENUE)-pricing within any constant factor c ≥ 1.

We remark that, since in the reduction every buyers has preferred
size 1, the UCG-hardness closes an open question raised in [4], ex-
tending their APX-harness to inapproximability results holding for
any constant approximation factor.

4 GENERAL VALUATIONS

In order to achieve good approximations for general valuations, we
resort on the following reduction to the single-minded case provided
in [28]. Given a buyer i ∈ N , let Si = {m1

i , ...,m
�
i} be the bun-

dle sizes that are in the demand set of i for at least one positive
price, that is, among the preferred ones for such a price, listed in
non-decreasing order. Let mi1 = m1

i and mij = mj
i − mj−1

i for
2 ≤ j ≤ �. The reduction transforms buyer i into � single-minded
marginal buyers i1, . . . , i�, where ij has preferred bundle size mij

and valuation vij (mij ) = vi(m
j
i ) − vi(m

j−1
i ). The reduced so-

cial graph G′ = (N ′, E′) is such that (ij , i′j′) ∈ E′ if and only if
(i, i′) ∈ E.

The authors of [28] have shown that the ratios
vij (mij

)

mij
are non-

increasing in j. Moreover, if an approximation algorithm for single-
minded buyers applied on a reduced instance allocates bundles only
to prefixes of marginal buyers, then its solution can be transformed
back into an outcome for the initial problem preserving the same
approximation ratio.

Unfortunately, the FPTAS given in the previous section for single-
minded instances has not such a property. Hence, we devise an ad-
hoc procedure that 2-approximates the social welfare, while allocat-
ing prefixes of marginal buyers.

Theorem 9. (GENERAL,WELFARE)-pricing admits a 2-
approximation algorithm.

Proof. Given an instance (μ,G) of (GENERAL,WELFARE)-pricing,
let (μ′, G′) be the associated output of the reduction of [28]. Con-
sider the following algorithm for maximizing optsw(μ

′, G′):

• Sort all marginal buyers by the ratios
vij (mij

)

mij
in non-increasing

order, where in case of ties the marginal buyers ij of a same buyer
i are listed in order of j; let π(ij) be the position in the order of
each ij .

• Compute the following two outcomes:

– (X
′
, p′): Let i′h be the last marginal buyer in the order such

that
∑

ij |π(ij)≤π(i′
h
) mij ≤ m. Set |X ′

ij | = mij and pij =
vi′h (mi′

h
)

mi′
h

if π(ij) ≤ π(i′h), and |X ′
ij | = 0 and pij = ⊥

otherwise;

– (X
′′
, p′′): Let i′′l be the marginal buyer following i′h in the or-

der, that is, such that π(i′′l ) = π(i′h) + 1 (if nonexistent all the
marginal buyers are allocated in (X

′
, p′), which is in turn an

optimal solution). For all i′′j with j ≤ l, set |Xi′′j | = mi′′j and
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pi′′j = 0, while set price equal to⊥ and give not items to all the
other buyers.

• Return argmax{sw(X
′
, p′), sw(X

′′
, p′′)}.

Notice that both (X
′
, p′) and (X

′′
, p′′) are fair under G′, as in

both a unique price different from bottom is proposed. Furthermore,

since for each buyer ij with a non bottom price pij ≤
vij (mij

)

mij
we

have |X ′
ij | = |X ′′

ij | = mij , both X
′

and X
′′

are also envy-free.

Notice also that sw(X
′
, p′) + sw(X

′′
, p′′) is an upper bound on

optsw(μ
′, G′), as the union of their allocated buyers corresponds to

an optimal outcome for supply bigger than m. Thus choosing the
best of the two solutions ensures approximation ratio equal to 2. The
claim then follows by observing that both (X

′
, p′) and (X

′′
, p′′) al-

locate only prefixes of marginal buyers, hence by the properties of
the reduction they can be turned back into corresponding outcomes
for (μ,G) with the same approximation ratio.

Considering general valuations worsens the complexity of finding
an outcome that maximizes social welfare. In fact, we are able to
prove the following theorem.

Theorem 10. (GENERAL,WELFARE)-pricing is strongly NP-hard.

In the same fashion of Corollary 5, it is possible to exploit the 2-
approximation for the social welfare in order to obtain the following
result, in which the approximation derives from the number of buyers
in the reduced instance (n ·m).

Corollary 11. (GENERAL,REVENUE)-pricing admits a 2(log n +
logm)-approximation algorithm.

The hardness result provided in Theorem 6 directly extends to
general valuations, as in the provided reduction m is polynomially
bounded in the size of the instance.

Corollary 12. (GENERAL,REVENUE)-pricing is Unique-Game-
hard to approximate within any constant factor.

This last negative bound extends also to the setting proposed in [4].
In fact, the same reduction can be used setting the slackness between
neighbouring equal to 0.

5 SOCIAL NETWORKS

We now focus on graph topologies that are typical of social networks.
Namely, we assume that node degrees in G respect a power law dis-
tribution. This class of graphs, also called scale-free, has been largely
investigated in the literature as the paradigmatic model of the web
graph and other common graphs arising from social relationships.
While in the previous sections good approximations bound have been
already obtained for the social welfare without any restriction on the
structure of the network, we here provide better results for the rev-
enue maximization. Due to space constraints, many details of algo-
rithms and proofs are only sketched.

Let d = (d1, d2, . . . , dn) be a non-decreasing sequence or vector
of n strictly positive integers, whose sum is even. We assume that
d respects a power law distribution. Namely, for any fixed integer
k > 0, the number n(k) of integers di with di = k is proportional to
k−γ , where typically 2 < γ < 3. In other words, c·n·k−γ ≤ n(k) ≤
c′ · n · k−γ , for three given constants c, c′ and γ such that c < c′. As
it can be easily checked, the number of integers di with di > k in d
can be suitably upper bounded as

∑n
h=k+1 n(h) = O

(
n

kγ−1

)
.

Let Gn,d be the class of graphs with node set N = {1, 2, . . . , n},
in which the sequence of node degrees listed in non-decreasing or-
der coincides with d. We assume that the social graph G is randomly
drawn in Gn,d uniformly selecting a permutation of buyers π in such
a way that buyer i is associated to position π(i) of the degree se-
quence, with corresponding degree dπ(i).

Before providing constant approximations for power-law graphs,
let us give the following key lemma, which will be useful in the se-
quel.

Lemma 13. Given any family of graphs G and a fixed integer k > 0,
if a (k + 1)-coloring for any graph in G exists and can be deter-
mined in polynomial time, then: (i) (SINGLE,REVENUE)-pricing and
(GENERAL,REVENUE)-pricing restricted to social graphs in G ad-
mit a (k + 1 + ε)-approximation algorithm for any ε > 0; (ii)
(SINGLE,REVENUE)-pricing with unlimited supply restricted to so-
cial graphs in G admits a (k + 1)-approximation algorithm.

Proof. We first show part (i). Consider the single-minded case. Once
colored the nodes of the graph, consider the subset of buyers Ni with
a fixed color i. Since Ni forms an independent set, a (1+ε/(k+1))-
approximation for the submarket containing only the buyers in Ni

can be easily determined by completely ignoring the fair price dis-
crimination constraints and running the FPTAS for knapsack on the
equivalent knapsack instance with capacity m containing an object
oi for every buyer i ∈ N with profit zi = vi(mi) and weight mi. In
fact, the returned solution can be directly translated to an outcome of
the original problem with the same revenue, by assigning a preferred
bundle of size mi at price vi(mi)/mi per item to every buyer i cor-
responding to a selected object, and discarding the remaining buyers
by means of bottom prices.

Starting from the above-collected outcomes, a (k + 1 + ε)-
approximation can be determined simply by returning the best of
them, say associated to a given color i, completed by assigning bot-
tom prices to all the buyers not in Ni. In fact, at least one set Ni

contributes r ≥ optr(μ,G)/(k + 1) to the optimal revenue of a fair
outcome for the initial instance (μ,G), and the optimal solution for
the submarket restricted to Ni has revenue at least r.

When considering general valuations, we consider the above algo-
rithm, but we compute the (1+ε/(k+1))-approximation for the sub-
market restricted to each set of buyers Ni by running the FPTAS on
the equivalent multi-choice knapsack instance defined as follows: we
associate to every buyer i a class containing m objects, each corre-
sponding to a bundle size j and having profit vi(j) and weight j; the
knapsack capacity is set to m. As in the previous case, the returned
solution can be directly translated to an outcome of the original prob-
lem with the same revenue, and the above algorithm provides again
a (k + 1 + ε)-approximation.

For what concerns part (ii). consider again the above method. In
the case of unlimited supply, we observe that, for any fixed color i,
the optimal solution for the submarket restricted to Ni can be com-
puted in polynomial time, i.e., it suffices assigning price vi(mi)/mi

per item to each buyer in Ni. Thus, a (k + 1)-approximation can be
determined in a similar fashion.

As a direct consequence of the above lemma, constant approxi-
mation algorithms can be obtained for graphs with maximum degree
bounded by a constant k (thanks to the well-known greedy algorithm
returning a k + 1 coloring), for planar graphs, bipartite graphs and
for many other classes of graphs.

Unfortunately, power law graphs do not have a constant bounded
degree, thus not allowing a direct application of the above lemma.
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However, their average degree is constant. More precisely, for any
choice of the constant parameters c, c′ and γ, there exists a low con-
stant integer k such that the number of nodes with degree greater than
k is at most n/2.

Starting from the above observation, let us consider the follow-
ing algorithm, called POWER-LAW: once drawn G ∈ Gn,d accord-
ing to the above random process, consider the subset N ′ ⊆ N of
buyers of degree at most k, and then run one of the algorithms of
Lemma 13 (according to the specific pricing problem) for bounded
degree graphs on the instance (μ,G′), where G′ is the subgraph in-
duced by N ′.

Lemma 14. POWER-LAW executed on randomly drawn social
graphs in Gn,d has constant expected approximation ratio for
(SINGLE,REVENUE)-pricing and (GENERAL,REVENUE)-pricing.

Proof. We prove that the expected revenue of the above algorithm is
Ω(optr(μ,G)).

Let k be the constant selected by the algorithm, i.e. such that the
set N ′ of the buyers of degree at most k has cardinality |N ′| ≥ n/2.
For a given optimal outcome, let Nopt be the set of buyers receiving
a bundle and let mi be the bundle assigned to each buyer i ∈ Nopt.
Let Xi be the random variable equal to 1 if buyer i has degree at
most k in G, Xi = 0 otherwise, and let S be the random variable
corresponding to the sum of the preferred valuations of the buyers in
Nopt having degree at most k in G, that is, S =

∑
i∈Nopt

vi(mi)Xi.
Then, since POWER-LAW exploiting a (k+1)-coloring of the buy-
ers in N ′ returns a solution of revenue at least S/(k + 1 + ε) (by
Lemma 13) and k is constant, it is sufficient to asymptotically bound
the expected value E[S] of S.

To this aim, by the linearity of expectation, we have that

E[S] = E

⎡
⎣ ∑

i∈Nopt

vi(mi)Xi

⎤
⎦

=
∑

i∈Nopt

vi(mi) · E[Xi]

=
∑

i∈Nopt

vi(mi) · P(Xi = 1)

≥
∑

i∈Nopt

vi(mi)/2

= optr(μ,G)/2

thus proving the claim.

Ideally, we would like to prove that the outcome returned by
POWER-LAW has constant approximation not only in expectation,
but also with high probability. Unfortunately, this is not guaranteed
in general, as it can be easily checked in case a single buyer has
a very high valuation for her preferred bundle, while all the others
have negligible valuations. In this case, the probability that the re-
turned solution has a constant approximation can be bounded only
by 1/2.

However, in case of unlimited supply and single-minded valua-
tions, it is possible to obtain a bound with high probability by pre-
processing the buyers with the highest valuations, so as to reduce the
variance of the random variable S, when restricted to the remaining
buyers with lower valuations. Namely, consider the following algo-
rithm, called POWER-LAW-2:

• once drawn G ∈ Gn,d, order the buyers non-increasingly with

respect to their preferred valuations, and let P be the prefix of the
first l = 200 lnn buyers;

• determine the optimal solution for the submarket containing only
buyers in P and their induced subgraph GP , and complete it by as-
signing bottom prices to all the remaining buyers; let (X1,P , p1,P )
be the resulting outcome;

• run POWER-LAW on the submarket containing only buyers in
N\P and their induced subgraph GN\P , and assign bottom prices
to to all the remaining buyers; let (X2,P , p2,P ) be the correspond-
ing outcome;

• return the best of the two outcomes.

Notice that (X1,P , p1,P ) can be easily computed in polynomial
time. In fact, given the subset P ∗ of P of the buyers allocated in an
optimal outcome for P , the prices yielding the maximum revenue for
P ∗ can be determined as follows. Order the buyers non-decreasingly
with respect to the ratios vi(mi)/mi. For each buyer i considered in
such an order, set pi to be the maximum possible value such that pi ≤
vi(mi)/mi and pi ≤ pk+α(i, k) for every buyer k ∈ P ∗ with k < i
and (i, k) ∈ E. In other words, pi is set to the maximum possible
value compatible with the individual rationality of i and the fairness
constraints for the pricing. Thus, (X1,P , p1,P ) can be computed in
such a way by probing all the possible subsets of P , whose number
is polynomially bounded. 5

We are now able to prove the following theorem.

Theorem 15. POWER-LAW-2, when run on randomly drawn social
graphs in Gn,d and in case of unlimited supply, has probability at
least 1−1/n of returning an outcome with revenue at least a constant
fraction of the optimal one for (SINGLE,REVENUE)-pricing.

Proof. We show that the revenue of the algorithm is Ω(optr(μ,G))
with probability 1− 1/n.

If the overall revenue contributed to optr(μ,G) by the prefix P of
the first l = 200 lnn buyers is higher than the one contributed by the
remaining buyers, then the algorithm returns a solution of revenue at
least optr(μ,G)/2.

On the other hand, if such a contribution is lower, consider the
subset N \ P of the remaining buyers not in the prefix. Let k be the
constant selected by the algorithm, i.e. such that the set N ′ ⊆ N \P
of the buyers of degree at most k has cardinality |N ′| ≥ (n − l)/2.
Let Xi be the random variable equal to 1 if buyer i has degree at
most k in G, Xi = 0 otherwise, and let S be the random variable
corresponding to the sum of the preferred valuations of the buyers of
N \ P of degree at most k in G, that is, S =

∑
i∈N\P vi(mi)Xi.

Since the algorithm returns a solution of revenue at least S/(k+1)
(by Lemma 13) and k is constant, we equivalently show that S =
Ω(optr(μ,G)) with high probability. To this aim, we show that
P(S ≤ optr(μ,G)/8) ≤ 1/n, that is P(S > optr(μ,G)/8) ≥
1 − 1/n. Observe that E[S] = E[

∑
i∈N\P vi(mi)Xi] =∑

i∈N\P vi(mi) · E[Xi] =
∑

i∈N\P vi(mi) · P(Xi = 1) ≥∑
i∈N\P vi(mi)/2 ≥ ∑

i∈N vi(mi)/4 ≥ ∑
i∈N optr(μ,G)/4.

Thus, since P(S ≤ optr(μ,G)/8) ≤ P(S ≤ E[S]/2) = P(E[S] −
S ≥ E[S]/2), we can equivalently show that P(E[S] − S ≥
E[S]/2) ≤ 1/n. Observe that S can be defined as S =

∑|N′|
i=1 Yi,

where each Yi ≥ 0 is a random sample without replacement from

5 Observe that prefix l has been set equal to c · lnn, where c is a constant.
We set c equal to 200 (that is a high constant) since our aim is just showing
that the returned approximation factor is constant, regardless of its precise
value. Anyway the analysis of the algorithm can be strengthen in such a
way that the lower c, the lower the (constant) approximation factor.
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population Y := (vi(mi) : i ∈ N \P ) 6. By resorting to Bernstein’s
inequality (refer to Proposition 1.4 of [8]), we get

P

(
E[S]− S ≥ E[S]

2

)
≤ exp

(
− (E[S]/2)2/|N ′|
2σ2 + 2bE[S]/(3|N ′|)

)
(1)

where σ2 is the variance of population Y and b is the maximum
preferred valuation of each buyer in N \ P . Observe that σ2 ≤

1
|N\P |

∑
i∈N\P vi(mi)

2. Since the l buyers in P have the l-th high-
est preferred valuations, we have that b ≤∑

i∈N vi(mi)/l. Further-
more, since quantity F := 1

|N\P |
∑

i∈N\P vi(mi)
2 is proportional

to the sum of the squares of the buyers’ preferred valuations, we have
that F is maximum when l buyers have the maximum possible pre-
ferred valuation (i.e.,

∑
i∈N vi(mi)/l) and the remaining ones have

null preferred valuation. Thus, σ2 ≤
(

l
|N\P |

)(∑
i∈N vi(mi)

l

)2

=

(
∑

i∈N vi(mi))
2

|N\P |l ≤ (
∑

i∈N vi(mi))
2

|N′|l . By incorporating the previous
bounds on b and σ2 in (1), and since

∑
i∈N vi(mi)/4 ≤ E[S] ≤∑

i∈N vi(mi), we get:

P

(
E[S]− S ≥ E[S]

2

)

≤ exp

(
− (E[S]/2)2/|N ′|
2σ2 + 2bE[S]/(3|N ′|)

)

≤ exp

(
− (

∑
i∈N vi(mi)/8)

2

2|N ′|σ2 + 2b(
∑

i∈N vi(mi))/3

)

≤ exp

(
− (

∑
i∈N vi(mi)/8)

2

2(
∑

i∈N vi(mi))2/l + 2(
∑

i∈N vi(mi))2/(3l)

)

≤ e−l/200 = e− ln(n) = 1/n,

and this shows the claim.

Unfortunately, the argument in the previous theorem does not
work for limited supply, as the values of the outcomes can signifi-
cantly differ from the sum of the buyers’ preferred valuations. How-
ever, we can make the probability of having a constant approximation
arbitrarily high at the expense of the running time by means of the
following algorithm, called POWER-LAW-3:

• for a fixed constant parameter w, once randomly drawn G ∈ Gn,d,
for all the possible subsets P ⊆ N of l = 200w buyers:

– find the optimal outcome (X1,P , p1,P ) of the submarket in-
duced by the buyers in P , assigning bottom prices to to all the
remaining buyers;

– run POWER-LAW on the submarket containing only the buyers
in N \ P and their induced subgraph GN\P , assign bottom
prices to to all the remaining buyers, and let (X2,P , p2,P ) be
the resulting outcome;

• return the best among all the outcomes (X1,P , p1,P ) and
(X2,P , p2,P ), over all the subsets P of l buyers.

Notice that, since w is constant, in the initial phase the number of
all the considered subsets of l = 200w buyers is polynomial, and
for each of them an optimal outcome can be obtained in polynomial
time by an exhaustive search. Therefore, the algorithm has running
time polynomial in the input size, but exponential in the parameter
w. A proof similar to the one of Theorem 15 restricted to the buyers
allocated in an optimal outcome shows the following theorem.

6 A population is a multiset of values.

Theorem 16. POWER-LAW-3, when run on randomly drawn
social graphs in Gn,d, returns a constant approximation for
(SINGLE,REVENUE)-pricing with prob. at least 1− e−w.

Proof (sketch). We show that the revenue of the algorithm is
Ω(optr(μ,G)) with probability 1− e−w.

Let l = 200w. For a given optimal outcome, let Nopt be the set of
buyers receiving a bundle, and let mi be the bundle assigned to each
buyer i ∈ Nopt. If |Nopt| ≤ l then the algorithm returns an optimal
outcome. If |Nopt| > l, order the buyers i ∈ Nopt non-increasingly
with respect to valuation vi(mi), and consider the prefix P of the
first l buyers of Nopt.

If the overall revenue contributed to optr(μ,G) by the prefix P
is higher than the one contributed by the remaining buyers, then the
algorithm returns a solution of revenue at least optr(μ,G)/2, since
P is one of the subsets analyzed by the algorithm.

On the other hand, if such a contribution is lower, consider the
subset Nopt \ P of the remaining buyers not in the prefix. If |Nopt \
P | ≤ l, then the algorithm has determined the optimal solution of
some set P ′ of l buyers containing Nopt \ P , and thus the optimal
solution restricted to buyers in P ′ guarantees a revenue of at least
optr(μ,G)/2.

If |Nopt \ P | > l, let k be the constant selected by the algorithm,
i.e. such that the set N ′ ⊆ Nopt \P of the buyers of degree at most k
has cardinality |N ′| ≥ (|Nopt|−l)/2. Let Xi be the random variable
equal to 1 if buyer i has degree at most k in G, Xi = 0 otherwise,
and let S be the random variable corresponding to the sum of the
preferred valuations of the buyers of Nopt \P of degree at most k in
G, that is, S =

∑
i∈Nopt\P vi(mi)Xi.

Since the algorithm returns a solution of revenue at least S/(k +
1 + ε) (by Lemma 13) and k is constant, we equivalently show that
S = Ω(optr(μ,G)) with high probability. To this aim, we show that
P(S ≤ optr(μ,G)/8) ≤ e−w, that is P(S > optr(μ,G)/8) ≥ 1−
e−w. Then, by exploiting arguments similar to the ones in Theorem
15, we obtain the claim.

By exploiting the same proof as in Theorem 16, it is possible to
show the following theorem for general valuations.

Theorem 17. POWER-LAW-3, when run on randomly drawn
social graphs in Gn,d, returns a constant approximation for
(GENERAL,REVENUE)-pricing with prob. at least 1− e−w.

6 CONCLUSIONS

It would be interesting to close the logarithmic gaps on the ap-
proximability of the maximum revenue on general social topologies.
Moreover, it would be worth providing better probabilistic bounds
for some of the approximation algorithms on power law graphs, or
even a good approximation in the worst case.

It would be also interesting to consider other classical notions of
envy-freeness, such as the so-called pair- and social envy-freeness.
Morever, we adopted the basic item-pricing policy, but what about
other relaxed forms of pricing, like bundle-pricing? As in the previ-
ous related papers, it would be nice to investigate also the case of a
limited set of allowable prices.

Finally, it would be interesting to consider more general markets
and other relevant social graph topologies.
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