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Abstract: A global health emergency resulted from the COVID-19 epidemic. Image recognition
techniques are a useful tool for limiting the spread of the pandemic; indeed, the World Health
Organization (WHO) recommends the use of face masks in public places as a form of protection
against contagion. Hence, innovative systems and algorithms were deployed to rapidly screen a
large number of people with faces covered by masks. In this article, we analyze the current state
of research and future directions in algorithms and systems for masked-face recognition. First, the
paper discusses the importance and applications of facial and face mask recognition, introducing the
main approaches. Afterward, we review the recent facial recognition frameworks and systems based
on Convolution Neural Networks, deep learning, machine learning, and MobilNet techniques. In
detail, we analyze and critically discuss recent scientific works and systems which employ machine
learning (ML) and deep learning tools for promptly recognizing masked faces. Also, Internet of
Things (IoT)-based sensors, implementing ML and DL algorithms, were described to keep track of
the number of persons donning face masks and notify the proper authorities. Afterward, the main
challenges and open issues that should be solved in future studies and systems are discussed. Finally,
comparative analysis and discussion are reported, providing useful insights for outlining the next
generation of face recognition systems.

Keywords: face recognition; machine learning; deep learning; support vector machines; convolutional
neural networks (CNN)

1. Introduction

Since the 1990s, image recognition has become a prominent topic, exploiting artificial
intelligence (AI) and technological advancements. Face and object recognition is a common
technique in computer vision and arguably its most fundamental aspect [1,2].

Most facial and object detection systems rely on traditional machine learning (ML)
techniques; a balance learning framework was proposed in [3] to enhance the training of
the networks, resulting in improved performance than previous ones.

Public and private organizations utilize facial recognition technology to identify and
regulate admission to airports, schools, and offices. Because of its apparent accuracy in
identifying people, face recognition systems have been used in healthcare to improve
patient condition information security, sanitation with contactless applications, staff access
point security, and patient and worker data collection [4].

In the last year, masked-face recognition has expanded applicability thanks to Internet
of Things (IoT) devices to recognize and identify individuals wearing masks. With the
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widespread adoption of face masks in response to the COVID-19 pandemic, traditional
facial recognition systems that rely on full-face visibility have faced challenges in accu-
rately identifying individuals [5]. Masked-face recognition in IoT involves combining IoT
devices, such as surveillance cameras or smart doorbells, with specialized algorithms and
technologies to recognize and verify individuals even when wearing masks [6]. Further-
more, different face mask recognition systems were deployed during the COVID-19 health
emergency to verify whether individuals correctly wore masks in public places.

Challenges in masked-face recognition include dealing with variations in mask types,
lighting conditions, and occlusions caused by masks. Technological advancements, such
as improved algorithms and hardware, can help overcome these challenges and enhance
the accuracy of masked-face recognition in IoT applications. However, it is important to
consider privacy and ethical concerns associated with facial recognition technology and
ensure proper safeguards are in place to protect individuals’ rights and data.

The development of numerous digital technologies over the past decade has made it
possible to employ them to fight the COVID-19 pandemic [7]. Artificial intelligence (AI)
has recently been used to improve the identification of infection levels, as well as to locate
and diagnose illnesses quickly.

In the late 1990s, the Bochum system, which used a Gabor filter to store face data and
generated a grid of the face structure to link the characteristics, supplanted purely feature-
based systems for facial recognition [8]. In the mid-1990s, Elastic Bunch Graph Matching
was developed using skin segmentation to recover a face from a photograph [9]. Elastic
Bunch Graph Matching was created in the mid-1990s to recover a face from an image
using skin segmentation [9]. The algorithm was stable enough to identify individuals
from less-than-ideal face views. It can also see through hurdles to identification, such as
mustaches, beards, new hairstyles, spectacles, and even sunglasses [9].

Real-time face identification from video became possible with the release of the Viola-
Jones object detection framework for faces in 2001 [10]. Paul Viola and Michael Jones
presented AdaBoost, the first real-time frontal-view face detector, by merging their face
detection algorithm with the Haar-like feature approach to object recognition in digital
images [11]. In 2015, the Viola-Jones algorithm was implemented on mobile devices and
embedded systems using small, low-power detectors. As a result, the Viola-Jones method
has enabled new possibilities in user interfaces and teleconferencing, as well as expanded
the practical use of facial recognition systems [12].

Ukraine is identifying dead Russian personnel using the Clearview AI facial recog-
nition platform developed in the United States. Ukraine has identified the relatives of
582 slain Russian servicemen after conducting 8600 searches. The Ukrainian army’s infor-
mation technology volunteer unit uses such software to inform the families of dead soldiers
about Russian actions in Ukraine [13]. A new generation of AI software tools has been
implemented in the surveillance cameras of the Paris Metro to ensure that passengers are
wearing masks.

Deep learning and computer vision techniques for detecting COVID-19 face masks
can help predict pandemic incidence based on anonymized and unidentifiable statistics
data. The face mask recognition models provide the following advantages [14]:

• Reduce the propagation of the COVID-19 pandemic.
• Precise improvement of the detection performance.
• High processing speed and seamless integration with surveillance cameras.
• They can be applied in schools, universities, and other institutions that monitor atten-

dance using facial recognition. Consequently, administrators can readily determine if
students, employees, and other visitors are wearing masks.

Research papers [15,16] show significant advances in deep learning toward entity
detection and recognition in numerous application domains have occurred over time. The
detection of objects with deep learning and the early detection of a congestion control
warning system on a bridge’s footsteps were extensively discussed.
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Image reconstruction and facial recognition are now the subject of several investi-
gations. However, the classification process based on machine learning (ML) and deep
learning (DL) includes several steps that result in a final prediction to infer the input class
based on extracted features [17].

Classification methods may be categorized into two types: supervised methods and
unsupervised methods. ML learns to classify new inputs using supervised methods based
on original labeled data, typically used to construct prediction models. According to [18],
unsupervised ML uses unlabeled data to develop a model that predicts incoming inputs
based on clustering algorithms.

The DeepMasknet framework was proposed in [19]; it can be applied for face mask
recognition and masked-face detection. Furthermore, as shown in Figure 1, the authors
created a large and distinct integrated mask detection and masked facial recognition
(MDMFR) dataset to evaluate the effectiveness of the proposed method.
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The main contributions and novelties of the presented paper are as follows:

• A comprehensive overview of ML and DL algorithms and methods for face mask
recognition and masked-face detection; in particular, operating modalities, advantages,
and shortcomings of each method/algorithm are reported, along with application
examples proposed in the scientific literature.

• A description of mobile networks for face mask detection and masked-face recognition
applications developed during the COVID-19 pandemic to quickly detect whether
people wear or not the mask, like Mobile Netv1 and MobileNetv2.

• A description of the main challenges and open issues for developing face mask detec-
tion systems, including precision, privacy, and improper use of private information.

• In-depth comparative analyzes of algorithms and models reported in the scientific
literature to determine features and perspectives of innovative ML and DL tools for
recognizing people wearing masks to fight future pandemics.

The remainder of the paper is organized as follows: in the following section, we
discuss ML systems to recognize masked faces; then, Section 3 introduces DL methods for
identifying masked faces, briefly discussing several scientific works and systems based on
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each algorithm and method. Furthermore, Section 4 presents examples of mobile networks
developed for masked-face detection, like Mobile Netv1 and MobileNetv2. Moreover,
IoT-based sensors for masked-face recognition were presented and developed during the
COVID-19 pandemic. Section 6 reports challenges and open issues in developing systems
and algorithms for masked-face recognition. Finally, Section 7 presents comparative analy-
ses of systems and models reported in the scientific literature, comparing them from the
performance perspective.

Paper Selection and Bibliometric Indexes

An essential step in writing the presented review paper concerns the selection of
discussed and analyzed papers according to set inclusion and exclusion rules. Detailed con-
sideration of numerous characteristics of the studied documents, such as their applicability
to the themes they address, their relevance, when they were published, and whether or not
they overlapped with other chosen papers, was made while defining the latter. According
to the procedure shown in Figure 2, the selection approach was carried out; a three-step
analysis was completed, starting with the title, moving on to the abstract, and finishing
with reading the whole text.
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Figure 2. Workflow representing the inclusion/exclusion process for selecting the paper included in
the presented review work.

In this way, 67 scientific works were selected and included in the presented review
paper, organized into 20 review papers, 42 articles, 4 book chapters, and 1 website.

Exploratory and bibliometric analysis was performed, using Scopus as a data source
to investigate statistics related to scientific works on AI-based face recognition applications.
Using the analysis tools provided by the Scopus platform, the obtained data were plotted
in Figure 3 to illustrate that these topics have received more attention recently, particularly
from 2018 to 2022. While Figure 4 explores publications that confronted computer science
and engineering subject areas and other areas.
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Referring to Figure 3, the highest number of documents was in 2021 (approximately
5084), beginning in 2018 with 3950 documents and terminating in 2022 with the lowest
number (about 3247).

As shown in Figure 4, more than 35.8% of documents are in the computer sciences
field, 19.35% are in the engineering field, and 44.9% are distributed across other disciplines.

2. Machine Learning Prototypes Used to Identify Face Mask

Machine learning is a branch of artificial intelligence (AI) and computer science that
uses data and algorithms to mimic human learning processes and progressively increase
accuracy. It can be used to identify relationships in a dataset through unsupervised,
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supervised, or hybrid learning. Supervised learning and unsupervised learning are the two
basic approaches used in machine learning and artificial intelligence (AI). While supervised
learning involves training a machine-learning model on labeled data, unsupervised learning
involves training a machine-learning model on unlabeled data without predefined target
labels or output values. Unsupervised learning aims to discover patterns, structures,
or relationships within the data without explicit guidance. The two strategies differ in
various ways, and there are some situations when one works better than the other. Using
open-source and local data, ref. [20] summarizes the ML models and how they were trained.

Machine-learning algorithms can be used to identify face masks in various ways.
Common approaches followed are [21,22]:

• Image classification: ML models can be trained to classify images based on whether
a person is wearing a face mask or not. This approach involves collecting a dataset
of labeled images, where each image is categorized as either “with mask” or “with-
out mask”. Using this dataset, a model can be trained to recognize patterns and
features that distinguish between the two categories. Common algorithms for image
classification are CNNs, SVM, Random Forest (RF), K-Nearest Neighbors (KNN),
Naïve Bayes, etc.

• Object Detection: Object detection techniques can be employed to locate and classify
face masks within an image or video. These models can identify the presence and
position of face masks in real-time applications. Currently, for this application, several
deep-learning techniques are applicable, like CNNs (e.g., R-CNN-Region-based CNN,
Fast R-CNN, Faster R-CNN, YOLO-You Only Look Once, SSD-Single Shot MultiBox
Detector, EfficientDet, etc.), which are discussed in Section 3.

• Facial Landmark Detection: Machine-learning models can also be trained to detect
facial landmarks, such as the nose, mouth, and eyes, to determine if a face mask
is properly worn. By analyzing the spatial relationships between these landmarks,
the model can infer the presence and alignment of a face mask. Techniques like
the Histogram of Oriented Gradients (HOG) combined with SVM or more modern
methods like facial landmark detectors based on deep learning architectures (e.g.,
OpenPose, DLIB) can be utilized.

Combining various ML prototypes, including Support Vector Machines (SVM), de-
cision trees, and combination techniques, in [23], the authors presented a hybrid deep
transmits learning prototype for identifying face masks. The hybrid deep transfer-learning
model utilized Resnet 50 feature extraction and three classifiers (i.e., SVM, decision trees,
and ensemble approaches). Logistic regression, K-Nearest Neighbors Algorithm, and linear
regression are examples of ensemble methods used to construct M-classifiers and train each
before combining and averaging their outputs. Real-World Masked Face Dataset (RMFD)
accuracy was 99.64%, simulated masked-face dataset accuracy was 99.48%, and accuracy
within the untamed dataset was 100%.

SVM is a common classifier for medical applications; it is a supervised machine-
learning technique for classification and regression problems. This algorithm suits linear
or nonlinear classification applications, outlier identification, regression, and even outlier
detection. In detail, SVMs can be used for various tasks, including text classification, image
classification, spam detection, handwriting identification, gene expression analysis, face
detection, and anomaly detection. SVM is adaptable and powerful in various applications
because it can handle high-dimensional data and nonlinear relationships. Nevertheless, its
primary application is for classification problems, particularly those involving two classes
or binary classification. It employs hyperline or hyperplane to determine to which class
new unlabeled data belongs during testing [24]. SVM uses the training subset of data to
identify which labels they correspond to, then to build a hyperline for two classes or a
hyperplane for more than two classes to distinguish between data.

In [25], the authors introduced a hybrid face mask identification model that combines
deep learning, handcrafted feature extractors, and traditional machine learning classifiers.
In particular, the proposed approach combines a Random Forest classifier on a hybrid
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feature set created by CNN and a handcrafted feature extractor from the input pictures
to distinguish masks from faces. Principal component analysis, or PCA, is additionally
employed for feature selection. Although the system has a test accuracy of about 62% for a
random forest with 100 trees, this accuracy could be improved by expanding the training
data set and adding historical data sets that contain localized information that may be
useful concerning a specific geographic location.

Ensemble methods in machine learning are techniques that combine multiple models
to improve overall prediction performance and generalization. The idea behind ensemble
methods is that by combining diverse models, their weaknesses can be compensated,
resulting in a more robust and accurate prediction. Ensemble methods are widely used
in various machine learning tasks and have shown to be highly effective in many real-
world applications. Popular ensemble methods include Bagging (Bootstrap Aggregating),
Random Forest, Boosting, and Stacking. There are three phases of the ensemble method:

1. Create M classifiers.
2. Train each individual classifier.
3. Combine the M classifiers and calculate their average throughput.

Datasets for Developing Face Mask Recognition Algorithms

Datasets play a crucial role in developing and training face mask recognition algo-
rithms. It is important to note that the dataset’s quality, diversity, and size directly influence
face mask recognition algorithms’ performance and generalization capabilities. Collecting
and curating high-quality datasets encompassing a wide range of real-world scenarios is
crucial for developing effective and reliable algorithms. Additionally, ongoing efforts to
ensure the inclusiveness and fairness of datasets help minimize biases and disparities in
algorithm performance. The main publicly available datasets for developing face mask
recognition algorithms are summarized in Table 1.

Table 1. Table summarizing the main datasets to develop face mask recognition algorithms.

Dataset Total Number
of Images

Number of Images
with Mask

Number of Images
without the Mask Method

Mean Average
Precision

(%)

MaskedFace-Net
[26] 133,783 67,049 66,734

Haar-features
+

Face and Nose
Detection algorithm

99.92 [27]

FMLD
[28] 41,934 29,532 33,540 FetinaFace

AntiCov
92.93 [29]
88.91 [30]

ISL-UFMD
[31] 21,816 10,698 10,618 Inception-v3 98.20 [31]

Face Mask Detection
[32] 7553 3725 3828 CNN 98.00 [33]

MDMFR
[34] 6006 3174 2832 DeepMaskNet 100.00 [19]

BAFMD
[35] 13,000 6264 3118 YOLO-v5

AntiCov
86.80 [35]
78.10 [35]

MAFA
[36] 35,806 911 30,811 YOLO-v5

AntiCov
87.30 [35]
84.90 [35]

In addition to what was previously reported, Masked Facial Recognition includes
bounding boxes for the 853 photos from the three classes in the PASCAL VOC format.
The pictures are classified into three different classes: “with a mask”, “without a mask”,
and “wrongly worn”. Similarly, the Moxa3K dataset comprises images taken during the
epidemic in Russia, Italy, China, and India. There are 3000 total photos in the dataset:
9161 faces without masks and 3015 faces with masks. Furthermore, Real-World Masked
Face Dataset contains two data sets: (I) A dataset for masked-face recognition in the
real world, obtained by scanning the website pictures; it has 90,000 regular faces and
5000 masks representing 525 individuals after cleaning and labeling. (II) Simulated masked-
face recognition datasets comprise 500,000 masked faces from 10,000 people.
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Also, LFW (Labeled Faces in the Wild) Simulated Masked Face Dataset is derived
from the LFW dataset; this last is constituted by images of famous people gathered from
the website. The SMFRD includes the same photos of the LFW dataset to which simulated
masks have been applied. The dataset consists of 13,117 faces of 5713 people.

As the previous table shows, the MaskedFace-Net dataset is one of the largest datasets
reported in the scientific literature, including images of people with and without face masks
of different genders, ages, and ethnicities [26]. This dataset enables the accurate training
and testing of machine-learning algorithms, ensuring a high degree of generalization.

3. Deep Learning (DL) Techniques Used to Identify Face Masks

AI comprises a variety of technologies designed to mimic the reasoning functions and
intelligent behavior of humans. In recent years, DL has been gaining popularity; DL is a
subfield of machine learning that focuses on using Artificial Neural Networks to model and
solve complex problems. For instance, DL models can identify intricate patterns in images,
text, audio, and other data types to generate precise analyses and forecasts. DL techniques
can be used to automate processes that ordinarily require human intellect, such as text-to-
sound transcription or the description of photographs. As a subfield of AI, ML relies on
training algorithms to acquire knowledge and insight from a dataset (Figure 5) [37]. Due
to their limitations, ML models can only answer well-managed issues when confronting
unstructured or complex problems, unlike DL models, which address unstructured or
complex problems. Drawing inspiration from genetic nerve cells, models generated from
biological neurons use numerous levels of interpretation to uncover the multidimensional
and intrinsic relationship in data. DL techniques can extract significant relationships and
dependencies from unstructured or unlabeled information by developing deep hierarchical
features in the dataset [38].
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Deep neural networks (DNNs) is a term used to describe SE-YOLOv3 (multi-scale
object detection network that uses a feature extraction network and multiple detection
heads to make predictions at multiple scales) technology occasionally. DL techniques
comprise multilayered neural networks in which one or more hidden layers are linked
together to form a learning-competent network with complex structures at an elevated
level of extraction [39,40].
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You Only Look Once (YOLO), ResNet-50, CNN (illustrated in Section CNN for Face
Mask Recognition), and Region-based CNN (R-CNN), which extracts a significant amount
of region proposals from the input image, identifying their classes and bounding boxes,
were considered promising in identifying face marks [41,42]. Also, in [42], DL and ML
models were effectively applied to identify COVID-19 from raw data obtained from med-
ical IoT devices. These are only a few examples of the many areas where DL has been
successfully applied.

Facial recognition technologies are the optimal solution for insecure systems, such as
biometrics or entering a password via a keyboard, because they do not require physical
interaction. Nevertheless, using face masks in these systems has presented a significant
challenge for artificial vision [43], as half of the face is obscured during facial identification,
losing vital information. This issue justifies the obvious need for algorithms to identify a
person wearing a face mask [44].

CNN for Face Mask Recognition

Convolutional neural networks, often called CNNs or ConvNets, are a subclass of
neural networks, especially effective in processing input with a grid-like architecture, like
images [45]. A digital image is a binary representation of visual data. Each pixel, arranged
in a grid-like pattern, has a pixel value to specify how bright and colorful it should be.
Similarly to the biological vision system, each neuron in a CNN processes data only in its
receptive field. The CNN arranges layers to detect the simpler patterns (e.g., lines, curves,
etc.) initially, followed by complex patterns, like faces and objects. They are made up of a
variety of building pieces, including convolution layers, pooling layers, and fully connected
layers. The convolution layer is the core component of the CNN. This layer produces a
dot product between two matrices: the constrained region of the receptive field and the
kernel, a set of learnable parameters. The weight-sharing method CNNs uses significantly
reduces the number of parameters that must be learned. Translation invariance is also
caused by pooling layers and increasing receptive field sizes of neurons in subsequent
convolutional layers. The backpropagation process enables iteratively optimizing network
weights and biases, minimizing the gradient of the network’s parameters with respect to
the loss function [45,46]. In [47], a framework for acquiring distinct features associated
with face mask-wearing conditions was proposed. As previously introduced, CNNs are a
subset of so-called DL approaches specialized for different problem typologies, like action
recognition, inverse imaging problems, and image classification [48–51].

According to [52–54], CNN technologies have been adapted to the needs of humanity
over time, resulting in applications in numerous application fields, ranging from agriculture
to the military and medicine.

In research settings, neural network analysis has also been applied to the analysis
of dental images for diagnostic purposes. Their usefulness and protection should be
demonstrated using more precise, replicable, and comparable methods [55].

Although medical imaging modalities such as computed tomography (CT) scans
and thoracic X-rays have been used for a long time, they have recently been focused on
COVID-19-related applications. A review and discussion of CNN for identifying infected
tissues in COVID-19 patients using images obtained from various medical imaging systems
can be found in [56–58].

Due to recent advancements in CNN architectures for object detection, numerous
CNN-based models have demonstrated exceptional performance in detecting face masks.
The design of Artificial Neural Networks (ANNs) is replicated using CNN-based proto-
types. A classifier is a classification algorithm that accumulates and processes hierarchical
characteristics extracted from image data. Thus, input identifiers are assigned to images,
and then automatic training is performed, as described in [44,59].

CNN’s first layer is the input image, followed by the pooling layer, the fully connected
layer, and the convolutional layer. The central layer is the convolutional layer, which is
responsible for convolving the input image with learnable filters and isolating the resulting
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image’s characteristics. Neurons designated to identify features in the layer inputs make
up each filter. Using small squares of input data, convolution is a technique for learning
visual attributes and functioning in conjunction with pixels. The pooling layer reduces the
number of neurons in the small rectangular responsive area of the preceding convolutional
layer. As proposed in [60], pooling and convolutional layers are responsible for feature
extraction (Figure 6).
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As previously discussed, CNNs are widely applied in image recognition applica-
tions; for instance, the research paper [60] presents a comprehensive solution for image
recognition based on CNN, ensuring good classification accuracy (99.5%).

In Ref. [61] a drone was designed for mask detection and social distance monitoring,
using Raspberry Pi 4 and convolutional neural network (faster R-CNN) model in order to
capture images and detects unmasked persons, respectively. Then, it sends alerts to the
people via speaker for maintaining the social distance, and also the detected people details
to authorities and the nearest police station.

Using the VGG-16 CNN model, Ref. [62] implements a detection method with a 96%
accuracy rate. Similarly, in [63], authors presented the SSDMNV2 model based on the
MobileNetV2 architecture, with a 92.64 percent experimental accuracy.

In [64], a 5 × 5 complexity was divided into two 3 × 3 complexities. InceptionV3 is
a pre-trained prototype that utilizes handover learning, transferring the trained neural
network knowledge to the new prototype in periods of parametric substances. It employs
a 48-layer CNN design. Concerning COVID-19 face mask recognition, Ref. [65] proposed a
prototype employing transport learning of InceptionV3 transfer learning techniques. The
proposed algorithm reached a training accuracy of 99.92% and a test accuracy of 100%
using the Simulated Masked Face Dataset (SMFD).

The authors of [66] propose an automatic face mask recognition method constituted
by an image Super-Resolution and Classifier Network (SRCNet), evaluating the perfor-
mance of a three-category classification algorithm using unrestricted 2D face pictures. The
SRCNet was used to identify if masks were worn (Figure 7). The obtained test results
demonstrated that the proposed method reached an improved accuracy (98.70%) compared
to conventional image classification techniques.
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In [67], a face mask identification system employing ocular data and ImageNet-trained
CNN was presented. The accuracy obtained ranged between 90 and 95%.

ResNet is an acronym for Residual Networks. ResNet’s benefit was that it enabled
the successful training of DNNs with 150 or more layers. Before ResNet, the problem of
disappearing constituents made training DNNs extremely problematic. Residual Network
employs the concept of skip connection to address the problem of missing ingredients. This
accomplishment was made possible by ResNet’s bypass connection feature; as a result, the
weight did not decrease to a negligible level [68].

ResNet-50 is a 50-layer CNN applied to derive features. This architecture has been
successfully implemented in various disciplines, such as image classification and object
recognition [69]. The authors of [70] employed the ResNet-50 model for feature extraction,
while YOLOv2 was used to detect medical face masks, achieving an 81% accuracy for
face mask precision detection (Figure 8a); also, Figure 8b reports the outcomes of the
proposed face mask detector, reported a bounding box for each detected mask and the
corresponding score.

A detection system for recognizing unmasked individuals was proposed in [71]. The
proposed method comprises three components: the first layer (ResNet-50) used a Feature
Pyramid Network (FPN), the second element included a Multi-Task CNN (MT-CNN), and
the third element was a CNN classifier to identify masked and unmasked features. The
proposed method was implemented on a mobile robot (Thor) and evaluated using a dataset
of recordings captured by the robot in public spaces. The tests demonstrated that the
proposed system obtained an F1 score accuracy of 99.2%.
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In [72], an effective method based on computer vision was proposed, with the authors
focusing on real-time automated surveillance of both social distance and face mask per-
spectives in public spaces. If these conditions are violated, the system will send an alert
signal to the authorities.

A model that can detect people without masks using a facial detection system was
proposed in [73]; the collected data were integrated with a public recognition database to
compile information about the suspect, and a text message was sent to his mobile phone.

In [74], a system that can identify individuals not wearing masks in a smart city
network equipped with Closed-Circuit Television (CCTV) cameras to monitor public areas
was proposed. The corresponding authority is notified via the city’s network when a person
is uncovered. They trained a deep learning architecture using images of persons wearing
and not wearing masks. The accuracy of the trained architecture was 98.7%.

In [75], a CNN-based architecture with multiple stages was proposed to identify the
individuals not wearing masks. The model’s detection accuracy was 91.2%. A near real-
time technique for automatically distinguishing face masks was proposed in [76]. The
proposed architecture, in conjunction with CNN, obtained a 95.8% accuracy in recognition.

The dual-stage CNN model proposed in [77] could differentiate between mask-
wearing and mask-free individuals and be integrated with pre-installed CCTV cameras.
The detection precision of this model is 99.98%.
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4. Mobile Networks for Face Mask Detection (Mobile Netv1 and MobileNetv2)

In computer vision and deep learning, face mask recognition algorithms have seen a
tremendous increase in popularity. The method proposed in [78] employed deep learning
frameworks, like Tensor-Flow, Keras, and OpenCV libraries, to identify face masks in real
time. The trained MobileNet model generated an accuracy score and F1 score of 99.9%.

Convolutional neural networks, such as MobileNet, are specialized for embedded and
mobile vision applications. They are built using depthwise separable convolutions, which
are lightweight deep neural networks that can have minimal latency for embedded and
mobile devices.

The MobileNets architecture proposed in [79] used depth-wise discrete convolutions
to construct Lightweight Region Proposal Networks (RPNs), resulting in 73% accuracy for
the PASCAL VOC 2007 trainval (Figure 9).
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The smaller footprint and faster performance of MobleNets made them suitable can-
didates for deep-learning models. MobileNets lacked adequate accuracy compared to
other prototypes, such as Accelerated R-CNN and InceptionV2 [80], a drawback of these
typologies of the framework.

In [81], a detection architecture employing MobileNetV2 face mask recognition was
proposed; the system prototype was developed and tested, demonstrating its correct
operation in determining whether or not a person was wearing a mask. Since the proposed
model was a lightweight CNN, it can be implemented into both mobile and computer
vision techniques.

5. Face Mask Detection Sensors

Sensors play an essential role in the fight against COVID-19, as they are utilized in
various ways, including detecting people wearing face masks and detecting COVID-19 by
measuring a person’s temperature.

In [82], a novel Sensor Fusion (SF) method for detecting COVID-19 suspects was
proposed. Also, the proposed system combines the SF algorithm with the MobileNetV2
model for face mask detection, improving the prediction accuracy. An Arduino board
is interfaced with an IR temperature sensor and a PPG (photoplethysmography) sensor
to acquire body temperature and SpO2. The Arduino forwards biophysical data to a
Raspberry Pi board that deploys SF to detect COVID-19 suspects. MobileNetV2 is run on
the Raspberry Pi board library to determine suitable mask alignment using images acquired
by a camera module (Figure 10). The MobileNetV2 reached a 99.26% accuracy. On a cloud



Sensors 2023, 23, 7193 14 of 24

server, health data are perpetually monitored and stored (ThingSpeak). When a COVID-19
suspect is identified, healthcare authorities are notified via email with the infected person’s
GPS location.
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The Smart Screening and Disinfection Walkthrough Gate (SSDWG) was proposed
in [83] to control the entrances to public buildings. The SSDWG is designed to perform
rapid screening, which includes measuring temperature with a contactless sensor and
preserving the record of infected individuals for increased control and monitoring. The
proposed system utilized real-time deep-learning models to detect and classify face masks.
This module implemented transfer learning with VGG-16, MobileNetV2, Inception v3,
ResNet-50, and CNN models. The presented system achieved a precision of 99.81%.

In [84], the authors proposed an IoT-based system for COVID-19 indoor safety mon-
itoring. It comprises a sensor-based temperature measurement subsystem, a computer
vision subsystem for mask detection, and a Raspberry Pi-based social distancing controller.
In detail, the non-contact sensor measures the person’s temperature; if the person’s body
temperature is higher than normal, the door is locked, and a message comprising the tem-
perature value and location is sent to the server. The subsequent phase is mask detection;
a CNN and a deep learning technique are combined for this purpose. The face frame is
resized, converted into an array, and pre-processed using the MobileNetv2 algorithm. The
following step involves the implemented model to forecast the processed input picture.
The video frame will also be labeled with the subject’s mask-wearing status, along with
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the percentage inferring accuracy. The test results demonstrated that the computer vision
subsystem reached 91% accuracy.

In [85], B. Varshini et al. proposed an IoT-enabled smart door that uses a machine-
learning model for body temperature monitoring and face mask recognition. In detail,
a model employing a real-time deep learning system implemented on Raspberry Pi was
implemented to detect face masks and the number of individuals present at any given time.
This model was based on a CNN deployed by the TensorFlow software library. The pictures
used to train and test the model were from the internet. The dataset comprises 690 pictures
with masks and 686 images without masks in this collection. The trained model obtained a
97% accuracy using the face mask detection algorithm.

Similarly, in [86], the authors introduced a face mask detection system to fight the
diffusion of the COVID-19 pandemic operating on pictures and videos; furthermore, the
system could monitor body temperatures to detect potentially infected people and auto-
matically spray the disinfectant. They explored many classifiers, including the Symbolic
Classifier and Support Vector Machine (SVM). In detail, three approaches are used to clas-
sify histopathological pictures. The first technique, nuclei segmentation, denotes cellular
alterations. The second technique deals with textural characteristics; the last technique
relies on variations in color densities. The main feature that characterizes mitotic behavior
is its form. The features set and cellular structure of each blob, namely the area, perimeter,
solidity, and circularity, are used to extract the morphological differences. Then, the best
shape features are extracted, which characterize the behavior of mitosis. Detected nuclei
are used to extract texture characteristics. Also, a custom CNN classification algorithm was
proposed for face mask detection, including several Neuro-Fuzzy layers. Fifty different
image datasets were tested in various experiments to evaluate their performance. The test
results demonstrated that the proposed CNN method reached 91.11% accuracy with 7.24 s
inferring time.

Finally, a DWS-based MobileNet, a Depthwise Separable Convolution Neural Net-
work, was introduced in [87] (Figure 11). Instead of using 2D convolution layers, the
suggested network uses depth-wise separable convolution layers, ensuring fast training
with fewer parameters.
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It comprises a 1 × 1 convolution output node where each pulse’s spatial convolution is
carried out separately. A one-dimensional maximum on the output of the Rectified Linear
Unit (ReLU) activation function was employed, supplied by the output of the convolution
layer. While the pooling layer’s filter size is fixed at 20 with a step number of 2, the first
convolutional layer’s filtering size and depth are both modified to 60. The convolution
layer’s output for the fully connected layer input is flattened down to a stepping of six.
They use a dropout method in which neurons are randomly turned off during training to
prevent overfitting. The Moxa3K dataset was employed for this investigation, comprising
3000 photos, 2800 used for training, and 200 for testing. The test results indicated that the
DWS-based model has a greater accuracy (93.21%) than SVM and CNN, using the AIZOO
FACE MASKS dataset.

Finally, Table 2 summarizes the main research lines investigated in this review work,
reporting the main advantages and weaknesses of each research, as well as the current
approaches to solving the problems.

Table 2. Summarizing table of the main discussed research lines.

Recognition Techniques Technology Description References

Machine Learning

Support Vector Machines (SVM),
decision trees,

Multilayered Deep Neural Networks
DL used for Access Control,

Convolutional-neural-network-based
action recognition

These cutting-edge techniques prioritize
accuracy in some situations and speed in

others. This section describes object detection
utilizing the deep learning approach instead of

the benefits of deep learning techniques in a
real-time application.

[24,37–44,47–58]

Computer vision There are now numerous object detection
methods available.

For object detection, it is possible to find and
recognize specific kinds of things in pictures

and videos. Additionally, this method localizes
the objects in the supplied image using

bounding boxes. This can count the number of
items in the image that has been provided.

[14–16]

CNN

Artificial Neural Networks, Layered CNN
Inceptionv3

Super-Resolution of Images (SRCNet)
Residual Networks

They focus on areas, or regions, in a photo
similar to other areas, such as the pixelated

region of an eye. If this region of the eye
matches up with other eye regions, then the

R-CNN knows it has found a match. However,
CNNs can become so complex that they

“overfit,” which means they match regions of
noise in the training data and not the intended

patterns of facial features.

[44,47–74]

Mobile Networks
(MobileNet v1 and

MobileNetv2)

Deep learning, TensorFlow, Keras,
and OpenCV

MobileNets V1 are built on a simplified design
that creates lightweight deep neural networks

using depth-wise separable convolutions.
Building on the concepts of MobileNet V1

MobileNet V2 employs depth-wise separable
convolution as effective building pieces. Linear

bottlenecks between layers and short
connections between bottlenecks are two new
characteristics added to the architecture by V2.

[78–81]

Sensors Sensor Fusion (SF) approach with
MobileNetv2, deep learning

Fusing data from at least two sensors is known
as Sensor Fusion. Perception is the analysis

and classification of sensor data to find,
recognize, categorize, and track

objects (e.g., faces).

[82–86]

6. Challenges in Face Mask Recognition Systems

Face mask recognition has been criticized for its precision, reliability, and improper
use of private information. In detail, listed below are some of the obstacles associated with
masked-face recognition [88,89]:

• Accuracy: Face mask recognition technology should be developed and tested rig-
orously to ensure high accuracy rates, particularly in identifying both masked and
unmasked individuals. False positives, where individuals are incorrectly identified as
not wearing masks, can have severe consequences, such as denying access to essential
services or causing unnecessary alarm. No face mask-recognition algorithm reaches
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100% accuracy, even with the most sophisticated software. However, the technology is
generally considered satisfactory, with at least 98% accuracy rates.

• Mask Variability: Face masks come in various shapes, sizes, colors, and designs.
Recognizing and accommodating the diverse range of masks can be challenging for
the algorithms. Each mask type may introduce unique textures, patterns, or features
that must be considered for accurate recognition.

• Lighting and Environmental Factors: Variations in lighting conditions, such as shad-
ows, reflections, or poor illumination, can affect the visibility of facial features and
the overall performance of face mask recognition algorithms. Challenging lighting
conditions can decrease accuracy and introduce additional variability.

• Rapid Deployment and Adaptation: The need for face mask recognition arose rapidly
during the COVID-19 pandemic, requiring quick deployment of technology. Develop-
ing robust algorithms and adapting them to different scenarios and environments can
be challenging due to the limited research, testing, and optimization time.

• Computational Resources: Implementing real-time face mask recognition systems
that quickly process large amounts of data can be computationally demanding. High-
speed processing and response times are crucial for applications where real-time
identification is required.

• Database necessity: Training accurate and unbiased face mask recognition models
requires diverse and representative datasets, including individuals wearing different
types of masks. The availability of such datasets, as well as potential biases present in
the data, can impact the performance and fairness of the algorithms.

• Ethical and Privacy Concerns: Face mask recognition involves capturing and pro-
cessing personal biometric data, raising concerns about privacy, consent, and po-
tential misuse of the collected information. Ensuring robust data protection mea-
sures, transparency, and addressing privacy concerns are important for the ethical use
of the technology.

• User Acceptance and Cooperation: Face mask recognition systems often require
user cooperation, such as proper positioning of masks, removing obstructions, or
following specific guidelines. Achieving widespread user acceptance and compli-
ance can be challenging, impacting the overall effectiveness of the technology.

Image variations compared to the factors discussed above (i.e., mask variability, posi-
tioning, lightning, poses) make it more difficult for the face mask recognition algorithm to
detect the presence of a face mask. Indeed, it can be more difficult to compare two images
if there are significant differences in head position, light orientation and intensity, mask
typology, etc. There are two options for addressing these issues:

• Use numerous forms of training sets to acquire knowledge.
• The use of deep learning techniques facilitates the correction of these differences.

Addressing these challenges through ongoing research, advancements in com-
puter vision, machine-learning techniques, and contemplating ethical implications
can contribute to developing more accurate, reliable, and responsible face mask
recognition systems.

7. Results and Discussions

In this section, the previous scientific works are compared and further analyzed to
bring out trends and guidelines for developing modern face recognition systems.

As discussed above, face recognition employs numerous classification and processing
methods, including but not limited to DL and ML algorithms, as well as Mobile Networks
(V1 and V2). Table 3 summarizes the prototype discussed in the previous sections, classify-
ing them from the perspective of the employed technique, implemented methodologies,
application purposes, and considered domain.
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Table 3. Face recognition techniques and prototypes.

Technique Prototype/Method/Domain Ref.

Machine Learning
Support Vector Machines (SVM), decision trees, and

combination techniques [23]

SVM [24]

Deep Learning Multilayered Deep Neural Networks [39]

DL used for Access Control [42,43]

Convolutional Neural Networks

A framework consideration module. [44]

Convolutional-neural-network-based action recognition [47–51]

CNN adapted in the agriculture, defense, and medicine sectors. [52–58]

Artificial Neural Networks [44,54]

Layered CNN [60–63,76,77]

Inceptionv3 [64,65]

Super-Resolution of Images (SRCNet) [66,67]

Residual Networks [68–71]

Model for detecting people don’t wear masks [72–74]

Mobile Networks (MobileNet v1
and MobileNetv2) Deep learning, TensorFlow, Keras, and OpenCV [78–81]

Sensors Sensor Fusion (SF) approach with MobileNetv2, deep learning [82–86]

As shown in Table 3, CNNs are the most diffused tool for face mask and face-masked
recognition detection, given the several offered advantages like spatial invariance, parame-
ter sharing, translation invariance, and scalability [90–92]. As discussed above, CNNs offer
a powerful framework for extracting and learning discriminative features from images,
making them well-suited for masked-face recognition, face mask detection, and other
computer vision tasks. Their ability to learn hierarchical representations, handle spatial
variations, and scale to large datasets justifies their effectiveness and widespread use in
computer vision applications.

Furthermore, the MobileNets are gaining ground in recent years thanks to their
lightness and efficiency, making them ideal for implementations on mobile and embedded
devices with limited computational resources. MobileNet architectures can independently
process and capture unique features from sensor data, identifying complex relationships
and dependencies, thus improving performances and reducing latency [93,94]. Also,
deep learning, machine learning, and mixed MobileNet-sensors algorithms are common
solutions for deploying masked-face recognition and face mask detection algorithms.

Afterward, the performance of the techniques previously discussed is evaluated to
determine the most promising and performant solution for developing the future masked-
face recognition system. Table 4 summarizes the research works on facial mask detection
using deep learning and CNN, as well as the accuracy of the proposed techniques.

As shown in Table 4, surveyed algorithms varied from the prototype model/domain.
Deep learning uses techniques such as public recognition database to compile information,
a Hybrid deep transfer learning model, TensorFlow, Keras, and OpenCV; they also differ in
the achieved accuracy from 95% to 99.64%. On the other hand, CNN combined with deep
learning or consisting of multi-stage achieved better accuracy than DL with 99.98%. Face
recognition sensor-based networks achieved an accuracy range from 91% to 99.81%. The
lowest achieved was for Lightweight Region Proposal Networks (RPNs) (73%), compared
with other techniques falling within this range.
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Table 4. Achieved accuracy for COVID-19 facial mask detection techniques.

Work AI Models Achieved Accuracy

M. Loey et al., (2021)
[23]

Hybrid deep transfer learning model Support Vector
Machines (SVM), decision trees, and

combination techniques
99.64%

M. Loey et al., (2021)
[70]

A model that integrated YOLO-v2 and ResNet-50
DL (Residual Networks) 81%

M. M. Rahman (2020)
[74]

Lightweight neural network (for detecting people
who do not wear masks) 85%

M. Inamdar and N. Mehendale (2020)
[73]

A novel DL model (utilizing public recognition
database to compile information) 98%

S. Yadav (2020)
[72]

Deep Learning and computer vision-based approach
(method based on computer vision) 95%

T. Rao and S. Devi (2020)
[75]

Multi-stage CNN architecture for face
mask Identification. 91.2%

H. Lin et al., (2021)
[76]

CNN combined with the DL approach for
mask identification. 95.8%

A. Chavda et al., (2021)
[77]

Multi-stage CNN architecture for face
mask detection 99.98%

S. E. Snyder et al., (2021)
[71]

Different types of deep learning for detecting face
mask ((ResNet-50) with Feature Pyramid Network

(FPN), Multi-Task CNN (MT-CNN), CNN classifier)
99.2%

S. Taneja et al., (2021)
[81]

CNN-based mask identification Method Utilizing
OpenCV and MobileNetV2 99%

G. H. Christa et al., (2021)
[78] Deep learning, TensorFlow, Keras, and OpenCV 99%

S. Ren et al., (2015)
[79] Lightweight Region Proposal Networks (RPNs) 73%

R. K. Shinde et al., (2022)
[82] Sensor Fusion (SF) approach 99.26%

S. Hussain et al., (2021)
[83]

Smart Screening and Disinfection Walkthrough
Gate (SSDWG) 99.81%

N. Petrović and Ð. Kocić (2020)
[84] Contactless sensor with computer vision 91%

B. Varshini et al., (2021)
[85] Sensors with deep learning 97%

MobileNetV2 is known for its improved accuracy compared to the original Mo-
bileNetV1 architecture. The accuracy of MobileNetV2 can vary depending on the spe-
cific dataset, task, and training configuration. However, in general, MobileNetV2 has
demonstrated competitive performance on various computer vision tasks, including image
classification [77,81].

Similarly, hybrid approaches that combine DL and classical ML classifiers [23] are
valuable solutions in terms of performance (99.64% accuracy) but suffer in terms of pro-
cessing (i.e., training and inferring) time and required resources. This result is predictable
since, by stacking different algorithms, higher computational requirements are required.

8. Conclusions

Although the effects of the COVID-19 pandemic have diminished recently, it still
affects various regions of the globe. According to the World Health Organization, social
isolation and the use of face masks are two of the most essential methods to contain the
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pandemic’s spread. Recently, facial recognition has been the subject of several international
studies. The presented review is focused on the most recent findings reported in the
scientific literature regarding methodologies and systems for masked-face recognition and
face mask detection developed to fight the COVID-19 pandemic. At first, classical ML
algorithms and models for masked-face recognition and face mask detection are reviewed
and discussed, lingering on solutions combining multiple ML models to improve their
performance. After, DL techniques used to identify face masks are presented, focusing on
CNN applications. Furthermore, modern tools, like Mobile Networks (MobileNetv1 and
MobileNetv2), are introduced for facial recognition and face mask detection applications.
After, IoT-based sensors for fighting the COVID-19 pandemic diffusion are reviewed; based
on ML and DL algorithms, these prototypes enable rapid screening of numerous people,
assessing whether they wear masks and body temperature. Then, challenges in facial
recognition are reported, along with a comprehensive comparative analysis and discussion
for outlining the features of face recognition systems.

In conclusion, in recent years, there has been a rise in the use of computer vision for
masked-face recognition and face mask detection; to investigate their perspectives, we ana-
lyzed and compared modern facial recognition techniques, focusing on their performance.
From the presented analysis, MobileNetV2 is the best candidate for designing the next
generation of face recognition systems, given their performance, memory requirements,
training time, etc. [95]. Likewise, hybrid approaches combining both DL and classical ML
classifiers are worthy solutions in terms of performance (99.64% accuracy) [23]; however,
they experience issues in terms of processing (i.e., training and inferring) time and required
resources. Finally, we analyzed IoT-based sensors for face mask detection, demonstrating
that they are effective tools for fighting the future pandemic, given their ubiquity and
performance.
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