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A B S T R A C T

In late 2015 three of the co-authors of this paper published the first review on time-dependent routing
problems. Since then, there have been several important algorithmic developments in the field. These
include travel time prediction methods, real-time re-optimization by operating directly on the road graph,
efficient exploration of solution neighborhoods, dynamic discretization discovery and Machine Learning -inspired
methods. The aim of this survey is to present such research lines, together with indications on their further
developments.
1. Introduction

Since the appearance of the first review on time-dependent routing
problems (Gendreau et al. (2015)), the interest in the field has grown
enormously. In this paper we provide a review of the most recent
developments that have had a major impact on the literature.

Time-dependent (TD) routing amounts to designing best routes in a
graph in which arc traversal times may vary over the planning horizon
(Ichoua et al. (2003)). The problem can be formulated on either an
undirected, directed or mixed graph, but here we consider the directed
version unless specified differently. Let 𝐺 = (𝑉 ,𝐴) be a directed graph
representing a road network, where 𝑉 is a set of either vehicle depots,
customer locations or road intersections, and 𝐴 ⊆ 𝑉 × 𝑉 is an arc set.
With each arc (𝑖, 𝑗) ∈ 𝐴 is associated a function 𝜏𝑖𝑗 (𝑡) representing the
amount of time that a vehicle, leaving origin 𝑖 ∈ 𝑉 at time instant 𝑡,
takes to reach destination 𝑗 ∈ 𝑉 along (𝑖, 𝑗) ∈ 𝐴. We assume that the
travel time functions satisfy the first-in-first-out (FIFO) property, i.e., the
arrival time is a strictly monotonic function of the starting time.

In classical (time-invariant) Vehicle Routing Problems (VRPs), in-
formation about point-to-point routing on the road network may be
determined in advance. Therefore, the majority of the time-invariant
VRP literature is based on an abstraction of the road network, referred
to as a customer-based graph 𝐺′ = (𝑉 ′, 𝐴′) (Huang et al. (2017)), where
vertices 𝑖 ∈ 𝑉 ′ ⊆ 𝑉 represent ‘‘points of interest’’ (POIs), i.e., customers,
depots, etc. Then the routing decisions on the customer-based graph
and the path selection at road network level can be decoupled. On the
contrary, in a TD setting each arc (𝑖, 𝑗) ∈ 𝐴′ of the customer-based graph
is associated to a time-dependent cost function 𝜏′𝑖𝑗 (𝑡) representing the
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time taken by a quickest path in the road network starting from 𝑖 ∈ 𝑉 ′

at time instant 𝑡 to reach destination 𝑗 ∈ 𝑉 ′. In general, this quickest
path may change over time, i.e., different start times 𝑡 may lead to
different quickest paths in the road network. More formally, if 𝑃𝑖𝑗 is
the set of paths linking vertices 𝑖, 𝑗 ∈ 𝑉 ′ in 𝐺′ and 𝜏𝑝𝑖𝑗 (𝑡) is the traversal
time of path 𝑝 ∈ 𝑃𝑖𝑗 starting at time 𝑡, then

𝜏′𝑖𝑗 (𝑡) = min
𝑝∈𝑃𝑖𝑗

𝜏𝑝𝑖𝑗 (𝑡). (1)

Part of the complexity of time-dependent VRPs (TDVRPs) is due
to the fact that, for any given vehicle route 𝑝𝑘 = (𝑣0, 𝑣1,… , 𝑣𝑘), on
either the road graph 𝐺 or a customer-based graph 𝐺′, the time needed
to reach 𝑣𝑘 for a prescribed start time 𝑡, denoted as 𝑧(𝑝𝑘, 𝑡), must be
computed recursively as:

𝑧(𝑝𝑘, 𝑡) = 𝑧(𝑝𝑘−1, 𝑡) + 𝜏𝑣𝑘−1 ,𝑣𝑘 (𝑡 + 𝑧(𝑝𝑘−1, 𝑡)) 𝑘 = 1,… , (2)

with the initialization 𝑧(𝑝0, 𝑡) = 0.

1.1. Travel time models

In this paper, we focus on travel time variations induced by ex-
ogenous events like traffic congestion, weather conditions or mobile
obstacles, excluding endogenous actions taken by drivers, e.g., adapting
speed to balance fuel consumption and travel time (Franceschetti et al.
(2013)). In particular, we address time-dependent problems related to
the planning of ground vehicles (trucks, vans, ambulances, . . . ) that
are often affected by road traffic congestion. A typical traffic pattern is
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Fig. 1. Boxplots of normalized 𝜏 values across a typical day of operations for 100 origin–destination pairs in the Greater London (UK) area (a time slot 𝑡 corresponds to a 5-min
interval).
shown in Fig. 1 where the normalized travel times 𝜏𝑖𝑗 (𝑡)∕min𝑡 𝜏𝑖𝑗 (𝑡) are
depicted between 100 origin–destination pairs located in the Greater
London (UK) area. The 24-h time horizon is partitioned in 288 time
slots, each corresponding to a 5-min interval. For each time slot 𝑡,
a boxplot shows the travel times between the 100 origin–destination
pairs at time 𝑡: the gray segments describe the boxes, the black ones
the whiskers while the upper and lower dots represent the outliers;
moreover, the red line represents the average travel time function,
while the blue one describes the median.

Most of the current time-dependent vehicle routing literature relies
on the travel time model proposed by Ichoua et al. (2003) (IGP model
in the following). The planning horizon [0, 𝑇 ] is partitioned into a finite
number 𝐻 of time slots [𝑇ℎ, 𝑇ℎ+1] (ℎ = 0,… ,𝐻 − 1), where 𝑇0 = 0 and
𝑇𝐻 = 𝑇 . Given a road network, vehicle speed is assumed to be equal to a
constant level 𝑣𝑖𝑗ℎ on arc (𝑖, 𝑗) during time period ℎ. Algorithm 1 reports
the pseudocode of the IGP procedure for computing the time 𝜏𝑖𝑗 (𝑡)
required to traverse arc (𝑖, 𝑗), of length 𝐿𝑖𝑗 , with a constant stepwise
speed 𝑣𝑖𝑗 (𝑡) = 𝑣𝑖𝑗ℎ, 𝑡 ∈ [𝑇ℎ, 𝑇ℎ+1], ℎ = 0,… ,𝐻 − 1, if the vehicle leaves
node 𝑖 at time 𝑡. The main idea of the IGP model is that the speed
changes when the boundary between two consecutive time periods
is crossed, resulting in a piecewise linear travel time functions 𝜏𝑖𝑗 (𝑡),
which satisfies the FIFO property. The algorithm is initialized with the
time slot 𝑝 which the start time 𝑡 belongs to. At steps 2 and 5, 𝑑 is set
equal to the arc length not yet traversed at the current time instant 𝑡.
At each iteration, 𝑡′ represents the arrival time of a vehicle traversing
a distance 𝑑 at constant speed 𝑣𝑖𝑗ℎ (step 8) with ℎ ≥ 𝑝. The algorithm
terminates when 𝑡′ belongs to the current time slot [𝑇ℎ, 𝑇ℎ+1]. Fig. 2
gives an example of the travel speed function and its associated travel
time function for an arc length 3 with a start time equal to 0.5. The
corresponding travel time 𝜏(0.5) = 2 is computed by Algorithm 1 in 2
iterations. The initial value of 𝑑 is set equal to the arc length 3. It is
worth noting that the length traversed by a vehicle in a time interval
[𝑡1, 𝑡2] is equal to the integral of its speed function between 𝑡1 and 𝑡2.
Since the speed function is constant stepwise, it follows that:

𝐿𝑖𝑗 = (𝑡 − 𝑇1) × 𝑣𝑖𝑗0 + (𝑇1 − 𝑇2) × 𝑣𝑖𝑗1 + (𝑡′ − 𝑇2) × 𝑣𝑖𝑗2.

During the first iteration, 𝑑 is decreased by the length traversed in 0.5
time units at speed 𝑣𝑖𝑗0 = 1, i.e., 𝑑 = 𝑑 − (𝑡− 𝑇1) × 𝑣𝑖𝑗0 = 2.5. During the
second iteration, 𝑑 is decreased by the length traversed in 1 time unit
at speed 𝑣𝑖𝑗1 = 2, i.e., 𝑑 = 𝑑 − (𝑇1 − 𝑇2) × 𝑣𝑖𝑗1 = 0.5. At the end of the
second iteration the while loop stops since 𝑡′ = 𝑇2 + 𝑑∕𝑣𝑖𝑗2 < 𝑇3. Then
the algorithm terminates and returns 𝜏𝑖𝑗 (0.5) = 𝑡′ − 𝑡.

Ghiani and Guerriero (2014) exploit some properties of the IGP
model. Firstly, they prove that any continuous piecewise linear travel
2

Algorithm 1 Travel time calculation procedure in the IGP model

1: 𝑡0 ← 𝑡
2: ℎ ← 𝑝 ∶ 𝑇𝑝 ≤ 𝑡 ≤ 𝑇𝑝+1
3: 𝑑 ← 𝐿𝑖𝑗
4: 𝑡′ ← 𝑡 + 𝑑∕𝑣𝑖𝑗𝑝
5: while 𝑡′ > 𝑇ℎ+1 do
6: 𝑑 ← 𝑑 − 𝑣𝑖𝑗ℎ(𝑇ℎ+1 − 𝑡)
7: 𝑡 ← 𝑇ℎ+1
8: ℎ ← ℎ + 1
9: 𝑡′ ← 𝑡 + 𝑑∕𝑣𝑖𝑗ℎ

10: end while
11: return 𝑡′ − 𝑡0

time model, satisfying the FIFO property, can be generated by an
appropriate IGP model. They also show that the model parameters
can be obtained by solving a system of linear equations for each arc.
Then, such parameters are proved to be nonnegative, which allows
them to be interpreted as speeds. Finally, Ghiani and Guerriero (2014)
prove that the speed and travel time functions 𝑣𝑖𝑗ℎ and 𝜏′𝑖𝑗 (𝑡) on an
associated customer-based graph are piecewise constant and piecewise
linear, respectively.

1.2. Data sources

Although time-dependent vehicle routing problems have received
increasing attention from the scientific community in recent years, the
majority of researchers still rely on synthetic travel time functions. This
can be explained as follows: traffic data (observations over time of
vehicle GPS latitude and longitude, in addition to instantaneous speed)
can be collected mainly from smart phone applications and probe
vehicles. As far as the first technique is concerned, data are gathered
by big Information Technology companies (such as Google, Apple,
Microsoft, . . . ) over many countries and utilized to provide valuable
web services such as point-to-point routing services based on real-
time traffic conditions. As such, companies have no incentive to share
data with fine granularity since that provides them with an unparalleled
competitive advantage. As for the second approach, data are collected
by transportation companies over a given market (e.g., in Gmira et al.
(2020) data are collected by a company providing home deliveries of
appliances and furniture in the city of Montreal). Obviously, in this
kind of business, data remain confidential. An example of available
traffic data is given by Uber Movement (Uber, 2022), which shares
anonymized data from over ten billion trips (located in 52 metropolitan
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Fig. 2. Example from Calogiuri et al. (2021): a continuous piecewise linear arc travel time function (a) and the associated constant stepwise speed function (b).
Fig. 3. Number of publications by year.
areas in North and South America, Europe, Africa, Asia and Oceania).
However, such data are aggregated in five macro-periods: AM peak
(7 AM–10 AM), Midday (10 AM–4 PM), PM peak (4 PM–7 PM),
Evening (7 PM–12 AM), Early Morning (12 AM–7 AM). This level of
granularity is not enough to take full advantage of traffic conditions in
time-dependent vehicle routing algorithms. In conclusion, most of the
scientific literature still relies on synthetic travel time functions.

1.3. Paper outline

The review covers 49 papers, the majority of which were published
in international journals, with a specific focus on those published
from 2015 onwards. Papers published prior to 2015 that are deemed
particularly noteworthy due to their relevance to the topic have been
included in this literature review. Fig. 3 illustrates the distribution
of papers by year of publication. The majority of papers were pub-
lished after 2008, coinciding with a surge in technological advances
that stimulated increased interest in this field. According to Gendreau
et al. (2015), until 2015, time-dependent travel times had largely been
overlooked in various vehicle routing problems, such as point-to-point
quickest path on a time-dependent continental-sized network, time-
dependent general routing, and time-dependent arc routing. As shown
in Fig. 3, there has been a noticeable increase in contributions post-
2015, with a significant concentration observed between 2017 and
2024. Unlike the 2015 review (Gendreau et al. (2015)), this paper
does not provide an exhaustive description of each and every contribu-
tion in the time-dependent vehicle routing field. Instead, we focus on
describing five main sub-areas: travel time prediction methods, real-
time re-optimization strategies directly on the road graph, efficient
exploration of neighborhoods, dynamic discretization discovery for
problems with narrow time windows, and Machine Learning -inspired
3

methods. These areas have seen remarkable advancements in recent
years, with further improvements expected in the future.

The remainder of the paper is organized as follows. In Sections 2
and 3, we present the main application areas and a taxonomy of time-
dependent routing problems. In Section 4 we review the literature
related to travel time prediction, computation and approximation meth-
ods. Then, in Section 5 we survey the literature on time-dependent
routing with path flexibility. Section 6 introduces the dynamic dis-
cretization discovery framework, followed by efficient neighborhood
evaluations in Section 7 and by Machine Learning-based methods in
Section 8. Finally, conclusions are reported in Section 9.

2. Main application areas

Time-dependent routing problems naturally occur in a variety of
applications, such as travel scheduling in public transportation systems,
route planning on road networks, vehicle routing problems as well as
some planning problems in robotics and military contexts. We will now
provide an overview of the main application areas.

Travel planning in public transit networks, i.e., finding the most
efficient connection in a bus, train, ferry or multimodal transportation
network (Google Transit, 2014), is time-dependent and discontinuous
in nature: see Fig. 4 for a typical travel time function on a transit line.

In this context, travel times are not guaranteed to respect the FIFO
property: for instance, a traveler may choose between waiting for the
next bus or reaching the destination on foot (Garcia et al., 2013).
Hence, routing problems on transit networks are often modeled on
a time-expanded graph (Bast et al., 2010), where each event in the
timetable (e.g., a vehicle departure or arrival at a stop) is modeled by
a vertex. The extremes of an arc represent departure and arrival events
of a direct connection, a transfer connection or waiting at a stop. In this
paper, we focus on travel time in road networks. The reader interested
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Fig. 4. Example from Gendreau et al. (2015) of a piecewise linear travel time function
on a transit line.

in routing in public transportation networks is referred to Delling et al.
(2013) and Dibbelt et al. (2013).

As aforementioned, travel time functions on road networks are usu-
ally assumed to be continuous and computed according to the speed
model proposed by Ichoua et al. (2003) (Fig. 2). Such a time-dependent
model plays a central role in both route planning in road networks
and fleet management in vehicle routing problems. Route planning in
road networks, which involves the computation of the quickest route
between a source and a target on road networks, is the basic in-
gredient of a plethora of travel information services, e.g., Google,
Baidu, Yandex, Bing, Apple or HERE Maps (Bast et al., 2016). Route
planning in road networks is also used as a subroutine in VRPs arising
in several application domains such as distribution planning, mail de-
livery, garbage collection, salt gritting. Even with the advancement of
sophisticated algorithms for route planning in road networks (Batz et al.,
2013), generating fast travel-time queries on large-scale road networks
(usually within a fraction of a millisecond) still presents substantial
methodological challenges.

Another peculiar class of time-dependent VRPs concerns the route
planning of vehicles such as an aircraft, a ship or a submarine. Here the
decisions are taken in a two or three-dimensional space and evaluated
in terms of the minimization of travel time, fuel consumption or a
combination of them (Perakis and Papadakis (1989), Norstad et al.
(2011)). In recent years, this problem has received attention thanks to
technological advancements in the collection of detailed real-time data
about air and underwater currents, the state of the surface of the ocean,
etc.

Another source of time-dependency is due to points of interest
whose position change during the planning horizon. In these applica-
tions, the vehicles have to reach a set of moving targets which is the
case, e.g., of resupplying moving units, such as patrolling boats (Helvig
et al., 2003), or intercepting mobile ground units with an aircraft (Jiang
et al., 2005). Travel time dependency can be also induced by the
presence of moving obstacles, as customary in robot motion planning
(Sutner and Maass (1988), Latombe (1990), Fujimura (1995)). Finally,
time-dependent travel times may arise in routing problems where a
fleet of automated guided vehicles (AGVs) is in charge of moving loads
along a (physical) network whose arcs can be traversed by only one
vehicle at a time, which is the case of manufacturing systems, port
terminals and automated warehouses. Here, the time-dependency is
related to the need of planning conflict-free routes. In particular, the
decision includes not only routing but also scheduling the vehicles,
which are allowed to wait at nodes of the network to avoid collisions
(Adamo et al. (2018), Adamo et al. (2023b)).

3. Taxonomy

Time-dependent routing problems may be classified in point-to-
point and multiple-point problems. Other criteria distinguish whether
4

vehicles must service nodes, arcs or both, which is the case of node, arc
and general routing, respectively. In the following, we provide a short
description for each class of problems and provide some relevant recent
references. The reader interested in an updated full list of papers on
time-dependent routing can refer to the www.tdrouting.com web page.

3.1. Time-dependent point-to-point route planning

Route planning on road networks is a key ingredient of travel
information services, used by millions of users on a daily basis. The
core component is the Time-Dependent Quickest Path Problem (TDQPP),
which involves the computation of a path 𝑝 = (𝑠 = 𝑣0, 𝑣2,… , 𝑣𝑘 = 𝑑)
between two vertices 𝑠 and 𝑑, whose duration 𝑧(𝑝, 𝑡), defined by (2), is
minimum. As its time-independent (classical) counterpart, the TDQPP is
polynomially solvable in FIFO networks (Kaufman & Smith, 1993) even
with the presence of traffic lights (Ahuja et al., 2002). The TDQPP has
been extensively studied in the past decade. To achieve fast running
times on continental road networks with millions of vertices, additional
arcs (shortcuts) are introduced in a preprocessing phase (Strasser et al.,
2021).

3.2. The time-dependent traveling salesman problem and its variants

The Time-dependent Traveling Salesman Problem (TDTSP) aims to
determine a least-cost Hamiltonian circuit on the customer-based graph
𝐺′, starting from the depot node at time 𝑡 = 0. Malandraki and Dial
(1996) is the first contribution to address the TDTSP and propose
an approximate dynamic programming algorithm, where travel time
functions are constant step-wise and, therefore, do not satisfy the
FIFO property. In the last decade several contributions have proposed
exact solutions for the TDTSP, based on FIFO travel time models.
Among others, we cite the branch-and-cut approach by Cordeau et al.
(2014), the branch-and-bound algorithm by Arigliano et al. (2018)
and the constraint programming approach by Melgarejo et al. (2015).
The proposed approaches are able to solve realistic instances with
up to 50 POIs. Several contributions studied the TDTSP with Time
Windows (TDTSPTW). Two different objective functions are consid-
ered: makespan and duration. In the former case, the vehicle has to
return to the depot as soon as possible after the start of the planning
horizon. This problem has received attention in the literature, see for
example Arigliano et al. (2019), Montero et al. (2017) and Albiach et al.
(2008). Vu et al. (2020) has been the first to devise a solution approach
for minimizing the duration of the tour, which is the case when the
vehicle has to return to the depot as quickly as possible after the
departure from the depot. Vu et al. (2020) formulate the TDTSPTW as
an integer programming problem defined on (partially) time expanded
networks. Then, they devise a solution approach relying on a Dynamic
Discretization Discovery framework, which is thoroughly discussed in
Section 6. It is worth noting that exact solution approaches do not scale
well for both TDTSP and TDTSPTW with wide time windows (Adamo
et al. (2023a) and Pralet (2023)). A number of contributions have dealt
with generalizations of the TDTSP. This is the case of the Moving-Target
TSP, where POIs are targets moving at constant speed to be intercepted
in minimum time by a pursuer (Wang & Wang, 2023). We also men-
tion the TDTSP with Profits, usually presented as the time-dependent
orienteering problem (Khodadadian et al., 2022). Finally, we observe
that there are contributions dealing with a scheduling problem referred
to as the TDTSP, aiming to determine a sequence of jobs on a single
machine, where the processing times are position-dependent.

3.3. The time-dependent vehicle routing problem

The TDTSP is generalized by Time-dependent Vehicle Routing Problem
(TDVRP), in which a homogeneous or heterogeneous fleet of vehicles
has to visit a set of customers subject to capacity constraints. Ma-
landraki and Daskin (1992) is the first to introduce a Mixed Integer

http://www.tdrouting.com
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Fig. 5. From GPS vehicle traces to quickest path queries.
Linear Programming (MILP) formulation for the TDVRP (without time
windows) on a customer-based graph. The time horizon is partitioned
into intervals and the travel time on each arc is modeled as a stepwise
function. Unfortunately, this travel time model does not satisfy the
FIFO property. This limit is overcome by the IGP model proposed
by Ichoua et al. (2003), in a paper dealing with the TDVRP with soft
time windows. Other contributions focusing on this problem are Jung
and Haghani (2001) and Haghani and Jung (2005), where genetic
algorithms are developed with the objective of minimizing lateness,
routing costs and fixed costs for the vehicles. Donati et al. (2008)
deal with the TDVRP with hard time windows. A hierarchy of two
artificial ant colonies and a local search method are proposed and
tested on instances derived from Solomon’s VRPTW instances and a
real network in Italy. Figliozzi (2012) proposes a fast iterative route
construction and improvement method to solve the TDVRP with hard
and soft time windows. Taş et al. (2014) address the TDVRP with
stochastic travel times and soft time windows. The authors devise a
tabu search and an adaptive large neighborhood search to optimize
both efficiency and reliability. It is only in 2013 that Dabia et al.
(2013) propose an exact method to solve a TDVRP with time windows
aiming to minimize the total duration of the routes computed by
the IGP model. Experiments are conducted on randomly generated
instances of different sizes. Computational results show that instances
with twenty-five vertices can be consistently solved to the optimum. To
the best of our knowledge, no other contributions have devised an exact
method tailored for this problem. In the last decade there have been
several contributions on TDVRP dealing with the integration of routing
decisions with path selection on the road network. This research stream
is thoroughly reviewed in Section 5.

3.4. Time-dependent arc routing

In Arc Routing Problems (ARPs), a homogeneous or heterogeneous
fleet of vehicles has to traverse a predefined set of arcs and edges
of a graph. Even though most related applications occur in urban
contexts, the ARP literature considering time-dependent travel times
is quite limited (Corberán et al., 2021). Sun et al. (2011) and Wang
and Wen (2002) study the time-dependent Chinese Postman Problem,
which aims to determine a least-duration circuit that visits each arc of
the graph at least once. Calogiuri et al. (2019) propose a branch-and-
bound algorithm to solve to optimality the time-dependent variant of
the Rural Postman Problem (RPP), where the postman is not required
to cover every arc in the network, but only a subset of them. The
objective is to determine a least-duration tour that includes all the
required arcs and edges. Xin et al. (2022) propose a time–space network
model for the time-dependent RPP and a heuristic genetic algorithm
to solve it. In the Capacitated ARP (CARP), a demand is associated
5

with each required edge or arc in a RPP. A routes is feasible when
the total serviced demand does not exceed the vehicle capacity. The
CARP aims to determine a set of feasible routes that satisfies the total
demand and minimizes the total cost. The time dependent variant of
the CARP is studied in Tagmouti et al. (2007, 2010, 2011) and Vidal
et al. (2021). We finally mention ARPs with profits, where the number
of required links is too large to be serviced all in a day. In these cases
each requested link has a profit. Black et al. (2013) deal with the time-
dependent prize-collecting ARP, where the objective is to maximize the
total profit collected minus the total travel cost.

3.5. Time-dependent general routing

In Time-dependent General Routing Problems (TDGRPs), a homoge-
neous or heterogeneous fleet of vehicles must visit certain required
vertices and must traverse certain required arcs and edges on a time-
dependent graph. The main applications of the TDGRP are waste col-
lection and newspaper delivery. Ahabchane et al. (2020) present a
multi-vehicle mixed integer programming formulation where time-
dependent demands are considered for snow removal problems. Adamo
et al. (2021) give some properties as well as an exact algorithm for
solving the single-vehicle general routing problem with time-dependent
traversal times.

4. Predicting, computing and approximating travel times in road
networks and customer-based graphs

Traffic conditions are highly non-linear and dynamic, changing over
time and space. Causes of variability in travel times include hourly,
daily, weekly or seasonal variations from the average traffic volumes,
random events like accidents, and weather conditions (Malandraki &
Daskin, 1992). The former are periodic in nature and can be modeled
by deterministic time-dependent travel times while the latter can be
cast as random variables.

Traffic data can be exploited to enhance vehicle routes in two ways:
by considering the historical traffic patterns while building a-priori
routes; by re-routing vehicles in real-time (if operationally feasible)
as soon as fresh traffic data become available. Starting from raw data
(most often, GPS vehicle traces), forecasting methods aim to predict
travel time functions over road networks and customer-based graphs.
This is done through the three-stage process depicted in Fig. 5: travel
speed predictions; arc travel time queries, quickest path queries.

As explained in Section 1, the planning horizon [0, 𝑇 ] is usually
partitioned into a finite number 𝐻 of time slots [𝑇ℎ, 𝑇ℎ+1] (ℎ = 0,… ,𝐻−
1), where 𝑇0 = 0 and 𝑇𝐻 = 𝑇 and vehicle speed is assumed to be equal
to a constant level 𝑣 on any arc (𝑖, 𝑗) of the road graph during time
𝑖𝑗ℎ
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Fig. 6. Number of observations scattered over a typical day in the Gmira et al. (2020) case study.
period ℎ. The resulting travel time functions 𝜏𝑖𝑗 (𝑡) are piecewise linear
and satisfy the FIFO property.

Regarding forecasts, most Intelligent Transportation Systems cur-
rently in use generate only short-term traffic prediction, a topic on
which a huge literature has been published in the last decades (see,
e.g., Alam et al. (2016)). On the other hand, vehicle routing tools
based on a time-dependent framework need the forecast of travel time
functions extending over larger time intervals (e.g., from 6 am to 8
pm on a given day). Such predictions typically rely on historical travel
speed values and a set of exogenous variables.

In the following subsections, we focus on traveling information at
road-network level from two points of view: accurate predictions of
travel speeds; reducing time and space complexity of travel time queries
on customer-based graphs. We also deal with the efficient evaluation of
a route duration through approximated travel time profiles.

4.1. Speed prediction

All methods start from GPS traces (Fig. 5) transmitted by mobile
devices installed on-board. Each GPS observation includes an identifier,
a latitude–longitude pair, an instantaneous speed, a mobile identifier, a
driver identifier, a date and a time stamp. In order to estimate reliable
travel time functions in a typical application, at least one year of GPS
data are needed. Observations are usually scattered irregularly over a
day, as shown in Fig. 6 for the Gmira et al. (2020) case study, in which
an arc speed pattern is made of 96 average speed values taken over
time intervals of 15 min on a given day.

Speed prediction is only the final phase in a process made up of
(at least) three main macro-steps: data preparation and representation;
size reduction and clustering; prediction (possibly with further data
processing). The literature addressing these phases is not unified and
leads to a number of possible algorithmic choices, where different
Machine Learning and Data Mining methods are applied. Thus, the best
approach has to be determined for each specific context.

In the data preparation and representation phase, GPS points are
mapped to the underlying road network to generate daily speed pat-
terns for each individual arc. For instance, in Gmira et al. (2020) the
road network is made up of 233,914 arcs and the data are collected
over 515 days, with a total of 233, 914 × 515 = 120, 506, 910 speed
patterns. Then data are cleaned, e.g., by deleting GPS points with
abnormal speeds, by aggregating GPS points associated with parking
stops for deliveries, etc. Finally, a map-matching algorithm has to be
applied to the remaining GPS points. This amounts to assigning each
GPS observation to an arc of the road network which is a difficult
problem, especially in dense urban road networks. See Hashemi and
Karimi (2016) for a description of such an algorithm.
6

In the size reduction and clustering phase, an elimination procedure
must be first applied to get rid of speed patterns or time intervals with
too few data. For instance, in Gmira et al. (2020) a speed pattern is
automatically eliminated when the fraction of real average speed values
over the 96 time intervals was less than 5%, i.e., speed patterns with
only 4 average speeds or less are removed. This process ends up with a
total of 6,667,459 speed patterns associated to only 3485 arcs (delivery
routes traversed only a few streets of the Montreal area). Then arcs
with similar speed patterns may be clustered before predicting travel
speed values. In Gmira et al. (2020) the 96 time intervals of 15 min are
aggregated into 24 time intervals of one hour in order to compute each
average speed value with an adequate number of observations. Finally,
intervals with no or very few observations over the entire network
(e.g., night hours) have to be discarded. For instance, in the above-
mentioned paper only 1-h time intervals starting from 7:00 a.m. to 7:00
p.m. are kept in every speed pattern. After this stage a speed pattern
is modeled as an array of 13 average speed values, one for each 1-h
time interval between 7:00 a.m. and 7:00 p.m.. First, an average speed
pattern is calculated for each arc over all its corresponding speed pat-
terns (in Gmira et al. (2020) this leads to 3485 average speed patterns.
Second, a clustering approach is used. Gmira et al. (2020) utilize the
K-means algorithm (MacQueen (1967), Jain and Dubes (1988)) to get
a first classification of the arcs, followed by affinity propagation Frey
and Dueck (2007) to get the final classes; this is devised because the
number of average speed patterns is too large for a direct application
of the affinity propagation algorithm.

Regarding prediction, methods can be classified (Van Hinsbergen
et al. (2007)) in: naive (i.e., without any model assumption); para-
metric; non-parametric; a combination of the last two (the so-called
hybrid methods). Naive methods do not use any model, are easy to
implement and require few data. However, they lack accuracy and
are usually used as a baseline to compare more advanced methods.
Parametric methods rely on a predefined functional form linking the
variable to be predicted (travel time, traffic flow at a given time in
the future, . . . ) and a number of independent variables. The most basic
parametric models are linear regression, Autoregressive Moving Average
(ARMA) models, and its integrated version (ARIMA), the Kalman filter
and its extension to non-linear systems, named Extended Kalman Filter.
The latter is particularly suited for traffic prediction because of the
nonlinear and dynamic relationship between state variables in this
application domain. Finally, non-parametric methods (also known as
data-driven methods) use data to determine both the model structure
and its parameters. They are usually very accurate but require a lot
of data. Popular non-parametric models include support vector machines
(SVMs), artificial neural networks (ANNs) and non-parametric regression.
SVMs can be trained to guarantee global convergence and deal well

with noise in the data. ANNs are among the best for travel time
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forecasting and include Multi-layer Perceptrons (MLPs), Recurrent Neural
Networks (RNNs) and Long Short-Term Memory Networks (LSTMNs). The
latter two architectures are widely used for their proven ability to cap-
ture the relationship among sequential time-dependent data. Finally,
non-parametric regression approaches estimate a regression function
without relying on any explicit form. They use a search function (e.g., a
k-Nearest Neighbor approach) to find the most similar observations in
the database; then the selected observations are averaged to provide a
prediction.

4.2. Computing travel times

When travel time information is provided at the road network level,
the computation of quickest paths among customers and facilities is
computationally demanding and can become a major obstacle to the
application of routing optimization algorithms. Two types of queries
are recurrent in the solution process of time-dependent vehicle routing:

• travel time queries: queries that evaluate the arrival time values
𝛷𝑖𝑗 (𝑡) at node 𝑗 when traveling on road arc (𝑖, 𝑗) starting at time 𝑡,
calculated as:

𝛷𝑖𝑗 (𝑡) = {𝑥|∫

𝑥

𝑡
𝑣𝑖𝑗 (𝑡′)𝑑𝑡′ = 𝑑𝑖𝑗},

where 𝑣𝑖𝑗 (𝑡) is the (piecewise constant) speed function of arc (𝑖, 𝑗);
• quickest path queries: queries that evaluate the earliest arrival

time 𝛤𝑖𝑗 (𝑡) at node 𝑗 when traveling from node 𝑖 along a path with
starting time 𝑡; of course, 𝛤𝑖𝑗 (𝑡) = 𝑡 + 𝜏𝑖𝑗 (𝑡).

4.2.1. Travel time queries
Most of the literature use the iterative algorithm proposed by Ichoua

et al. (2003), requiring 𝑂(𝐻) time. To avoid this overhead, Vidal et al.
(2021) propose to express (continuous) functions 𝛷𝑖𝑗 (𝑡) as closed-form
piecewise-linear (PL) functions. They also demonstrate that each PL
arrival time function can be stored as a simple array of linear function
pieces, giving indexed access in 𝑂(1) time if the index of the piece is
known and, by binary search, in 𝑂(𝑙𝑜𝑔𝐻) time otherwise.

4.2.2. Quickest path queries
As observed in Section 1, most VRPs assume that the optimization

problem is defined on a customer-based graph 𝐺′ = (𝑉 ′, 𝐴′) for which
a travel time matrix 𝜏′𝑖𝑗 (𝑡) has to be computed efficiently. Computing
such a matrix starting from the road-network level (functions 𝜏𝑖𝑗 (𝑡)) can
be computationally demanding. Indeed, on a customer-based graph the
travel time matrix depends on an additional continuous parameter, the
start time, and the quickest paths may change over time. As observed
by Ichoua et al. (2003), when travel speed functions are piecewise
constant, the arrival time functions 𝛤𝑖𝑗 (𝑡) are continuous piecewise
linear. A naive approach to quickest path queries is to run a quickest
path algorithm (see, e.g., Delling and Wagner (2009), Rahunathan et al.
(2021)) any time a start time is specified or, alternatively, precompute
approximate quickest paths based on some time discretization. To
circumvent the drawbacks of such methods, Vidal et al. (2021) propose
a continuous pre-processing approach, during which they compute
closed-form representations of the arrival time 𝛤𝑖𝑗 (𝑡) function at each
destination 𝑗 for all departure times 𝑡 at origin 𝑖. This effectively
avoids the computational overhead of approaches based on iterative
travel time queries as well as the memory overhead and inaccuracy
of approaches based on time discretization. It is worth noting that
a breakpoint of PL functions 𝛤𝑖𝑗 (𝑡) can be of two types: a primitive
breakpoint, i.e., a breakpoint of a road arc travel time function; a
minimization breakpoint, i.e., a time instant when the quickest path from
𝑖 ∈ 𝑉 to 𝑗 ∈ 𝑉 changes. Fig. 7 illustrates this concept (Gmira et al.
(2021b)): there are 4 alternative paths between an origin–destination
pair 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑉 and 𝑡1, 𝑡2 and 𝑡3 constitute the minimization
breakpoints (𝑎· and 𝑏· represent the earliest and latest arrival times at
a node ·).
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Fig. 7. Example from Gmira et al. (2021b): (a) the three alternative paths between
points 𝑖 and 𝑗; (b) the resulting arrival time function with the three minimization
breakpoints 𝑡1, 𝑡2 and 𝑡3.

The worst case analysis by Foschini et al. (2014) predicts an expo-
nential growth of the number of PL function pieces, when the traveling
time 𝛷 of the road network is encoded on a customer-based graph as a
travel time profile 𝛤 . Nevertheless, as observed by Vidal et al. (2021) in
their computational experiments, the number of PL pieces associated to
𝛤𝑖𝑗 (𝑡) remains sufficiently small to be efficiently computed and stored in
a few seconds. Indeed, the increase in the number of PL function pieces
is mainly due to the number of minimization breakpoints. However, in
most cases, given an origin–destination pair, there are few quickest path
changes occurring on a road-network in a single day.

4.3. Approximating travel times for efficient evaluation of route durations

In routing optimization algorithms, approximated travel times can
be useful in a number of ways. Vidal et al. (2021) approximate the time-
dependent quickest path duration with its value at the best starting
time, which is obtained as a by-product of the 𝛷 preprocessing. Gmira
et al. (2021b) evaluate the impact of a CROSS exchange by an approxi-
mate computation of a penalty function of the delays induced by a local
move.

Calogiuri et al. (2019), Adamo et al. (2021) and Adamo et al. (2020)
define a lower approximation 𝜏() on 𝜏(𝑡) by decomposing the speed
values 𝑣𝑖𝑗ℎ as (Cordeau et al. (2014)):

𝑣𝑖𝑗ℎ = 𝑢0𝑖𝑗𝑏
0
ℎ𝛿

0
𝑖𝑗ℎ, (3)

where:

• 𝑢0𝑖𝑗 is the maximum travel speed across arc (𝑖, 𝑗) ∈ 𝐴, i.e., 𝑢0𝑖𝑗 =
max 𝑣 ;
ℎ=0,…,𝐻−1 𝑖𝑗ℎ
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Fig. 8. Comparing the 𝜏 functions determined by Adamo et al. (2021) with those of Calogiuri et al. (2019) and Adamo et al. (2020) (a time slot 𝑡 corresponds to a 5-min interval).
• 𝑏0ℎ belongs to ]0, 1] and is the best (i.e., lightest) congestion factor
during ℎ − 𝑡ℎ interval, i.e., 𝑏0ℎ = max(𝑖,𝑗)∈𝐴 𝑣𝑖𝑗ℎ∕𝑢0𝑖𝑗 ;

• 𝛿0𝑖𝑗ℎ belongs to ]0, 1] and represents the degradation of the con-
gestion factor of arc (𝑖, 𝑗) in the ℎ− 𝑡ℎ interval with respect to the
less-congested arc in the same period.

Before delving into these approximations, we describe some prop-
erties of the Cordeau et al. (2014) decomposition. Let

𝛥0 = min
(𝑖,𝑗)∈𝐴,ℎ=0,…,𝐻

𝛿0𝑖𝑗ℎ

be the heaviest degradation of the congestion factor of any arc (𝑖, 𝑗) ∈ 𝐴
over [0, 𝑇 ]. If 𝛥0 = 1, then all arcs (𝑖, 𝑗) ∈ 𝐴 share a common congestion
factor 𝑏0ℎ during intervals [𝑇ℎ, 𝑇ℎ+1] (ℎ = 0,… ,𝐻 − 1). In such a case,
the graph satisfies the path ranking invariance property, i.e., the quickest
path between any two vertices does not change over time (while, of
course, its traversal time may vary). Moreover, the optimal tour of the
Time-Dependent Traveling Salesman Problem (TD-TSP) is the same as the
optimal tour of the classical Traveling Salesman Problem (TSP) w.r.t.
(time-invariant) optimistic 𝑢0𝑖𝑗 travel times (of course, the objective
function values are different). On the other hand, if 𝛥0 < 1 this TSP
solution corresponds to a lower bound on the optimal solution value
of the associated TD-TSP. With reference to the Time-Dependent Rural
Postman Problem, Calogiuri et al. (2019) define a lower approximation 𝜏
as the optimal solution value of a Rural Postman Problem defined w.r.t.
the most favorable congestion factor during each interval i.e., 𝑣′𝑖𝑗ℎ ∶=
𝑓ℎ𝑢𝑖𝑗 (ℎ = 1,… ,𝐻). The main drawback of this approach is that, if a
subset of the arcs is time-invariant, then traffic congestion factors 𝑏ℎ
are all equal to 1. In this case, the lower approximation 𝜏 determined
by Calogiuri et al. (2019) is constant and equal to 𝐿𝑖𝑗∕𝑢𝑖𝑗 (see Fig. 8).

As already observed, the condition 𝛥 = 1 is a sufficient (but not
necessary) condition for strict path ranking invariance. Indeed, the path
ranking invariance is basically due to a low variability of 𝛿 values,
which can also occur when the 𝛥 value is low. Fig. 9 shows the
𝛿0 factors associated to the Greater London application described in
Section 1. The instance exhibits a 𝛥 value remarkably lower than 1, but
also significant portions of the time horizon during which the mean,
the median and the inter-quartile range are almost constant. Based on
this remark, Adamo et al. (2020) enhanced the speed decomposition
of Cordeau et al. (2014), by preliminary observing that factorization
(3) still holds if parameters 𝑏ℎ and 𝛿𝑖𝑗ℎ (ℎ = 0,… ,𝐻 − 1) are computed
on the basis of a maximum speed 𝑢𝑖𝑗 greater than 𝑢0𝑖𝑗 :

𝑢 ≥ 𝑢0 (𝑖, 𝑗) ∈ 𝐴. (4)
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𝑖𝑗 𝑖𝑗
This amounts to adding an additional time slot ℎ = 𝐻 (in which the
vehicle has already returned to the depot) with speed 𝑢𝑖𝑗 = 𝑣𝑖𝑗𝐻 ≥ 𝑣𝑖𝑗ℎ
(ℎ = 0,… ,𝐻 −1). Let 𝐮 be the vector of 𝑢𝑖𝑗 associated to arcs (𝑖, 𝑗) ∈ 𝐴.
Then, the travel speeds can be expressed as

𝑣𝑖𝑗ℎ = 𝑢𝑖𝑗𝑏ℎ(𝐮)𝛿𝑖𝑗ℎ(𝐮), (5)

where:

• 𝑏ℎ(𝐮) ∈ [0, 1] is the best congestion factor during interval [𝑇ℎ, 𝑇ℎ+1]
w.r.t. 𝐮, i.e.,

𝑏ℎ(𝐮) = max
(𝑖,𝑗)∈𝐴

𝑣𝑖𝑗ℎ
𝑢𝑖𝑗

; (6)

• 𝛿𝑖𝑗ℎ(𝐮) =
𝑣𝑖𝑗ℎ

𝑏ℎ(𝐮)𝑢𝑖𝑗
belongs to [0, 1] and represents the degradation

of the congestion factor of arc (𝑖, 𝑗) in interval [𝑇ℎ, 𝑇ℎ+1] w.r.t. the
least congested arc in [𝑇ℎ, 𝑇ℎ+1].

With each vector 𝐮, we denote with 𝑧(𝐮) the traversal time of the
optimal (time-invariant) TSP solution w.r.t. 𝐿𝑖𝑗∕𝑢𝑖𝑗 . Hence, a lower
bound 𝐿𝐵(𝐮) is the traversal time, w.r.t. the 𝜏 𝑖𝑗 (𝑡) functions, of the
(time-invariant) TSP solution. In addition, an upper bound 𝑈𝐵(𝐮) is
provided by the traversal time of this tour w.r.t. the 𝜏𝑖𝑗 (𝑡) functions.

By increasing the 𝑢𝑖𝑗 variables, 𝑧(𝐮) decreases (or remains the same)
since some of the 𝐿𝑖𝑗∕𝑢𝑖𝑗 arc costs decrease. At the same time, the traffic
factors 𝑏ℎ decrease (or remain the same). Hence, the effects of the two
terms in 𝜙() are conflicting. As a result, 𝜙 may increase, decrease or
remain unchanged. Adamo et al. (2020) study the associated optimiza-
tion problem and propose an efficient heuristic to determine ‘‘good’’ 𝐮
values.

As shown in the example reported in Fig. 8, Adamo et al. (2021)
get a lower approximation 𝜏 that fits the original 𝜏 better than Adamo
et al. (2020). Indeed, the fitting procedure by Adamo et al. (2020)
aims to minimize the deviation between the (original) speed values 𝑣𝑖𝑗ℎ
and the most favorable speed value 𝑣𝑖𝑗ℎ, during some (not necessarily
consecutive) periods. Fig. 8 compares the approximations provided
by Calogiuri et al. (2019), Adamo et al. (2020) and Adamo et al. (2021).
It is worth noting that the latter approach guarantees that there always
exists at least one time instant in which the lower approximation 𝜏
equals the original travel time function 𝜏.

5. Time-dependent routing with path flexibility

As observed in Section 1, most studies are based on an abstraction
of the road network, referred to as customer-based graph, where vertices
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Fig. 9. Boxplots of the 𝛿0 factors in a typical day of operations in the Greater London (UK) application described in Section 1.
represent ‘‘points of interest’’ (POIs), i.e., customers, depots, etc., and
arcs correspond to quickest paths between POIs. In general, these
quickest paths may change over time, i.e., different start times may
lead to different quickest paths. If the VRP depends on parameters
(transportation cost, . . . ) proportional to arc traversal times, this ap-
proach allows to pre-compute such quickest paths and decouple the
problem into: (1) the path selection at road network level; (2) the
routing decisions on the customer-based graph. However, as observed
in Vidal et al. (2020), in urban areas road networks have a complex
structure, with traffic congestion affecting several road attributes other
than driving time, i.e., tolls, transportation mode, attractiveness, energy
consumption and emissions. This may lead to complex time-dependent
cost functions, such that each arc start traversal time might not corre-
spond to a single min-cost path, but several non-dominated best paths
have to be taken into account. This aspect is especially relevant in
time-dependent vehicle routing problems, where the objective function
(e.g., distance) and constraints (e.g., time windows) are defined in
terms of different attributes (Ben Ticha et al. (2021)). Further issues
arise in time-dependent green vehicle routing problems, where the
minimization of emissions depends not only on vehicle speed but also
on vehicle load. Therefore, in order to determine the time-dependent
emission-minimizing path, it is required to know the vehicle load,
which cannot be determined in advance since it depends on the points-
of-interest sequence (Ehmke et al. (2016b)). Similar considerations
apply to urban distribution with battery-powered vehicles, where the
cost function models time-dependent energy consumption. Even more
complicated is the situation when routing decisions are integrated with
time-dependent decisions to be taken en-route at the road network
level, such as travel speed for each road segment, driver breaks at inter-
mediate nodes, recharging stops for electric vehicles, etc. (Vidal et al.
(2020)). Accounting for such alternative point-to-point paths gives rise
to time-dependent routing problems with path flexibility, where routing
decisions are integrated with path selection on the road network.
Research on this topic is fairly recent and scattered. Two alternative
approaches stand out in literature. The first approach represents the
road network as a multigraph, containing multiple alternative paths
between every pair of POIs. In the second approach, the problem is
directly solved on the original road network. In the following we review
the literature on VRP with path flexibility (PF) according to these two
criteria.

5.1. Path flexibility on a customer-based multigraph

Time-dependent path flexibility comes into play when multiple
objectives are relevant, requiring the selection of paths constituting
9

a good trade-off among two or more criteria. This may require the
construction of a multigraph on which multi-criteria cheapest path
problems are solved. Several contributions pre-compute, as a first step,
a (non-exhaustive) set of such paths between each pair of nodes. Then,
when constructing a solution, each path is evaluated according to the
cost function actually optimized.

In Wang et al. (2014), the authors consider the TDVRP with Time
Windows, where path flexibility is modeled by connecting each pair
of nodes with two arcs. The first arc represents the best path when the
traffic is low and is characterized by a time-dependent travel time func-
tion defined according to the Ichoua et al. (2003) model. The second
arc represents the quickest path during the peak hours and is assigned a
constant travel time. Thus, one arc dominates the other one, depending
on the departure time. The authors propose a heuristic algorithm based
on Particle Swarm Optimization. The goal is the minimization of the total
route cost, consisting of the fixed transportation cost, a time-dependent
cost and distance cost.

In Alinaghian and Naderipour (2016), the authors apply Particle
Swarm Optimization to solve the Time-Dependent Pollution Routing Prob-
lem (TDPRP), a variant of the TDVRP aiming to minimize environ-
mental pollution and the total cost. They model path flexibility with
two alternative paths between each pair of customers, corresponding
respectively to low-traffic and high-traffic. Emissions are determined by
taking into account vehicle speed, vehicle load and road gradient. The
proposed approach is used to deal with a dairy distribution problem in
Esfahan (Iran).

In Qian and Eglese (2016), the authors propose a Tabu Search-
based column generation algorithm to solve the TDVRP with Time
Windows. The goal is the minimization of greenhouse gas (GHG)
emissions. When new routes (columns) are generated, the path between
two consecutive customers is determined by NHA algorithm, a heuristic
approach proposed in Qian and Eglese (2014). The idea is to first select
a (non-exhaustive) set of candidate paths on the road network and then
determine speed/stopping at customers so that the GHG-minimizing
path is selected. To solve the problem, the authors propose two solution
approaches: a dynamic programming algorithm and a heuristic adap-
tive search method. The latter first selects a set of candidate paths and
then defines the travel speed for each road segment on the selected
paths.

The authors in Setak et al. (2015) investigate a TDVRP defined on
a multigraph where multiple arcs represent alternative time-dependent
paths. The goal is to minimize a transportation cost including energy
consumption, total travel time, vehicle acquisition cost and tolls. A
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Tabu Search metaheuristic is proposed to solve the problem with neigh-
borhoods based on swapping two customers and reversing the sequence
of in-between customers. The computational campaign is carried out on
instances with two (alternative) arcs connecting each pair of nodes.

In Huang et al. (2017), the authors formulate the TDVRP where path
flexibility is evaluated under both deterministic and stochastic traffic
conditions. In this section we review only the deterministic approach,
while the stochastic version is discussed in Section 5.2 since it is road-
network based. The (deterministic) quickest paths between each pair
of customers are determined in advance for a given (discrete) set of
departure times. Besides the time-dependent quickest paths, the set of
alternative paths also includes the distance-minimizing path, with the
aim of (partially) taking into account the effect of load-dependency.
The authors also deal with time flexibility, meant as flexible departure
time at the depot or post service waiting time at customers in order
to save future cost by avoiding traffic. The objective is to minimize
the total cost consisting of fuel cost and vehicle depreciation cost.
A MILP model, in which each alternative path is associated with a
decision variable, is proposed. The authors generate instances based on
the road network of Beijing. The time horizon is discretized. For each
(discretized) time point, an alternative path is generated by computing
the time-dependent quickest path between arc endpoints. Different
levels of time discretization are considered and a multigraph with 20
customers is generated for each of them. The maximum number of
alternative arcs is equal to nine, obtained with the finest discretization
level (10 min). Instances are solved using IBM ILOG Cplex. Results show
that the benefit of a finer discretization is very small. Moreover the role
of time flexibility is not relevant compared to path flexibility.

To the best of our knowledge, the computation of an exhaustive set of
all eligible alternative paths has been addressed for the first time as an
open research issue in Ehmke et al. (2016b). The authors study a time-
dependent VRP with the objective of minimizing carbon emissions.
They demonstrate the following property: when the min-cost path is the
same for an empty and a full-loaded vehicle, it will remain the same for
any intermediate load. This result allows expected time-dependent fuel
consumption for all those paths shown to be load-independent to be
precomputed. As discussed in the following section, they then exploit
this result to partially reduce the computational burden of a solution
approach, based on a road-network.

In Raeesi and Zografos (2019), the authors introduce the Time-
Dependent Steiner Pollution Routing Problem with time windows, flexible
departure times, multi-trips and heterogeneous fleet. The problem is
multi-objective since it aims to minimize three objective functions
related to vehicle hiring cost, total amount of fuel consumed, and total
makespan of the routes. The authors advance the result of Ehmke et al.
(2016b). In particular, they propose a Path Elimination Procedure (PEP)
that reduces the number of eligible paths, by identifying and discarding
proven redundant paths in a pre-processing step. The authors propose
a MILP formulation based on the PEP.

5.2. Path flexibility on the road network

To overcome the issues inherent in the pre-computation of the
complete set of alternative paths, some contributions propose to define
explicitly their TDVRP at the road-network level.

Ehmke et al. (2016b) deal with a time-dependent VRP aiming to
minimize carbon emissions. The authors propose a Tabu Search heuris-
tic, where local search moves are evaluated by computing optimal
point-to-point paths on-the-fly for given starting time and load. To
this aim, they use a heuristic algorithm proposed in Ehmke et al.
(2016a). Best paths computed on-the-fly are stored to avoid wasting
time in repeated computations. As afore discussed, the authors exploit
the above mentioned property to precompute a set of load-independent
paths.

In Huang et al. (2017), the authors observe that vehicle routes
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obtained under a deterministic assumption are good approximations of
solutions under stochastic traffic conditions. For this reason, besides
a two-stage stochastic MILP, they devise a route-path approximation
method encoding a two-stage stochastic strategy. During the first stage,
sequences of customers are determined considering expected traffic
conditions. In the second stage, information on travel times is known
and therefore path selection is made directly on the road network ac-
cording to real-time traffic conditions. Results show that path flexibility
is a natural recourse action for coping with different traffic conditions.

In Ben Ticha et al. (2021), a branch-and-price algorithm is directly
applied at the road network level to solve the TDVRP with Time
Windows, where the objective function is the minimization of the total
traveled distance. The authors adapt a branch-and-price algorithm pre-
viously developed for the same problem with constant travel times (Ben
Ticha et al. (2019)). The pricing problem is reduced to a Time-Dependent
Shortest Path Problem with Resource Constraints, addressed with a time-
dependent labeling algorithm, where a bi-directional search strategy
aims to limit the length of the subpaths defined by the labels. The
branching rule is designed to account for road arcs traversed multiple
times. Computational experiments show that the solution cost on the
road network provides average improvements of 1.7% and 7.3% over
the min-distance customer-based graph and min-time customer-based
graph, respectively.

Gmira et al. (2021b) proposed a Tabu Search heuristic for the
TDVRPTW on road network graphs. A major result of the paper is a
CROSS exchange operator, which allows neighborhood solutions to be
evaluated in constant time with a special structure named dominant
shortest path structure (see Fig. 7). Computational results show that the
proposed solution approach allows instances with up to 200 nodes and
580 arcs to be handled in very reasonable computing times.

As stated in Ben Ticha et al. (2018), a promising research area is
represented by dynamic time-dependent routing problems with real-
time traffic information provided at road-network level. We are aware
of only one contribution on this subject. In Gmira et al. (2021a), the
authors consider the dynamic version of the problem studied in Gmira
et al. (2021b). In particular, they devise a reactive procedure for
accounting for real-time changes in road travel speeds. For each route
affected by the speed update, the new arrival and departure times are
computed for each customer along the planned route. If the route is
not feasible, the procedure attempts to repair feasibility by computing
a new minimal travel time path on the road network. If the route
remains infeasible, the procedure modifies the sequence of customers
by applying a local search based on Or-opt exchanges. The obtained
route is kept, by handling (possible) infeasibility as a penalty for
lateness at customers and at the depot. The results obtained on a real
road network show the benefits of the proposed procedure over a
non-reactive procedure.

6. Dynamic discretization discovery

Time-dependent vehicle routing problems fall in the broader area
of time-dependent optimization problems, i.e., problems in which ac-
tivities and resources have to be scheduled over time. A first approach
is to use compact models in which nodes 𝑖 ∈ 𝑉 (or 𝑖 ∈ 𝑉 ′) are
ssociated to continuous arrival and departure times (say, 𝑡𝑎𝑖 ∈ [0,𝐻],
𝑑
𝑖 ∈ [0,𝐻], respectively). Such formulations are nonlinear in nature and
heir linearizations provide weak relaxations (i.e., poor dual bounds)
Ghiani and Guerriero (2019)). An alternative approach, especially
uccessful with time-window constraints, is based on a discretization
f time. In such Integer Programming (IP) formulations, the planning
orizon [0,𝐻] is replaced by a discrete time horizon 𝐷𝑡 = {𝑡1,… , 𝑡𝐾},
here 𝑡𝑘 ∈ [0,𝐻] for 𝑘 = 1,… , 𝐾 with 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾 . Each vertex

𝑖 of the road (or customer-based) graph is time-expanded, i.e., asso-
ciated to a number of (𝑖, 𝑘) nodes (𝑘 = 1,… , 𝐾), each representing
the visit of vertex 𝑖 at time 𝑡𝑘. Moreover time-expanded arcs 𝑎 =
((𝑖, 𝑘), (𝑗, 𝑘′)) are used to model the transition of a vehicle leaving 𝑖 at

time 𝑡𝑘 and reaching 𝑗 at time 𝑡𝑘′ . In time-dependent VRPs, 𝑡𝑘′ may
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correspond exactly to the arrival time 𝛤𝑖𝑗 (𝑡𝑘), i.e., 𝑡𝑘 + 𝜏𝑖𝑗 (𝑡𝑘) or can
be an upper or lower approximation of the arrival time. The time-
indexed (TI) model is then cast as a shortest path from a dummy
source node to a dummy sink node. Here, binary decision variables 𝑥𝑎
are associated to the selection of time-expanded arcs 𝑎. Depending on
whether lower or upper approximations are used, a dual or a primal
bound to the optimal objective function value is obtained. To limit
the computational effort, coarse discretizations are often used (Albiach
et al. (2008), Soler et al. (2009)). Consequently, the approach may
generate poor solutions or may be unable to find a feasible solution
even if one exists. On the other hand, solving fine discretizations
to optimality may be time and memory-consuming. For TD vehicle
routing problem, the existence of a finite number of solutions guar-
antees that the possible arrival/departure times are finite as well.
Therefore, there exists a TI model providing the optimal solution of
the original continuous problem. Unfortunately, finding such a complete
time-discretization is computationally challenging. To overcome this
drawback, Boland and Savelsbergh (2019) proposed a novel paradigm,
dubbed Dynamic Discretization Discovery (DDD) allowing the solution
of a complete TI model to be constructed without fully generating it.
The solution approach is initialized with a formulation on an ‘‘easy
to solve’’ partially time-expanded network, obtained by aggregating the
time instants of the (original) time discretization. In such a partially
time-expanded network, there may be multiple arcs between some pairs
of (aggregated) nodes. In time-window constrained problems, earliest
and latest departure times, as well as travel times, are used to select
which arcs are included into the partially expanded network.

More formally, let 𝑒𝑖 and 𝑙𝑖 be the earliest and latest departure times
at customer 𝑖 ∈ 𝑉 ′. Moreover, with a little abuse of notation, let 𝜏−1𝑖𝑗 (𝑡)
denote the time needed to traverse arc (𝑖, 𝑗) as a function of the arrival
time 𝑡 at node 𝑗. For a single route, a complete TI model includes all the
arcs ((𝑖, 𝑡), (𝑗,max{𝑒𝑗 , 𝑡+ 𝜏𝑖𝑗 (𝑡)})), for 𝑖, 𝑗 ∈ 𝑉 ′ modeling travel from node
𝑖 to 𝑗 departing at time instants 𝑡 = 𝑒𝑖,… ,min{𝑙𝑖, 𝑙𝑗 − 𝜏−1𝑖𝑗 (𝑙𝑗 )}. On the
contrary, in a partially time-expanded network only a subset 𝑖 of such
time instants is included. Let  and  be the vertices and arcs of such
an aggregation, respectively. The timed arcs have the form ((𝑖, 𝑡), (𝑗, 𝑡)),
where (𝑖, 𝑗) ∈ 𝐴′, 𝑡 ∈ 𝑖, and 𝑡 ∈ 𝑗 . It is worth noting that arc ((𝑖, 𝑡), (𝑗, 𝑡))
does not have to satisfy 𝑡 = 𝑡 + 𝜏𝑖𝑗 (𝑡), even if the vehicle does not wait
at 𝑗. This feature provides a mechanism to control both the size of
the time-expanded network and the approximation properties of the
resulting IP model.

In order to obtain a relaxation, Vu et al. (2020) show that three
conditions guarantee a lower bound:

(i) (𝑖, 𝑒𝑖) ∈ 𝑖 for all 𝑖 ∈ 𝑉 ′;
(ii) for all (𝑖, 𝑡) ∈  and 𝑗 ∈ 𝑉 ′ with 𝑡 + 𝜏𝑖𝑗 (𝑡) ≤ 𝑙𝑗 , there exists a time

instant 𝑡 with ((𝑖, 𝑡), (𝑗, 𝑡)) ∈ ;
(iii) every timed arc is short, i.e., 𝑡 ≤ max{𝑒𝑗 , 𝑡 + 𝜏𝑖𝑗 (𝑡)}.

It can be proved that the best such lower bound is obtained by selecting
𝑡 = max{𝑡′ ∶ 𝑡′ ≤ max{𝑒𝑗 , 𝑡 + 𝜏𝑖𝑗 (𝑡)}, (𝑗, 𝑡′) ∈ } with no other arc from
(𝑖, 𝑡) to 𝑗 in . On the other hand, an upper bound from the IP can
be obtained, provided the IP is feasible, if all arcs ((𝑖, 𝑡), (𝑗, 𝑡)) ∈  are
‘‘long’’, i.e., 𝑡 ≥ max{𝑒𝑗 , 𝑡 + 𝜏𝑖𝑗 (𝑡)}.

A dynamic discretization discovery algorithm iteratively refines an
initial partially time-expanded model by disaggregating time-indexed
nodes until the optimality gap is closed. More precisely, the algorithm
is made up of the following steps:

Step 1 A partially time-expanded model providing a lower bound on
the optimal value of the complete TI model is solved;

Step 2 The corresponding optimal solution is checked for feasibility
and/or optimality for the complete IP model;

Step 3 If this control fails, the algorithm identifies time points that,
added to the partial discretization, make the current optimal
solution no longer feasible for the new lower-bound IP model;
11

then Step 1 is executed again. m
This approach has been used in a number of contributions, in-
cluding He et al. (2022) for solving the time-dependent quickest path
problem, Vu et al. (2020) for the time-dependent TSP with Time Win-
dows, Vu et al. (2022) for the time-dependent minimum tour duration
problem and the time-dependent delivery man problem. Very recently,
in Gnegel and Fügenschuh (2023) the authors propose a branch-and-
refine paradigm, where the iterative refinement of the time-expanded
model is embedded in a branch-and-bound tree instead of restarting
whenever the optimal solution of the partially time-expanded model
is found to be infeasible.

7. Efficient neighborhood evaluation

In spite of a number of recent advancements, exact algorithms can
currently solve only TDVRP instances of moderate size (see, e.g., Adamo
et al. (2021) and Dabia et al. (2013)). Hence, heuristics are needed
to tackle large scale instances arising in real world applications in the
attempt to obtain ‘‘good’’ solutions in a ‘‘reasonable’’ amount of time.
The majority of such algorithms (Vidal et al. (2013)) are based on
some sort of Neighborhood Search (NS), which attempts to enhance an
initial feasible solution 𝑠(0). At iteration 𝑘, the NS procedure searches
a neighborhood 𝑁(𝑠(𝑘)) made up of solutions ‘‘close’’ to the current
solution 𝑠(𝑘). Neighbors are obtained through a transformation called
a ‘‘move’’. If an improving solution 𝑠(𝑘+1) is found, a new iteration is
performed. Otherwise, the NS stops and a local optimum is obtained.
To escape local optima, the NS is often embedded into a metaheuristic
scheme. In time-dependent vehicle routing, the most time-consuming
part of such algorithms is the assessment of the feasibility and the
objective function value for all the moves in a neighborhood, an aspect
which is particularly relevant when time windows and time constraints
are imposed.

Two kinds of speed-up techniques have been proposed: pre-checks
and pre-calculations. Pre-checks are fast computations to prove the
infeasibility or dominance of a move without performing the complete
time-consuming exact feasibility or objective function calculations.
Examples include checking time window violations by using bounds
on travel times, and evaluating the objective function using bounds on
the exact value. On the other hand, pre-calculations try to speed up
the evaluation of neighbors 𝑠′ ∈ 𝑁(𝑠(𝑘)) by storing partial calculation
results, common to all the neighbors of the current solution 𝑠(𝑘). As
such, these data need only to be updated at each new iteration of the
NS procedure.

This research line initially considered time-invariant VRPs and has
been recently extended to include some TD VRPs. Savelsbergh (1992)
shows how to implement an edge-improvement exchange method for
the VRP-TW in constant time instead of the 𝑂(𝑛) time of the straight-
forward approach (𝑛 being the number of customers). Campbell and
Savelsbergh (2004) show how to efficiently incorporate complicating
constraints (such as time windows and shift time limits) into an in-
sertion algorithm for the VRP, resulting into a 𝑂(𝑛3) or 𝑂(𝑛3𝑙𝑜𝑔(𝑛))
ime complexity instead of the 𝑂(𝑛4) complexity of a naive approach.
indervater et al. (1993) use precalculated values related to time
indows and capacity constraints of a route stored in memory as global
ata. Moves are then evaluated in a so-called lexicographic order by
sing such global variables. Vidal et al. (2015) review and generalize
his approach in a ‘‘reoptimization by concatenation’’ method for many
iming problems. Using this method, move evaluations can be done
n constant time for the time-dependent VRPTW (without duration
onstraints). Hashimoto et al. (2008) deal with the time-dependent
RPTW and show how to identify the best solution in a (slightly mod-

fied) 2-opt neighborhood by utilizing prior information in a dynamic
rogramming algorithm. Visser and Spliet (2020) show that the earliest
nd latest arrival time global variables introduced by Campbell and
avelsbergh (2004) can be generalized to the time-dependent version
f the VRPTW. In particular, they present a procedure, dubbed F/B

ethod, which stores forward and backward ready time functions in
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memory, which reduces the move evaluation complexity from 𝑂(𝑛2) to
(𝑛). This turns out to be particularity useful for evaluating advanced
eighborhoods such as k-exchange. Empirical results on instances with
000 customers showed a speed-up of 8.89 times for a construction
euristic and 3.94 times for an exchange neighborhood improvement
rocedure. Moreover, Visser and Spliet (2020) extend their method to
he case of multiple time windows.

. Machine learning -based methods

Leveraging Machine Learning (ML) to solve Combinatorial Optimiza-
ion (CO) problems has been recently the focus of a promising re-
earch line, with many potential applications in logistics, transporta-
ion, scheduling, and resource allocation. Studies at the intersection of
O and ML can be classified into two primary directions: ML-augmented
O and End-to-End CO learning. The former focuses on the utilization
f ML to assist optimization algorithms to make good decisions. For
nstance, computationally heavy tasks, such as constraint or objec-
ive function evaluation, can be replaced by fast approximation of
nput/output patterns provided by ML algorithms, resulting in more
fficient optimization algorithms. Other examples are the choice of a
ranching variable in a branch-and-bound algorithm and the selection
f the next neighborhood to be explored in a metaheuristic. On the
ther hand, End-to-End CO learning aims at predicting solutions to op-
imization problems. For a methodological overview of ML-augmented
O see Bengio et al. (2021) while for a survey of End-to-End CO

earning see Kotary et al. (2021). As far as Vehicle Routing is concerned,
utomated learning mechanisms can be used to guide the optimization
rocess, by exploiting the information gained when solving instances
ith similar features (e.g., with the same traffic and demand patterns)

n previous days, weeks, etc, as it is customary in distribution manage-
ent. The resulting speed-up can be particularly useful in TD routing
roblems where a major role is played by dynamic variables such as
raffic congestion and road closures. Despite its potential, research in
his field is still at a very early stage: indeed, at the time of writing, the
uthors are aware of only four contributions on ML-based methods for
olving the TDTSP. In Ghiani et al. (2020), the authors illustrate how
o integrate supervised and unsupervised ML techniques in a simple
onstructive heuristic for the TDTSP. They use a multilayer perceptron
egressor to predict the arrival time at each customer zone based on
he demand rate and spatial distribution. The predictions are then
sed to guide a fast heuristic. The customer zones are preliminarily
efined through an unsupervised technique that considers traffic pat-
erns. Computational results show that the proposed solution approach
s promising in a real-time context.

More recently, Adamo et al. (2023a) develop a time-invariant ap-
roximation of the TDTSP that is then used to devise fast upper bounds.
he approximation is based on the solution of a (typically very large)

inear program. A multilayer perceptron regressor is used to predict the
rrival times at each customer zone, which allows to reduce heuristi-
ally the size of the linear program. Computational results show that
his approach outperforms (Ghiani et al., 2020) in those (non-real-
ime) settings where it can be reasonable to determine high quality
DTSP solutions in half a minute.

In Wu et al. (2021), the TDTSP with time windows is modeled as
Markov decision process and deep reinforcement learning is used to

rain an agent to make a decision at each location. Extensive exper-
ments indicate that the proposed method can capture the real-time
raffic changes and yield high-quality solutions within a very short
ime, compared with a greedy heuristic and a simulated annealing
lgorithm.

Hansknecht et al. (2018) deal with the problem of selecting a
ranching rule for the TDTSP in the presence of several fractional
ariables with the objective to yield smaller branch-and-bound trees.
12

hey propose to learn a branching rule based on several generic MIP s
eatures (such as fractionality, pseudocosts, etc.) as well as some fea-
ures peculiar to the TDTSP. They use the LambdaRank algorithm (see,
.g., Burges et al. (2006)), a technique where the various (branching)
lternatives are ranked by solving pairwise classification or regression
roblems.

. Main challenges and research opportunities

The literature review presented in this article confirms that time-
ependent vehicle routing is a dynamic and evolving research field. In
he following, we discuss a number of related challenges and research
pportunities. In particular, we focus on problems arising in distri-
ution management (and, in particular, last-mile distribution) albeit
any of the following considerations also apply to fleet management

n other settings (such as emergency services, garbage collection, street
leaning, etc.). For ease of presentation, we identify three major
reas: research opportunities arising from the rapid advancement of
nformation and communication technologies (ICTs), those deriving
rom the increase in size of the distribution problems posed by the
-commerce explosion and those motivated by the adoption of new
usiness practices in last-mile delivery.

.1. Opportunities arising from the rapid advancement of information and
ommunication technologies

As shown in Section 4, the data coming from sensors, probe vehicles
nd smart phone applications can be exploited to estimate historical
raffic patterns and then used to build a-priori routes. However, it is
ften the case that some unexpected events may affect travel times
ignificantly. A remarkable challenge is to develop a real-time system
hat, based on both structured data (those produced by sensors) and
nstructured data (data sources in a natural language such as incident
eports, weather reports,. . . ), may update speed predictions in the next
ew hours as soon as fresh data become available. In turn, these fore-
asts might be used to re-route vehicles in real-time (if operationally
easible) as in Gmira et al. (2021a). To this purpose Gmira et al. (2020)
uggest, as a future research direction, to extend the LSTM neural
etwork model they use for the historical pattern prediction. However,
his modification might not be straightforward, especially because of
he unstructured data whose processing requires specialized techniques
o extract significant features from text (see Jurafsky (2000)). A
urther interesting challenge motivated by the availability of ‘‘big data’’
s the exploitation of ‘‘tacit’’ knowledge in time-dependent VRPs. As
ighlighted by the Amazon Last Mile Routing Research Challenge held in
021 (MIT, 2021), the definition of vehicle routes may be influenced
y a number of factors (driver preferences, parking availability, etc.)
hat cannot be included explicitly into an optimization model. Current
CTs allow plenty of data to be collected as drivers follow their routes,
ncluding how drivers with different profiles react to traffic variability,
ase of finding a parking spot, etc. Then ML models could be used
n principle to extract knowledge from such data, e.g. by performing

prediction of the changes made by a driver with given features. In
his context, it would be interesting to develop time-dependent VRP
lgorithms generating routes for specific drivers, along the lines of Cook
t al. (2022).

.2. Opportunities arising from the increase in size of the distribution
roblems posed by the e-commerce explosion

From a methodological point of view, there is a lack of contributions
n solving very large-scale time-dependent routing problems. Current
euristics are evaluated on benchmark instances with up 1000 points
f interest (Visser and Spliet (2020)). As pointed out in Arnold et al.
2019), emerging application contexts motivate the development of

olution methods that can handle thousands of points of interest. To this
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aim it would be interesting to extend to the time-dependent case the re-
sults in Bramel and Simchi-Levi (1995, 1996) where the authors present
a characterization of the asymptotic optimal solution of the (time-
invariant) capacitated VRP with and without time windows for general
distributions of service times, time windows, customer loads and loca-
tions. This characterization led to the development of asymptotically
optimal heuristics based on formulating the problems as capacitated
location problems. It would also be interesting to investigate how
the increase in space and time complexity can be mitigated by the
latest results provided by Visser and Spliet (2020) for neighborhood
evaluation combined with travel time approximation by Adamo et al.
(2023a), as well as the closed-form travel time functions by Vidal et al.
(2021).

9.3. Opportunities arising from the adoption of new business practices in
last-mile delivery

A promising research line is motivated by companies and governing
authorities that are stimulating the adoption of new transportation
paradigms in which a primary vehicle can transfer a portion of its load
o secondary vehicles, such as bikes or scooters or ground drones, which
re less sensitive to traffic congestion. Such delivery configurations
ake use of transhipment points (as in Baldacci et al. (2017)) and

onstitute two-echelon systems (see Cuda et al. (2015) for a review)
n which each echelon refers to one level of the distribution network.
hese features introduce new operational constraints to time-dependent
RPs due to the heterogeneous travel time functions and possibly to
ynchronization issues (Drexl (2012)). In this framework, a crucial
ssue is to define the location of the transhipment points (which is a
ocation-routing problem, see Schiffer et al. (2019)) and the number
nd type of the vehicles (which is a fleet sizing and mix problem,
ee Masmoudi et al. (2022) for a recent state of the art). Here the
ationale is to identify areas of the service territory (usually densely
opulated areas) where it is worth using vehicles less sensitive to
raffic while designing routes. This is a quite new area except for the
ontributions by Schmidt et al. (2019, 2023) that however use rather
implistic travel time models that do not satisfy the FIFO property.
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