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Abstract
Prenatal assessment of lung size and liver position is essential to stratify congenital diaphragmatic hernia (CDH) fetuses in risk 
categories, guiding counseling, and patient management. Manual segmentation on fetal MRI provides a quantitative estimation 
of total lung volume and liver herniation. However, it is time-consuming and operator-dependent. In this study, we utilized a 
publicly available deep learning (DL) segmentation system (nnU-Net) to automatically contour CDH-affected fetal lungs and 
liver on MRI sections. Concordance between automatic and manual segmentation was assessed by calculating the Jaccard 
coefficient. Pyradiomics standard features were then extracted from both manually and automatically segmented regions. The 
reproducibility of features between the two groups was evaluated through the Wilcoxon rank-sum test and intraclass correlation 
coefficients (ICCs). We finally tested the reliability of the automatic-segmentation approach by building a ML classifier system 
for the prediction of liver herniation based on support vector machines (SVM) and trained on shape features computed both in 
the manual and nnU-Net-segmented organs. We compared the area under the classifier receiver operating characteristic curve 
(AUC) in the two cases. Pyradiomics features calculated in the manual ROIs were partly reproducible by the same features cal-
culated in nnU-Net segmented ROIs and, when used in the ML procedure, to predict liver herniation (both AUC around 0.85).

Conclusion: Our results suggest that automatic MRI segmentation is feasible, with good reproducibility of pyradiomics 
features, and that a ML system for liver herniation prediction offers good reliability.

Trial registration: https:// clini caltr ials. gov/ ct2/ show/ NCT04 609163? term= NCT04 60916 3& draw= 2& rank=1; Clinical 
Trial Identification no. NCT04609163.

What is Known:
• Magnetic resonance imaging (MRI) is crucial for prenatal congenital diaphragmatic hernia (CDH) assessment. It enables the quantification 

of the total lung volume and the extent of liver herniation, which are essential for stratifying the severity of CDH, guiding counseling, and 
patient management.

• The manual segmentation of MRI scans is a time-consuming process that is heavily reliant upon the skill set of the operator.
What is New:
• MRI lung and liver automatic segmentation using the deep learning nnU-Net system is feasible, with good Jaccard coefficient values and 

satisfactory reproducibility of pyradiomics features compared to manual results.
• A feasible ML system for predicting liver herniation could improve prenatal assessments and CDH patient management.

Keywords Congenital diaphragmatic hernia · Liver herniation · Segmentation · Artificial intelligence · Feature 
reproducibility · nnU-Net
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Introduction

Congenital diaphragmatic hernia (CDH) is a rare congenital 
malformation characterized by a diaphragmatic defect that 
allows intrathoracic herniation of abdominal viscera, which 
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affects normal lung development, leading to lung hypoplasia 
and postnatal pulmonary hypertension [1–3]. CDH affects 
1 in 2500 births, but neonatal survival depends on several 
factors, such as defect side and size, herniated organs, asso-
ciated anomalies, and gestational age at birth [4, 5]. There-
fore, advanced imaging is crucial for a complete prenatal 
assessment and parental counseling. Combined evaluation 
of lung size, liver position, and defect side is conventionally 
accepted to stratify CDH fetuses in different groups, corre-
lated with perinatal mortality and long-term morbidity [6, 
7], and to guide prenatal intervention of fetal endoscopic 
tracheal occlusion (FETO) in selected cases [8, 9].

Fetal magnetic resonance imaging (MRI) enhances prena-
tal CDH evaluation through high anatomic specificity of the 
diaphragmatic defect, hernia location, content, and alteration 
in other fetal organs [10–12]. Therefore, it could be consid-
ered the most reliable technique to assess lung hypoplasia 
and calculate the observed/expected total fetal lung volume 
(O/E TFLV) [13]. It also permits a volumetric quantification 
of the intrathoracic hepatic parenchyma, expressed as liver 
herniation percentage (%LH) [14–16]. However, fetal MRI 
is an operator-dependent exam in which experience plays a 
key role, especially for segmentation, which is fundamental 
for accurate organ volume and shape assessment. However, 
general-usage medical image visualization software usually 
does not provide the physician with specific segmentation 
options, so the contouring work is still manual and prone to 
imprecision. Moreover, the broad spectrum of disease pres-
entation poses additional challenges to the clinician [17].

Recently, the application of novel artificial intelligence 
(AI) technologies has been spreading in the neonatal field 
to support medical data analysis. Through the traditional 
machine learning (ML) approach and its modern deep learn-
ing (DL) extension, forecasting algorithms are built to pre-
dict specific outcomes, guide interventions, segment organs 
and vessels, and improve the overall quality of care [18–20].

However, these methodologies still need to be success-
fully applied to CDH newborns, so manual segmentation 
remains time-consuming and operator-dependent.

In CDH patients, building an automatic segmentation 
software could facilitate and standardize lung volume meas-
urement, improve data collection accuracy, and create solid 
AI algorithms to predict postnatal outcomes.

In this study, we explored the possible application of a pub-
licly available DL-based automatic segmentation system (nnU-
Net) for automatic MRI contouring of the lungs and liver of 
fetuses with CDH. We then extracted pyradiomics standard 
features from the manual and the nnU-Net segmented ROIs to 
test the agreement between the two groups of features. Finally, 
a support vector machine (SVM) classifier was trained on shape 
features computed both in the manual and automatic segmenta-
tions of lungs and liver and employed to test the possibility of 
predicting liver herniation as a dichotomous variable (up/down).

Materials and methods

This study represents an exploratory secondary analysis of 
the CLANNISH retrospective cohort study (Clinical Trial 
Identification no. NCT04609163) performed at Fondazione 
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 
Italy, involving the Fetal Surgery Center, Pediatric Radiol-
ogy Service, Pediatric Surgery Unit, and Neonatal Intensive 
Care Unit (NICU) [21]. At the same time, the Department 
of Mathematics and Physics of the Università del Salento 
(Lecce, Italy) and the Department of Physics and Chemistry 
of the Università degli Studi di Palermo (Palermo, Italy) 
were involved in ML and DL data analyses and segmentation 
algorithms. A comprehensive description of the main study 
design has been previously published [21].

Subjects

We enrolled 39 inborn patients, born between 01/01/2012 and 
31/12/2020, with isolated CDH from singleton pregnancies, 
taken in charge at the Fetal Surgery Unit of the Fondazione 
IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, 
Italy) before the 30th week of gestation. The only exclusion 
criterion was a pre- or postnatal diagnosis of non-isolated CDH.

Data collection

A retrospective data collection of clinical and radiological 
variables from newborns’ and mothers’ medical records was 
performed for eligible patients (Astraia, Astraia Software 
GmbH, Ismaning, Germany; NeoCare, GPI SpA, Trento, 
Italy). In addition, the native sequences from fetal MRI were 
collected, with separate acquisition for the lungs and liver.

Manual segmentation of lung and liver volumes

The imaging software used was Synapse PACS and Syn-
apse 3D (FUJIFILM Medical Systems Lexington, MA, US). 
Lung volumes were calculated on the T2 HASTE sequences, 
selecting the best image quality plane without motion-
induced artifacts [22]. Liver volumes were calculated on T1 
VIBE sequences [23]. A pediatric radiologist with 15 years 
of experience in fetal MRI performed the manual segmenta-
tion of lung and liver volumes. In each slice, left and right 
lung and liver areas were determined separately by tracing 
freehand regions of interest (ROIs), excluding the pulmonary 
hila and mediastinal structures. The areas were automatically 
added to obtain the entire organ volume, multiplied by the 
sum of slice thickness and intergap by the software.

The DICOM files were then anonymized, converted to 
the NIFTI format for easier manipulation, and fed to the 
segmentation pipeline.
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Segmentation with no‑new‑Net (nn‑NET)

A publicly available segmentation pipeline based on DL 
achieved automatic lung and liver MRI segmentation. 
The pipeline was the no-new-Net (nn-NET), a specialized 
DL framework for medical image segmentation [24]. The 
framework is based on the U-Net architecture, a popular 
convolutional neural network that is particularly effective 
for biomedical image segmentation. It was developed to 
address the challenge of designing neural network architec-
tures well-suited for various medical imaging tasks without 
requiring manual configuration or architectural modifica-
tions for each new task. nnU-Net automatically adapts its 
architecture to the specific characteristics of the dataset. It 
analyzes the dataset and decides on the most appropriate 
network architecture, preprocessing steps, and training strat-
egies. This includes decisions about the network depth, con-
volutional kernel sizes, and the number of feature maps. This 
automation reduces the need for manual tuning and expert 
knowledge, making high-quality segmentation accessible 
even to those who might not be specialists in deep learning 
or medical image analysis. This network can achieve good 
segmentation results even with datasets of limited size. The 
nnU-Net segmentation pipeline is organized in several steps: 
(1) dataset structuring to a format compatible with the soft-
ware; (2) the extraction of a dataset “fingerprint” contain-
ing dataset-specific properties, used to build various 2D/3D 
configurations, among which the best is “3D cascade”; (3) 
model training and validation, which we performed in the 
default fivefold cross-validation scheme. The software auto-
matically gives Sørensen–Dice and Jaccard coefficients for 
segmentation quality evaluation. We ran the pipeline on a 
Server Supermicro 2023US-TR4, 2 CPU AMD Rome 7282 
16C/32 T 2.8G 64 MB, equipped with 256 GB RDIMM 
DDR4 RAM and GPU Nvidia Tesla V100 32 GB HBM2 
PCIe 3.0 (property of INFN, the Italian National Institute for 
Nuclear Physics, branch of Lecce). A cross-validation fold 
of each configuration took about 1 full day of calculations.

Radiomics features

After segmentation, several standard 3D radiomics features 
were calculated. Pyradiomics was chosen for feature calcula-
tion [25]. This software package is freely available and allows 
the computation of many variables both from the original 
images and after preprocessing by various filters (e.g., wave-
lets or LoG, Laplacian of Gaussian). It also allows automatic 
reslicing with a chosen interpolator. The computed features, a 
subset of those available in pyradiomics, and after removing 
some correlated ones, are listed in Table 1. For gray level 
co-occurrence matrix (GLCM) and neighborhood gray tone 
difference matrix (NGTDM) calculation, only pixel pairs 
separated by a distance of 1 pixel were considered. Ta
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The MR images were preliminarily resized to all have the 
same voxel size of 1 × 1 × 1  mm3; the sitkBSpline interpola-
tor was used for this purpose.

Reproducibility of pyradiomics features

In order to test if the features calculated from manually 
and automatically segmented ROIs had similar values, a 
Wilcoxon rank-sum test and tests based on the intraclass 
correlation coefficients (ICCs) were performed. ICC is a 
statistical measure ranging from 0 to 1, with values close 
to 1 representing stronger feature reproducibility in seg-
mentations. McGraw and Wong [26] defined 10 forms of 
ICC. In this study, we calculated the interrater reliability 
by employing a two-way mixed effect, absolute agreement, 
single rater/measurement model considering the variation 
between two or more raters who evaluate the same group of 
subjects (Eq. 1) [27]:

where MSR is the mean square for rows, MSE is the mean 
square error, MSC is the mean square for columns, k is 
the number of observers involved, and n is the number of 
subjects.

A freely available code was used for ICC computation 
[28]. According to ICC values, we stratified the features 
into four groups as having excellent (ICC >  = 0.75), good 
(0.60 <  = ICC < 0.75), fair (0.40 <  = ICC < 0.60), or poor 
(ICC < 0.40) reproducibility [29]. The reproducibility within 
groups of features was also assessed using the Wilcoxon 
rank-sum test with a p value threshold set at 0.05.

Prediction of liver herniation by machine learning

To test the possibility of predicting liver herniation as a 
dichotomous variable (up/down), several ML forecasting 
algorithms were implemented in the Matlab environment 
and Python, according to the experimenters’ convenience, 
using features calculated by pyradiomics. Several ML 
approaches were tested, such as decision trees, linear and 
non-linear artificial neural networks (ANN), and support 
vector machines (SVM) with various standard kernels.

Decision trees are a widely used method in ML, for both 
classification and regression tasks. A decision tree works 
by breaking down the classification procedure into a series 
of steps, each represented by a tree node (or leaf), so that an 
associated decision tree is incrementally developed. Each 
step asks a question that has a “yes” or “no” answer and redi-
rects the flow towards different branches as you move down 

(1)ICC =
MS

R
−MS

E

MS
R
+ (k − 1)MS

E
+

k

n
(MS

C
−MS

E
)

to another node or a tree lead, depending on the answer. The 
path from root to the final leaves (the classes) gives the over-
all classification rule. ANNs are inspired by the structure of 
the human brain. They consist of layers of interconnected 
nodes, known as neurons, which process information. Each 
connection between neurons has a weight that adjusts as the 
ANN learns from data. This structure allows ANNs to learn 
complex patterns and make predictions or decisions. ANNs 
can be linear or non-linear, depending on how these nodes 
and layers are arranged and interact. In simple terms, ANNs 
are like complex webs that learn to recognize patterns from 
the data they are trained on. Support vector machines (SVM) 
are another method used for classification and regression 
tasks. SVMs work by finding the best boundary that sepa-
rates data into classes. This boundary is chosen to maximize 
the margin, or distance, between the boundary and the clos-
est data points from each class, known as support vectors. 
SVMs are efficient in high-dimensional spaces and are ver-
satile, as they can use various kernels (mathematical func-
tions) to transform data so that a non-linear boundary can 
be used linearly.

For this part, only left-sided CDH patients were consid-
ered because of their larger numerosity, homogeneity, and 
variability in liver position, leaving outright CDH cases 
in which the liver is almost always herniated. The results 
obtained with the features computed in the manually seg-
mented ROIs of the liver and lungs were compared with 
those obtained with those calculated in the nnU-Net seg-
mented ROIs.

Since the MRI scans were very dissimilar in gray-level 
content, only shape features were used, discarding variables 
computed on the gray levels to avoid further image manipu-
lation (intensity standardization). This choice left 22 features 
(Table 1), considering the liver and the lungs.

We trained and validated the models with a Leave One 
Patient Out (LOPO) scheme, in which each patient was cho-
sen as the only element in the validation set, and the remain-
ing patients built the training set. Classification quality was 
expressed as the area under the receiver operating character-
istic (ROC) curve and by confusion matrices.

Results

We enrolled 39 CDH cases, 30 with left and 9 with right 
side diaphragmatic defect. The dataset was quite balanced 
regarding liver herniation, with 22 up and 17 down cases. 
All the right-sided CDH cases were up.

The MR images were very inhomogeneous as to voxel 
size (the in-plane size was 0.21 mm to 0.78 mm, and the 
thickness was 3 mm or 6 mm) and gray level range (Fig. 1).
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Segmentation

Segmentation results showed a very good accordance 
between manual and automatic methods. In Fig.  2, we 
reported an example of segmentation results of two single 

MRI cases of the liver and lungs, in which perfect accordance 
was observed. Nonetheless, quality varied for other images, 
and in some lung segmentation tests, one of the two lungs 
was lost during automatic segmentation. The Jaccard coef-
ficient values for the whole dataset expressed as box plots are 

Fig. 1  Inhomogeneity in the 
MR images. The gray-value 
histograms were calculated 
within the lung (left plots) and 
liver (right plots) manually 
segmented ROIs

Fig. 2  2D Segmentation results for the liver (top row) and lungs (bottom row). 3D manually segmented ROIs are shown in red A, D; automatic 
contouring is shown in green B, E. The overlaps of manual and automatic segmentations are shown in C and F 
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reported in Fig. 3. The average Jaccard coefficient for lung 
segmentation was 0.65, while liver segmentation showed 

better results with an average value of the Jaccard coeffi-
cient of 0.75. A Jaccard coefficient of 1 indicates perfect 
agreement, while a coefficient of 0 indicates no agreement.

Reproducibility of pyradiomics features

Figures S1 and S2 (Supplemental Materials) show, respec-
tively, for lungs and liver, the scatterplots of the features 
obtained for each variable, the values calculated in the man-
ual ROIs (x-axis), and the corresponding values calculated in 
the automatic ROIs (y-axis). In case of perfect correspond-
ence, the points should be located on the quadrant bisector.

To state the agreement between manual and automatic 
feature groups, we employed the Wilcoxon rank-sum test 
within each group of features. We also computed and exam-
ined ICCs across single features for testing interrater reli-
ability. Table 2 provides results for single-measure ICCs 
under a two-way mixed model with absolute agreement.

Based on the approach chosen by Owens et  al., we 
then classified the 103 features into four groups accord-
ing to their ICC values having excellent (ICC ≥ 0.75), good 

Fig. 3  Boxplots report the mean Jaccard coefficient values for the 
lungs and liver

Table 2  Intraclass correlation coefficients (ICCs) between radiomic 
features derived from manual and automatic segmentations for the 
liver (A) and the lungs (B). The Wilcoxon rank-sum test was executed 
for single features and across groups of features (e.g., shape and first 

order). Features with ICC < 0.40 were considered poorly reproducible 
and highlighted in light gray. A p value < 0.05 was considered statisti-
cally significant, and the corresponding rows were marked with one 
or more asterisks (*p < 0.05; **p < 0.01; ***p < 0.001)

Intraclass 
correlation

95% confidence interval F test

Lower bound Upper bound Value df1 df2 p value

(A) Liver
All features p = 0.5

Shape
p < 0.001***

1 Mesh volume 0.930 0.870 0.962 27.244 38 39  < 0.001***
2 Voxel volume 0.930 0.870 0.962 27.220 38 39  < 0.001***
3 Surface area 0.850 0.553 0.937 18.172 38 8  < 0.001***
4 Surface volume ratio 0.536  − 0.059 0.805 6.539 38 4 0.0432*
5 Sphericity 0.347  − 0.089 0.704 6.113 38 2 0.1288
6 Maximum 3D diameter 0.901 0.820 0.947 19.791 38 38  < 0.001***
7 Major axis length 0.832 0.703 0.908 10.917 38 39  < 0.001***
8 Minor axis length 0.917 0.848 0.955 23.358 38 39  < 0.001***
9 Least axis length 0.734 0.546 0.851 6.384 38 38  < 0.001***
10 Elongation 0.816 0.673 0.900 10.461 38 35  < 0.001***
11 Flatness 0.619 0.381 0.780 4.204 38 39  < 0.001***

First order
p < 0.05*

12 Energy 0.964 0.932 0.981 55.697 38 38  < 0.001***
13 Total energy 0.964 0.932 0.981 55.697 38 38  < 0.001***
14 Entropy 0.987 0.975 0.993 150.134 38 38  < 0.001***
15 10th percentile 0.980 0.906 0.993 156.390 38 6  < 0.001***
16 90th percentile 0.999 0.999 1.000 3.789.351 38 29  < 0.001***
17 Interquartile range 0.886 0.682 0.951 22.904 38 10  < 0.001***
18 Minimum 0.769 0.377 0.901 11.428 38 8  < 0.001***
19 Maximum 0.614 0.348 0.783 4.752 38 26  < 0.001***
20 Mean 0.996 0.987 0.998 733.124 38 10  < 0.001***
21 Median 0.998 0.994 0.999 1.002.249 38 16  < 0.001***
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Table 2  (continued)

Intraclass 
correlation

95% confidence interval F test

Lower bound Upper bound Value df1 df2 p value

(A) Liver
All features p = 0.5

22 Mean absolute deviation 0.882 0.523 0.956 26.784 38 5  < 0.001***
23 Robust mean absolute deviation 0.885 0.641 0.953 24.079 38 8  < 0.001***
24 Root mean squared 0.997 0.993 0.999 837.940 38 16  < 0.001***
25 Variance 0.816 0.375 0.928 16.237 38 6 0.0014**
26 Skewness 0.539 0.272 0.729 3.301 38 38  < 0.001***
27 Kurtosis 0.344 0.052 0.587 2.249 38 32 0.0107**
28 Uniformity 0.985 0.972 0.992 132.381 38 38  < 0.001***

GLCM
p < 0.01**

29 Autocorrelation 0.722 0.518 0.846 6.784 38 31  < 0.001***

30 Cluster prominence 0.982 0.966 0.990 107.609 38 39  < 0.001***

31 Cluster shade 0.975 0.952 0.987 75.764 38 38  < 0.001***

32 Cluster tendency 0.988 0.977 0.994 160.895 38 38  < 0.001***

33 Contrast 0.979 0.961 0.989 94.258 38 39  < 0.001***

34 Correlation 0.646 0.421 0.796 4.705 38 39  < 0.001***

35 Difference average 0.979 0.961 0.989 94.258 38 39  < 0.001***

36 Difference entropy 0.988 0.978 0.994 167.361 38 38  < 0.001***

37 Difference variance 0.984 0.969 0.991 121.408 38 39  < 0.001***

38 Id 0.979 0.961 0.989 94.258 38 39  < 0.001***

39 Idm 0.979 0.961 0.989 94.258 38 39  < 0.001***

40 Idmn 0.979 0.961 0.989 94.258 38 39  < 0.001***

41 Idn 0.979 0.961 0.989 94.258 38 39  < 0.001***

42 Imc1 0.751 0.536 0.868 8.160 38 23  < 0.001***

43 Imc2 0.980 0.959 0.990 108.675 38 29  < 0.001***

44 Inverse variance 0.979 0.961 0.989 94.258 38 39  < 0.001***

45 Joint average 0.723 0.519 0.847 6.789 38 31  < 0.001***

46 Joint energy 0.987 0.976 0.993 152.688 38 38  < 0.001***

47 Joint entropy 0.989 0.979 0.994 171.801 38 38  < 0.001***

48 MCC 0.552 0.291 0.737 3.449 38 39  < 0.001***

49 Maximum probability 0.986 0.973 0.992 135.579 38 38  < 0.001***

50 Sum average 0.723 0.519 0.847 6.789 38 31  < 0.001***

51 Sum entropy 0.989 0.979 0.994 178.548 38 38  < 0.001***

52 Sum squares 0.988 0.976 0.993 156.073 38 38  < 0.001***
GLRLM
p = 0.42

53 Gray level non-uniformity 0.917 0.779 0.963 30.586 38 12  < 0.001***

54 Gray level non-uniformity normalized 0.986 0.974 0.993 151.640 38 36  < 0.001***
55 Gray level variance 0.986 0.974 0.993 151.640 38 36  < 0.001***
56 High gray level run emphasis 0.695 0.480 0.829 6.038 38 32  < 0.001***
57 Long run emphasis 0.882 0.406 0.960 30.690 38 4  < 0.001***
58 Long run high gray level emphasis 0.751 0.574 0.861 6.933 38 38  < 0.001***
59 Long run low gray level emphasis 0.731 0.452 0.865 8.100 38 15  < 0.001***
60 Low gray level run emphasis 0.695 0.480 0.829 6.038 38 32  < 0.001***
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Table 2  (continued)

Intraclass 
correlation

95% confidence interval F test

Lower bound Upper bound Value df1 df2 p value

(A) Liver
All features p = 0.5

61 Run entropy 0.672 0.186 0.857 7.958 38 7 0.0048**
62 Run length non-uniformity 0.959 0.868 0.983 67.218 38 9  < 0.001***
63 Run length non-uniformity normalized 0.764 0.156 0.914 14.238 38 4 0.0085**
64 Run percentage 0.933 0.728 0.974 45.428 38 6  < 0.001***
65 Run variance 0.937 0.884 0.967 30.222 38 38  < 0.001***
66 Short run emphasis 0.732  − 0.034 0.914 17.045 38 3 0.0325*
67 Short run high gray level emphasis 0.557 0.084 0.788 5.281 38 8 0.0109**
68 Short run low gray level emphasis 0.809 0.667 0.895 9.644 38 39  < 0.001***

GLSZM
p = 0.17

69 Gray level non-uniformity 0.918 0.849 0.956 22.752 38 38  < 0.001***

70 Gray level non-uniformity normalized 0.412 0.116 0.641 2.393 38 39 0.0040**

71 Gray level variance 0.412 0.116 0.641 2.393 38 39 0.0040**

72 High gray level zone emphasis 0.505 0.226 0.706 2.993 38 38  < 0.001***

73 Large area emphasis 0.809 0.604 0.905 11.539 38 18  < 0.001***

74 Large area high gray level emphasis 0.532 0.270 0.722 3.381 38 38  < 0.001***

75 Large area low gray level emphasis 0.779 0.599 0.881 8.993 38 28  < 0.001***

76 Low gray level zone emphasis 0.505 0.226 0.706 2.993 38 38  < 0.001***

77 Size zone non-uniformity 0.724 0.532 0.846 6.143 38 38  < 0.001***

78 Size zone non-uniformity normalized 0.849 0.626 0.931 16.183 38 12  < 0.001***

79 Small area emphasis 0.293  − 0.009 0.550 1.861 38 39 0.0285*

80 Small area high gray level emphasis 0.434 0.150 0.654 2.611 38 38 0.0019**

81 Small area low gray level emphasis 0.289  − 0.014 0.547 1.842 38 39 0.0306*

82 Zone entropy 0.903 0.620 0.963 31.734 38 6  < 0.001***

83 Zone percentage 0.902 0.816 0.948 20.833 38 33  < 0.001***

84 Zone variance 0.552 0.287 0.738 3.400 38 38  < 0.001***
GLDM
p < 0.01**

85 Dependence entropy 0.982 0.966 0.991 115.662 38 36  < 0.001***
86 Dependence non-uniformity 0.918 0.843 0.957 25.392 38 32  < 0.001***
87 Dependence non-uniformity normal-

ized
0.957 0.851 0.983 66.081 38 8  < 0.001***

88 Dependence variance 0.859 0.085 0.959 36.234 38 2 0.0151*
89 Gray level non-uniformity 0.912 0.840 0.953 21.764 38 39  < 0.001***
90 Gray level variance 0.985 0.972 0.992 132.381 38 38  < 0.001***
91 High gray level emphasis 0.722 0.517 0.846 6.756 38 31  < 0.001***
92 Large dependence emphasis 0.936 0.745 0.976 47.509 38 7  < 0.001***
93 Large dependence high gray level 

emphasis
0.729 0.534 0.849 6.860 38 33  < 0.001***

94 Large dependence low gray level 
emphasis

0.720 0.509 0.846 6.824 38 29  < 0.001***

95 Low gray level emphasis 0.722 0.517 0.846 6.756 38 31  < 0.001***
96 Small dependence emphasis 0.919 0.690 0.969 37.360 38 7  < 0.001***
97 Small dependence high gray level 

emphasis
0.724 0.488 0.853 7.301 38 22  < 0.001***

98 Small dependence low gray level 
emphasis

0.721 0.530 0.843 6.304 38 38  < 0.001***
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Table 2  (continued)

Intraclass 
correlation

95% confidence interval F test

Lower bound Upper bound Value df1 df2 p value

(A) Liver
All features p = 0.5

NGTDM
p < 0.01**

99 Busyness 0.870 0.767 0.930 14.404 38 39  < 0.001***
100 Coarseness 0.742 0.545 0.859 7.424 38 30  < 0.001***
101 Complexity 0.978 0.959 0.988 89.349 38 39  < 0.001***
102 Contrast 0.962 0.929 0.980 52.607 38 39  < 0.001***
103 Strength  − 0.071  − 0.386 0.253 0.871 38 38 0.6637

(B) Lungs
All features p < 0.001

Shape
p < 0.001***

1 Mesh volume 0.920 0.593 0.972 42.879 38 5  < 0.001***

2 Voxel volume 0.919 0.583 0.972 42.935 38 5  < 0.001***

3 Surface area 0.827  − 0.002 0.951 32.640 38 2 0.0253*

4 Surface volume ratio 0.706 0.156 0.881 9.921 38 5 0.0074**

5 Sphericity 0.283  − 0.101 0.620 3.796 38 3 0.1248

6 Maximum 3D diameter 0.747 0.310 0.893 10.609 38 7 0.0016**

7 Major axis length 0.786 0.431 0.907 12.125 38 8  < 0.001***

8 Minor axis length 0.476 0.068 0.722 3.882 38 11 0.0114*

9 Least axis length 0.648 0.243 0.831 6.552 38 10 0.0019**

10 Elongation 0.464 0.184 0.676 2.930 38 34  < 0.001***

11 Flatness 0.479 0.201 0.687 3.050 38 34  < 0.001***
First order
p = 0.07

12 Energy 0.996 0.993 0.998 524.941 38 39  < 0.001***
13 Total energy 0.996 0.993 0.998 524.941 38 39  < 0.001***
14 Entropy 0.859 0.342 0.952 25.235 38 4 0.0029**
15 10th percentile 0.901 0.221 0.971 49.339 38 3 0.0079**
16 90th percentile 0.997 0.980 0.999 1.030.879 38 5  < 0.001***
17 Interquartile range 0.829 0.157 0.945 23.584 38 3 0.0097**
18 Minimum 0.632 0.055 0.847 7.803 38 5 0.0160*
19 Maximum 0.892 0.804 0.942 17.740 38 39  < 0.001***
20 Mean 0.979 0.700 0.994 233.179 38 3  < 0.001***
21 Median 0.983 0.848 0.995 242.339 38 4  < 0.001***
22 Mean absolute deviation 0.834 0.089 0.949 27.611 38 3 0.0146*
23 Robust mean absolute deviation 0.831 0.142 0.946 24.527 38 3 0.0106*
24 Root mean squared 0.989 0.956 0.996 266.500 38 8  < 0.001***
25 Variance 0.818 0.108 0.942 23.030 38 3 0.0128*
26 Skewness 0.517 0.244 0.714 3.409 38 33  < 0.001***
27 Kurtosis 0.510 0.234 0.709 3.042 38 38  < 0.001***
28 Uniformity 0.852 0.448 0.944 20.918 38 6  < 0.001***

GLCM
p < 0.001***

29 Autocorrelation 0.961 0.829 0.986 80.237 38 6  < 0.001***

30 Cluster prominence 0.767 0.374 0.900 11.275 38 8  < 0.001***

31 Cluster shade 0.799 0.610 0.896 10.441 38 22  < 0.001***

32 Cluster tendency 0.813 0.458 0.921 14.444 38 8  < 0.001***

33 Contrast 0.932 0.793 0.971 39.938 38 10  < 0.001***

34 Correlation 0.448  − 0.055 0.734 4.483 38 5 0.0441*
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Table 2  (continued)

Intraclass 
correlation

95% confidence interval F test

Lower bound Upper bound Value df1 df2 p value

(A) Liver
All features p = 0.5

35 Difference average 0.932 0.793 0.971 39.938 38 10  < 0.001***

36 Difference entropy 0.923 0.633 0.973 43.062 38 5  < 0.001***

37 Difference variance 0.929 0.741 0.972 40.968 38 7  < 0.001***

38 Id 0.932 0.793 0.971 39.938 38 10  < 0.001***

39 Idm 0.932 0.793 0.971 39.938 38 10  < 0.001***

40 Idmn 0.932 0.793 0.971 39.938 38 10  < 0.001***

41 Idn 0.932 0.793 0.971 39.938 38 10  < 0.001***

42 Imc1 0.237  − 0.068 0.512 2.137 38 13 0.0708

43 Imc2 0.706 0.047 0.892 11.674 38 4 0.0177*

44 Inverse variance 0.932 0.793 0.971 39.938 38 10  < 0.001***

45 Joint average 0.961 0.841 0.985 78.679 38 7  < 0.001***

46 Joint energy 0.878 0.556 0.953 24.568 38 6  < 0.001***

47 Joint entropy 0.885 0.494 0.959 28.722 38 5  < 0.001***

48 MCC 0.398  − 0.051 0.686 3.654 38 7 0.0441*

49 Maximum probability 0.873 0.575 0.949 22.679 38 7  < 0.001***

50 Sum average 0.961 0.841 0.985 78.679 38 7  < 0.001***

51 Sum entropy 0.876 0.457 0.955 26.662 38 5 0.0011**

52 Sum squares 0.850 0.514 0.939 18.960 38 7  < 0.001***
GLRLM
p = 0.37

53 Gray level non-uniformity 0.855 0.180 0.955 29.323 38 3 0.0088**
54 Gray level non-uniformity normalized 0.863 0.425 0.950 23.981 38 5 0.0013**
55 Gray level variance 0.863 0.425 0.950 23.981 38 5 0.0013**
56 High gray level run emphasis 0.926 0.430 0.978 58.323 38 3 0.0026**
57 Long run emphasis 0.868 0.256 0.958 30.871 38 3 0.0058**
58 Long run high gray level emphasis 0.887 0.262 0.966 38.608 38 3 0.0060**
59 Long run low gray level emphasis 0.889 0.609 0.956 26.473 38 7  < 0.001***
60 Low gray level run emphasis 0.926 0.430 0.978 58.323 38 3 0.0026**
61 Run entropy 0.865 0.756 0.927 13.452 38 38  < 0.001***
62 Run length non-uniformity 0.761 0.021 0.922 17.611 38 3 0.0216*
63 Run length non-uniformity normalized 0.834 0.421 0.936 18.093 38 6  < 0.001***
64 Run percentage 0.894 0.204 0.969 45.455 38 3 0.0084**
65 Run variance 0.925 0.792 0.967 34.864 38 11  < 0.001***
66 Short run emphasis 0.832 0.423 0.934 17.681 38 6  < 0.001***
67 Short run high gray level emphasis 0.545 0.125 0.770 4.742 38 10 0.0062**
68 Short run low gray level emphasis 0.887 0.619 0.955 25.350 38 7  < 0.001***

GLSZM
p = 0.38

69 Gray level non-uniformity 0.780 0.620 0.878 8.245 38 39  < 0.001***

70 Gray level non-uniformity normalized 0.613 0.377 0.776 4.275 38 39  < 0.001***

71 Gray level variance 0.613 0.377 0.776 4.275 38 39  < 0.001***

72 High gray level zone emphasis 0.860 0.750 0.924 13.350 38 39  < 0.001***

73 Large area emphasis 0.512 0.243 0.709 3.296 38 35  < 0.001***
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(0.60 ≤ ICC < 0.75), fair (0.40 ≤ ICC < 0.60), or poor repro-
ducibility (ICC < 0.40) [29]. Results are visually reported in 
Fig. S3 (Supplemental Materials) with a heat map. Of the 
103 features, 46 (45%) showed excellent reproducibility, 11 
(11%) exhibited good reproducibility, 22 (21%) showed fair 
reproducibility, and in 24 features (23%), reproducibility 
was poor.

Machine learning

As previously stated, only MRI shape features were used to 
automatically classify up vs. down liver herniation. In order 
to test whether the features considered at high reproducibil-
ity were more predictive in detecting liver herniation than 
the others, we also used ICC values as cut-offs for feature 

Table 2  (continued)

Intraclass 
correlation

95% confidence interval F test

Lower bound Upper bound Value df1 df2 p value

(A) Liver
All features p = 0.5

74 Large area high gray level emphasis 0.526 0.258 0.719 3.445 38 35  < 0.001***

75 Large area low gray level emphasis 0.611 0.372 0.774 4.328 38 37  < 0.001***

76 Low gray level zone emphasis 0.860 0.750 0.924 13.350 38 39  < 0.001***

77 Size zone non-uniformity 0.672 0.459 0.813 5.174 38 39  < 0.001***

78 Size zone non-uniformity normalized 0.347 0.041 0.595 2.396 38 24 0.0132*

79 Small area emphasis 0.500 0.229 0.700 3.149 38 37  < 0.001***

80 Small area high gray level emphasis 0.850 0.731 0.918 12.013 38 38  < 0.001***

81 Small area low gray level emphasis 0.642 0.398 0.798 5.081 38 30  < 0.001***

82 Zone entropy 0.464  − 0.004 0.731 4.198 38 7 0.0260*

83 Zone percentage 0.628 0.392 0.787 4.302 38 38  < 0.001***

84 Zone variance 0.600 0.355 0.768 4.255 38 35  < 0.001***
GLDM
p = 0.15

85 Dependence entropy 0.911 0.372 0.973 47.992 38 3 0.0034**
86 Dependence non-uniformity 0.980 0.962 0.989 96.663 38 38  < 0.001***
87 Dependence non-uniformity normal-

ized
0.912 0.413 0.972 46.063 38 3 0.0026**

88 Dependence variance 0.797 0.500 0.908 12.105 38 10  < 0.001***
89 Gray level non-uniformity 0.962 0.903 0.983 66.818 38 14  < 0.001***
90 Gray level variance 0.852 0.448 0.944 20.918 38 6  < 0.001***
91 High gray level emphasis 0.958 0.791 0.985 77.854 38 5  < 0.001***
92 Large dependence emphasis 0.895 0.161 0.970 49.335 38 2 0.0105*
93 Large dependence high gray level 

emphasis
0.948 0.364 0.986 104.920 38 2 0.0047**

94 Large dependence low gray level 
emphasis

0.965 0.934 0.981 57.561 38 38  < 0.001***

95 Low gray level emphasis 0.958 0.791 0.985 77.854 38 5  < 0.001***
96 Small dependence emphasis 0.847 0.729 0.917 11.952 38 39  < 0.001***
97 Small dependence high gray level 

emphasis
0.736 0.552 0.852 6.753 38 38  < 0.001***

98 Small dependence low gray level 
emphasis

0.874 0.773 0.932 14.544 38 38  < 0.001***

NGTDM
p = 0.001***

99 Busyness 0.818 0.642 0.906 11.637 38 22  < 0.001***
100 Coarseness 0.050  − 0.248 0.348 1.111 38 38 0.3729
101 Complexity 0.927 0.783 0.969 36.326 38 10  < 0.001***
102 Contrast 0.907 0.778 0.957 25.936 38 15  < 0.001***
103 Strength 0.067  − 0.230 0.361 1.151 38 39 0.3321
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selection. In the first test, all the features were used with-
out exclusion (case 1: no selection). In subsequent attempts, 
three thresholds were selected: 0.60, 0.70, and 0.75 (cases 
2 to 4), and only the radiomic features with ICC values not 
lower than the threshold were considered. The features of 
the lung and liver were included for each specific case, and 
the corresponding results are shown in Table 3.

The best results were obtained without feature selection. 
Figure 4 shows the ROC curves for liver herniation (up/
down) acquired by the best-tested classifier (a linear SVM). 
Without feature selection, the AUC obtained for the dataset 
of manually segmented ROIs and the one for the automati-
cally segmented ROIs were equal to 0.86 and 0.84, respec-
tively. The confusion matrices (cm) obtained and the cor-
responding values for sensitivity, specificity, and accuracy 
are reported in Table 4.

Discussion

In newborns with CDH, automatic segmentation of the fetal 
lung and liver is feasible and shows high accordance with 
manual results. To the best of our knowledge, this represents 
the first attempt to apply an automatic segmentation system 
for fetuses with CDH, aiming to standardize the assessment 
of lung and liver volume and provide a reliable automatic 
prediction of liver herniation, which represent two main 
prognostic factors for postnatal outcome.

The segmentation software selected for this work was 
nnU-Net, a general-purpose 3D biomedical image segmenta-
tion tool. nnU-Net is designed to automatically deal with the 
dataset diversity found in the medical domain due to imaging 
modality, image sizes, voxel spacing (isotropic/anisotropic), 
pixel intensity (quantitative and standard as in computed 
tomography or essentially qualitative and non-standard as 
in MRI). This method demonstrates the flexibility most seg-
mentation frameworks, designed on specific image types 
and properties, do not allow. Moreover, nnU-Net automates 
the key decisions for designing a segmentation system for a 
given dataset, significantly speeding up application devel-
opment. Furthermore, if any improvement in segmentation 
quality is desired, the nnU-Net modular structure allows 
easy integration of new architectures and methods. nnU-
Net relies on Python v3 and PyTorch and needs NVIDIA 
Compute Unified Device Architecture (CUDA) for most 
operations [24]. The quality of segmentation obtained with 
nnU-Net in the dataset of interest for this work was quite 
good, as demonstrated by the values of the Jaccard coeffi-
cients. An average Jaccard coefficient of 0.65 for lung seg-
mentation suggested that, on average, the overlap between 
the algorithm segmentation and the ground truth segmenta-
tion was 65%. This meant good accuracy, as more than half 
of the segmented area was correctly overlapped with the Ta
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actual area. The higher average Jaccard coefficient of 0.75 
for liver segmentation indicated even better accuracy, with 
75% overlap. Segmentation of the liver was better than the 
lung one: such a result was expected because of the larger 
organ volume compared to the lungs, which are even smaller 
in these patients due to the mechanism of the disease. Some 
values of the Jaccard coefficient were very large, but this 
was not true for all the patients.

After directly comparing the ROIs produced manually 
with those segmented with nnU-Net, we decided to compare 
the pyradiomics features computed in the automatically seg-
mented ROIs with those extracted from the manual ROIs, 
as an indirect and practical test of segmentation quality. The 
rationale behind this test was that manual segmentation is 
a very time-consuming process that can hardly be applied 
to large datasets, so there is an interest in ascertaining if 
features extracted from ROIs obtained by automatic seg-
mentation could produce results as accurate and useful as 
those extracted from regions drawn by manual segmentation.

For this purpose, we applied correlation and reproducibil-
ity tests to the two sets of features. Various techniques were 
employed to test for feature reproducibility between manual 
and automatic ROIs. Figures S1, S2, and S3 qualitatively 
show that some variables are reproducible so that their use 
can be granted, while others are not. This is particularly true 

for tiny lungs, and the Wilcoxon rank-sum test was used for 
the significance check. Our tests demonstrated that the two 
groups were significantly correlated and showed good agree-
ment as measured by ICC.

A further indirect test of segmentation quality was per-
formed by building a ML application for binary liver-her-
niation prediction/classification based on the features com-
puted from manually or automatically segmented ROIs of 
the lungs and the livers. It was remarked that the MR images 
were very different in grayscale, so using features based on 
gray values would have needed some procedure of intensity 
standardization. For this reason, we avoided further image 
manipulation and only used shape features, discarding vari-
ables computed on the gray levels. Various classifiers were 
employed with similar results, and the highest performing 
was a linear SVM, which was trained on both feature sets 
(shape features extracted from manual vs. automatic ROIs). 
The two sets yielded similar (quite large) discrimination 
power between the up and down liver, as measured by the 
AUC value. Also, the shapes of the ROC curves were quite 
similar. This result suggested that the automatic segmen-
tations produced by nnU-Net can be practically employed 
in ML applications. Even using less reproducible features 
helped classify liver up/down conditions, as it was found that 
selecting only highly reproducible features decreased clas-
sification quality. It is also interesting that when the whole 
sets of features were used (from manual vs. automatic ROIs), 
there was almost no difference in AUC between the two sets 
(AUC = 0.86 and 0.84, respectively), while feature selection 
led to a disparity in AUC with larger values for the set of 
features extracted from the automatic ROIs. Shape features, 
being based only on the ROI contour, might potentially be 
more deeply affected by segmentation errors, so the fact that 
AUC did not decrease from manual to automatic ROIs, and 
even increased when a partial dataset was chosen, is particu-
larly significant and proves the goodness of the automatic 
segmentation.

Fig. 4  ROC curves for liver 
herniation prediction with SVM 
classifier and shape features. 
Left: manually segmented ROIs, 
right: nnU-Net segmentations

Table 4  Metrics of performance obtained for manually vs. automati-
cally segmented ROIs

cm confusion matrices, FN false negatives, FP false positives, TN 
true negatives, TP true positives

cm (TP, FP, 
FN, TN)

Accuracy Sensitivity Specificity

Manual ROIs (15, 2, 3, 10) 83% 83% 83%
Automatic 

ROIs
(16, 1, 5, 8) 80% 76% 89%
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Finally, it is noteworthy that, though the described ML 
application started as a convenient means for assessing fea-
ture reproducibility and thus as a test of goodness for nnU-
Net segmentation, it was also a helpful result per se, suggest-
ing that such reliable classification is feasible.

However, the limited number of cases has to be consid-
ered when considering these results, as CDH is a rare dis-
ease, which leads to a limited dataset of images available.

To increase the study population, collaboration with other 
institutions and the inclusion of future cases could be con-
sidered. Moreover, data augmentation by the generation of 
synthetic data can be a way to artificially increase dataset 
cardinality during training, which may have a positive impact 
on the segmentation of lungs and livers from the original data.

Traditional forms exist (e.g., the application of spatial 
transformations to the images), and more recent approaches 
based on neural networks look promising, particularly for 
tiny datasets [30].

Another critical aspect, mainly concerning the ML results, 
depends on data inhomogeneity, specifically the lack of a 
standard grayscale in the images. To overcome this limit, we 
chose to discard ML features based on the gray-level content 
of ROIs. Image standardization (i.e., wisely transforming the 
images to a common gray-level scale) is possible, though 
it is very delicate and demanding. The advantage would 
be that after standardization, gray-level-based features—at 
least those with good reproducibility from manual to auto-
matic ROIs—could also be used for classification purposes 
to increase ML quality. It is also possible that image stand-
ardization may lead to an increase in nnU-Net segmentation 
quality, helping the segmentation algorithms.

Despite these limitations, the findings of our research 
are encouraging. The definition of an automatic segmenta-
tion software tool specifically designed for the fetal lung 
and liver would be relevant to clinical practice. Since CDH 
assessment is largely based on prenatal imaging, automatic 
segmentation would be key in simplifying and standardiz-
ing the diagnostic process. Moreover, it would provide more 
accurate imaging data for developing robust algorithms and 
tools for the early prediction of postnatal outcomes.

Artificial intelligence-based prediction systems are prov-
ing to greatly support the interpretation of clinical data and 
images of various conditions in the NICUs. For example, AI 
systems have been successfully developed to analyze retinal 
images for diagnosing retinopathy of prematurity and plus 
disease, where some subtle and fine signals may escape the 
human eye [31–34]. AI models could identify complex pat-
terns and associations in the volume of data available in 
preterm infant EHRs that traditional statistical methods or 
human experts may miss. These models can facilitate early 
detection of complications such as sepsis and necrotizing 
enterocolitis [35–38].

AI enables data integration from multiple sources, such 
as imaging modalities and clinical features. As a future per-
spective, fetal MRI and US data should be integrated with 
fetal-maternal clinical variables automatically extracted 
from electronic medical records. Identifying critical factors 
and assessing the relationship between clinical-radiologic 
variables and patient outcomes might help to further elu-
cidate the major determinants of CDH pathophysiology, 
especially postnatal pulmonary hypertension. Through an 
integrated multimodal analysis, the early detection of key 
features could enable the building of forecasting prognostic 
algorithms and provide a unique advancement in managing 
fetuses and neonates with CDH, ultimately improving the 
overall quality of care. For example, parental counseling 
would be more accurate, helping parents to understand the 
pathological condition better and feel more involved in the 
care process. Prenatal risk stratification is also crucial for the 
appropriate selection of FETO candidates. After birth, algo-
rithms may be able to anticipate critical events and guide 
timely interventions, such as determining the optimal timing 
for surgery or indicating the onset of complications. Patients 
at high risk of ECMO could also be identified. In addition, 
more rational resource allocation and cost-effective manage-
ment could be facilitated.

Conclusions

Within the limitations of this study, automatic MRI seg-
mentation of the lungs and liver of CDH fetuses through 
nnU-Net is feasible, with good reproducibility of pyradiom-
ics features. In addition, a machine learning approach for 
predicting liver herniation offers good reliability.

Our results could open the way to new applications of 
artificial intelligence in the neonatal field to standardize 
prenatal assessment and provide a reliable automatic tool 
for prognostic evaluation in CDH patients.
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