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Axionlike quasiparticles and topological states of matter: Finite density
corrections of the chiral anomaly vertex
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We investigate the general structure of the chiral anomaly AVV /AAA and (LLL, RRR) vertices, in the
presence of chemical potentials in perturbation theory. The study finds application in anomalous transport,
whenever chirally unbalanced matter is present, with propagating external currents that are classically
conserved. Examples are topological materials and the chiral magnetic effect in the plasma state of matter
of the early universe. We classify the minimal number of form factors of the AVV parametrization, by a
complete analysis of the Schouten identities in the presence of a heat bath. We show that the longitudinal
(anomaly) sector in the axial-vector channel, for on-shell and off-shell photons, is protected against
corrections coming from the insertion of a chemical potential in the fermion loop. When the photons are on-
shell, we prove that the transverse sector, in the same channel, is also u-independent and vanishes. The
related effective action is shown to be always described by the exchange of a massless anomaly pole, as in
the case of vanishing chemical potentials. The pole is interpreted as an interpolating axionlike quasiparticle
generated by the anomaly. In each axial-vector channel, it is predicted to be a correlated fermion/
antifermion pseudoscalar (axionlike) quasiparticle appearing in the response function, once the material is
subjected to an external chiral perturbation. The cancellation of the ; dependence extends to any chiral
current within the Standard Model, including examples such as B (baryon), L (lepton), and B — L. This

holds true irrespective of whether these currents exhibit anomalies.

DOI: 10.1103/PhysRevD.110.025014

I. INTRODUCTION

The interest in exploring anomalies in chiral matter,
specifically the Adler-Bell-Jackiw (ABJ) anomaly [1,2]
(see Refs. [3,4] for overviews), has witnessed substantial
growth over the past two decades. This surge extends
across both condensed matter theory [5-21], and high-
energy physics, particularly in the theoretical and exper-
imental study of matter under high densities, and in
transport [22-30]. Experiments involving heavy ion colli-
sions have tested and confirmed the anomalous behavior of
matter in the presence of finite density chiral asymmetric
backgrounds and strong fields [31].

The chiral interaction implies that, for massless fermions
coupled to electric and magnetic fields (E, E) the chiral
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fermion number Ns, if nonzero, is not conserved, but is
modified by the anomaly

dN 5 e 2

dt 27

A similar effect was pointed out to be possible in a crystal
subjected to the same external fields, more than a decade
later, after the discovery of the ABJ anomaly, by Nielsen
and Ninomiya [32]. In condensed matter physics, the more
recent identification of Dirac and Weyl semimetals has
paved the way for the exploration of analogous anomaly-
related phenomena [33-35]. These materials exhibit dis-
tinctive features, notably the presence of “Dirac-points”
where the bands come into contact. In Weyl metals, these
Dirac points are concealed within the Fermi surface [36].
In the case of topological materials, their relativistic
description is categorized as an analog, as the relativis-
tic dynamics are not associated with a genuine relativistic
dispersion relation in the propagation of the fundamental
(real or virtual) states. Instead, it manifests through the
Fermi velocity (vy), which remains relativisticlike. This is

E-B. (1.1)
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how the Weyl and Dirac equations manifest in these
systems, providing a table-top environment for testing
exotic phenomena in particle physics.

Equation (1.1) clearly shows that if chiral asymmetries
are present in the background in the form of propagating
external currents, with a net nonzero chiral charge, the
response of the matter system may be characterized by a
dynamical evolution that, as it has been pointed out, can
even lead to instabilities. The general feature of the
phenomenon is such that it can be incorporated into the
magnetohydrodynamic (MHD) equations of the early
universe plasma as well [37], generating a chiral magnetic
cascade. Indeed, a notable example of a similar phenome-
non is the chiral magnetic effect (CME) in the quark gluon
plasma [38,39]. The CME, for example, is characterized by
the generation of an electric charge separation along an
external magnetic field, due to a chirality unbalance that is
driven by the anomaly. In this case one introduces the chiral
current

Js = psB, (1.2)
with pus = pu; — pgr being the chiral chemical potential of
the left (L) and right (R) Weyl fermions present in the initial

state, and B a magnetic field. J5 is the external source
triggering the anomalous response at quantum level. The
result of the chiral anomaly interaction is the generation of

an electric field E parallel to the magnetic field.

This macroscopic phenomenon gives rise to a collective
motion within the Dirac sea. The topological nature of the
unbalance (us # 0) imparts a unique property to the CME
current, ensuring a nondissipative behavior even with the
inclusion of radiative corrections. Therefore, in matter
under extreme conditions, as found, for example, at neutron
star densities [40] or in the primordial plasma [37,41],
chiral anomalies induce a nonequilibrium phase that
deserves a close attention. Given the different values of
the external chiral asymmetries and of the related chemical
potentials, the evaluation of the finite density corrections is
expected to be of remarkable phenomenological relevance.

These interactions may leave an imprint in the stochastic
background(s) of gravitational waves via the gravitational
chiral anomaly [42,43] as well as contributing to the
generation of primordial magnetic fields [44,45]. This
may clearly occur at any phase of the early universe and
impact the production of gravitational waves in strongly
first order phase transitions. Similar spectral asymmetries
for spin-one particles in the anomaly loop can be generated
by Chern-Simons currents (see the discussion and refer-
ences in [46]).

Both chiral and conformal anomalies have been associ-
ated with the presence of interpolating massless states. In the
chiral case, they are clearly recognized in the on-shell
effective action, since the anomaly diagram is entirely
represented by a pole. However, they appear in combination

with transverse sectors as soon as in axial-vector/vector/
vector (AV'V) interactions one moves off-shell in the vector
lines. The possibility that future experiments in Weyl
semimetals may shed light on this phenomenon is the
motivation of our analysis. Our goal in this work is to show
how the entire anomaly interaction is dominated also at finite
density by the exchange of a massless pole that can be
interpreted by an interpolating, on-shell fermion/antifer-
mion pair in the axial-vector channel. This intermediate state
can be classified as an axionlike quasiparticle excitation of
the medium.

We demonstrate that the pole remains unaffected by any
correction and reaches saturation in its interaction when
external electromagnetic fields are on-shell. Systems with
these characteristics exhibit a topological response, and
conducting a table-top experiment provides a viable means
to investigate this interpolating state.

A. Topological protection in the Ward identity

The Ward identity associated with the chiral interaction
has been shown to be protected by the quantum corrections
in a specific way. For example, at zero (massless) fermion
density and temperature, the anomaly coefficient e*/(27x)
in (1.1) is not modified by radiative corrections [47]. This is
the content of the Adler-Bardeen theorem. On the other
end, finite fermion mass corrections are shown to
modify (1.1) in the form

2
0-(s) =S S FF +omlarw).  (13)
where the mass term appears together with a pseudoscalar
interaction inserted in the anomaly loop. Such second
contribution in (1.3), in axion physics, is responsible for
the finite mass corrections of the axion-anomaly interac-
tion. The corrections are obtained by coupling the axion
field, ¢, treated as an asymptotic state, to (1.3) in the
standard form

f%a (Js)

with the inclusion of a scale f, in order to preserve the
quartic mass dimensions of the interaction. The ¢ — yy
decay of an axion is then obtained by differentiating
twice (1.3) with respect to the background electromagnetic
gauge field. The appearance of a scale f, in (1.4) identifies
the most complex part of axion physics within the local
formulation, which in the context of strongly interacting
theories such as QCD can be justified by introducing the 6
vacuum. The question of the generation of an axion mass at
the hadron phase transition is then answered by the
inclusion of two very different scales. The first (large)
scale identifies the breaking of a chiral U(1) symmetry
(fo)—for example, the Peccei-Quinn symmetry—while

(1.4)
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the second is far smaller and typical of the strong
interactions.

In the absence of strong interactions, such as in QED, the
link between the two descriptions, the first essentially based
on the description offered by the one-particle irreducible
(1PI) effective action, and the local one, leaves open the
way for further analysis. We refer to [48] for a discussion of
a modified variational approach that attempts to bring
together the two formulations.

Our analysis will be entirely based on the 1PI approach,
which is quite direct and allows one to identify conclusively
the structure of the interaction and not just its Ward identity,
which is the content of (1.4). Concerning the generalization
of the chiral Ward identity at finite density, previous studies
have shown that (1.3) is preserved in this case [49-51].

The goal of the current analysis will be to identify the
structure of the three-point functions containing both one
and three insertions of Js at finite density. These are
correlators that we will be denoting equivalently as
(JsJJ) and (Js5JsJs) or AVV and AAA, whose structure
we will be investigating at finite density in perturbation
theory. We will also consider correlators with chiral
fermions (J;J;J;) and (JxJgJ ) defined by the inclusion
of left and right chirality projectors.

The analysis covers any chiral current associated with
global symmetries of the Standard Model as well, and can
easily be generalized to the non-Abelian case by invoking
the gauge invariance of our results. Examples are baryon (B)
and lepton (L) current associated with the conservation of
the baryon and lepton numbers of the Standard Model. Both
are conserved at the classical level, but are anomalous at
the quantum level. The B — L chiral current cancels the
mixed (B — L)Y? anomaly, where Y is the hypercharge, but
requires a singlet right-handed neutrino in order to erase the
(B — L)* anomaly. Our results hold for all these cases as
well, since any chiral diagram, in the absence of a sponta-
neously broken phase, are not affected by density correc-
tions on-shell. As we are going to clarify, this result can be
viewed as a consequence of conformal symmetry, since the
conformal Ward identities of the AVV or AAA interactions
are trivially satisfied in the on-shell photon case.

B. Content and organization of this work

The AVV vertex provides the simplest (free field) reali-
zation of the correlators mentioned above that can be studied,
at least in principle, even at finite density, using modified
conformal Ward identities. Notice that the structure of such
correlators is determined in parity-odd conformal field
theories (CFTs) at zero density by the inclusion of the
anomaly contribution in the solutions of the conformal Ward
identities (CWIs), as shown in [52], without resorting to
perturbation theory. This result is a consequence of the
conformal symmetry of the interaction at 4 = 0, which is
preserved, as we are going to see, even at finite u, for on-shell
photons.

We will proceed with an explicit identification of all
the sectors of a chiral anomaly interaction, classifying
all the tensor structures and form factors that are part
of it.

Our representation of the entire AVV vertex differs in the
number of form factors and tensor structures presented
in [49], and is worked out in full detail. Our goal is to
illustrate explicitly how the reduction of the general para-
metrization of the vertex proceeds. The original paramet-
rization, valid at finite 7" and g, involves a large number of
tensor structure—60—due to the presence of three inde-
pendent four-vectors, and gets reduced by requiring Bose
symmetry and conservation of the vector currents together
with the use of the Schouten relations.

In [53] the authors analyze various aspects of the (AVV)
correlator, both with and without a density background.
The main form factors decomposition is carried out for a
simplified version of the diagram, where the index asso-
ciated with the axial leg is fixed to the Wick-rotated
time coordinate. This significantly alters the number of
Schouten identities and the final count of form factors.
Additionally, the authors focus particularly on the infrared
limit. In contrast, our paper examines the general full open
indices amplitude in its form factors decomposition, paying
close attention to details regarding transverse and longi-
tudinal projections and their susceptibility to the density
background. We work in a covariant manner, which is
crucial for extracting an effective action that describes the
general features of the anomaly phenomenon. We will work
in the simplest case of an Abelian theory, such as QED
coupled to external fields, vector and axial-vector. The
generalization of our results to the non-Abelian case is
straightforward, since it can be obtained by imposing gauge
invariance on the Abelian result. There are some interesting
implications that emerge once one works, for example, with
the full spectrum of the particles of the Standard Model
rather than in QED, as we are going to do in the current
work. These, specialized to the fermion families and gauge
currents of the Standard Model, are part of an analysis that
will be discussed elsewhere. They impact axion physics in a
dense astrophysical environment.

II. THE NONLOCAL ACTION

The structure of the 1PI effective action Sy for an AVV
diagram is pictorially described in Figs. 1 and 2. The
expansion variable in these actions is a dimensionless
combination of fields and massless propagators of the
form o- B! (bilinear mixing) for the chiral anomaly
effective action and RCI~! for the conformal anomaly
action. Here, B, is an axial-vector source and R is the
Ricci scalar from an external gravitational metric. The
expansion does not involve any scale and captures
the scale-independent part of the anomaly interaction.
On the other end, a scale dependence is expected to come
from explicit chiral symmetry breaking terms, in the form
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FIG. 1. (a) The fermion loop; (b) the collinear region in the loop
integration; and (c) the effective pseudoscalar exchange as an
effective axion.

of mass corrections or finite density and thermal correc-
tions, as mentioned above.

In the context of the conformal anomaly, a similar
nonlocal structure appears starting with the 7JJ vertex
at the first order and progresses to the 777 vertex at the
third order. Here, T denotes the stress-energy tensor, and J
represents a vector current.

The 1/00 contribution present in the interaction, sym-
bolized by the dashed line in Fig. 1(c) is the common tract
of these interactions in flat space. The corresponding chiral
anomaly effective action can then be simply described by
the nonlocal term

2
e
Seff ~ 27

ﬂ/d4xd4y0-BD_I(x,y)FF(y). (2.1)

Extensive studies of chiral and conformal correlators in
perturbation theory as well as nonperturbatively, using
CWIs, prove conclusively that anomaly vertices are char-
acterized by contributions similar to the one shown in
Fig. 1. These bilinear insertions couple both to the
longitudinal component of the external axial-vector source
and to the anomaly. In the case of the conformal anomaly, a
similar (dilaton) interaction couples to the scalar curvature
R and to the Gauss-Bonnet (E) and Weyl tensor squared

term (C?). Without much ado, the interaction (2.2) is
generally traded for a local one

S~ [ E00FFO). 22

by a field redefinition that involves the external background

v
k
A v
v

p(y) = /d4y6 - BO™(x, y). (23)

Bilinear mixings are typical of spontaneously broken
phases in gauge theories and are usually removed by
gauge-fixing conditions. In the case of external sources,
not associated with gauge symmetries, this redefinition is
not strictly necessary, and the description provided by the
nonlocal action (2.2) is indeed genuine. It is summarized by
the statement that an anomaly-driven interaction is char-
acterized by the exchange of an anomaly pole.

In topological materials it is natural to interpret such
interactions as quasiparticle excitations generated by an
external chiral source or—for conformal anomalies—by a
thermal gradient. In the case of the conformal anomaly,
Luttinger’s equivalence relation between thermal gradients
and the gravitational potential [54], similar nonlocal inter-
actions are expected to appear as interpolating states
between a thermal source and other (final state) currents
that can be both electromagnetic or thermal (i.e., correlators
with three stress energy tensors). These materials indeed
offer a natural realization of chiral and conformal anoma-
lies in a surprising manner. The possibility of testing the
essential tracts of axion physics in a simplified experi-
mental setting is the motivation for recent and less recent
studies. The reformulation of the nonlocal exchange as a
local action with a pFF direct coupling is a common tract
of the literature on axions and anomalies, even in the
absence of a strong interaction that may allow one to
classify the axion as a composite state rather than an
elementary one.

Our analysis, however, will not deal with the issue of
how to relate the local and the nonlocal structures of the
chiral anomaly interaction. A discussion of this point can
be found in [48].

A. The on-shell effective action

By requiring that the anomaly interaction takes place on
a null surface, then the only surviving contribution in the
chiral vertex is the pole. From the perturbative picture this
simply means that when the two vector currents in the AVV
are on-shell, then the entire interaction is simply described,
in the m = 0 limit, simply by the exchange of the pole.

As already mentioned, similar nonlocal actions are
predicted by conformal symmetry, as shown in several

k 1
Y k,
p v

5
;
Y'Y \\
AVAVAV. » K,
k

FIG. 2. The AVV diagrams (direct and exchanged) in the expansion of the anomaly action S.
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studies of the conformal Ward identities, both in free field
theory realizations and nonperturbatively [55,56] using
methods of reconstruction of conformal correlators in
momentum space [56-63] in several dimensions.

This protection has significant ramifications, particularly
in influencing the hydrodynamical and transport properties
of systems containing chiral fermions. The entire chiral
anomaly interaction can be built from the pole, as shown
in [52], being constrained by conformal symmetry.

How this picture is modified by the presence of density
effects in some materials and in the quark gluon plasma is
only partially known. Conformal symmetry is expected to
be broken by the new scale (u). Previous analyses have
shown, however, that the anomalous Ward identity is not
modified at finite density [49-51], except for extra con-
tributions that originate from the transverse sector—with
respect to the momentum of the axial-vector current—of
this correlator.

The interaction is generally viewed as the response of the
Dirac sea to an external chiral perturbation, as a result of the
generation of a correlated fermion-antifermion interpolat-
ing state between the external chiral perturbation and the
gauge fields of the final state.

III. THE ACTION AT FINITE DENSITY
AND THE SOLUTIONS

The covariant structure of a chiral anomaly interaction at
finite density and temperature is very involved. As in the
case of the ordinary AVV (i.e., JJJ5) at y =0, we are
forced to perform an analysis of the Schouten relations in
the presence of a heat bath in order to identify a suitable
basis of tensor structures and form factors in the expansion
of this correlator. At the same time, we discuss their
perturbative realization, which is absent in the previous
literature on the topic. The infrared properties of the form
factors are investigated from the perturbative side, and the
proof of their infrared finiteness is shown explicitly by a
direct computation performed in a special reference frame.

The Lagrangian is defined as

L = idy —ieJ'A, —iggliB, + Lo, (3.1)

where

Le=—uy'yy (3.2)
is the contribution of a chiral chemical potential. In this
case u; = —u and up = p with

J=ygrty, Ty =arry (33)
being the vector and axial-vector currents coupled to external
fields A, and B,,. gp is the coupling of the axial-vector source
to the Dirac fermion y that we will split into its left-handed
and right-handed chiral components. The chemical potential

u accounts for the presence of a nonvanishing background
density of particles (x4 > 0), of total charge Q by the inclusion
of a term —uQ in the action.

The action has a U(1), x U(1)g x U(1),, global sym-
metry. The U(1), symmetry can be gauged by the coupling
to the (photon) field A,, and the integral of the zeroth
component of the current J# is the total charge density Q.
Both the chiral charges of the left and right components,

QL/R:/d3xn(£/R, O=—-e(0;+0r), e>0, (3.4)

are conserved, where

ng = prwry wr, np = uyw (3.5)

are the density of the L and R fermionic modes. Charge
conjugation (C) symmetry is broken by the external
conditions. L and R modes are intertwined by C but the
finite density vacuum is not C invariant. A more compre-
hensive examination of the character of the physical
vacuum, particularly under external constraints associated
with the specific background choice, will be thoroughly
explored in the upcoming sections. This detailed analysis
will extend to the description of the diverse contributions
embedded within the thermal propagator.

The chiral anomaly vertex will render J, not conserved
at quantum level with the anomalous Ward identity

0,J' = a,FF = a,E - B, (3.6)
where a,, is the anomaly and the chiral charge
0s=0, -0k (3.7)
will acquire a nonzero time dependence
QSINL—NR:/d3XE'B. (38)

We use the Dirac matrices in the chiral base, given by

p < 0 a")

=\ o0
where o# = (I,6), 6* = (I, —06), and 6 = (0},0,,03) are
the Pauli matrices. The chiral matrix > in this basis is

defined as
y = ( ! )
0 I

Left- and right-handed spinors are defined by the projectors

(3.9)

(3.10)

(3.11)
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We define Dirac spinors as the sum of two 4-components
chiral spinors y; and yp

XL 0
W=y twr W= . WR= . (3.12)
0 XR

A. Vector chemical potential

For a vector chemical potential y; = ur = p the finite
density Lagrangian is modified with £ — Ly in (3.1)

Ly = —puipy’y. (3.13)
The equations of motions are
iy* o — puy'y =0 (3.14)
that we investigate with the ansatz
W~ e P y(p) = e P <XL ) : (3.15)
AR

For the metric we use the signature (1,—1,—1,—1). Using
(3.15) we obtain

(o0 7)) o) () =0 06

o pxr = (E— p)xr. (3.17)
o-prL=—(E—-px. (3.18)
Iterating these equations we get the constraint
|P|2)(L/R = (E _/")ZIL/Rv (3.19)
giving
E® =Ej, = p £ pl (3.20)
Both equations in (3.19) are of the form
c-ny=Jly (3.21)
with
1

n :m(pl , D2, P3) = (sinfcos @, sinfsingp,cosd)  (3.22)

with 4 = £1. The two Weyl spinors that solve the equa-
tions are classified by their helicities

(ﬂ)lﬂ
) = 2
= i(i{%)l/Z I¥n; |°

ny—iny

(3.23)

The equation for yr becomes

E—p

p|
If we define
E; =u+|pl, E, = u~—|p|, (3.25)
then
ooy =\, ifE=E, (3.26)
with
o[t
+) _
)(R,l - <(1+%)1/2 1_,}3 >’ (327)
of helicity +1. If E = E,, then
c- n)((_) = —)((_) (3.28)
with
1=n3\1/2
o_( &P
AR2 = (_(1—n3)1/21+_r}3> : (3.29)
2 ny—iny

One proceeds similarly for y;. In this way we derive,
for E = Ej, the solution y7 ;, which has helicity —I.

Analogously, for E = E,, we derive the solutions y; =
X1 » of helicity +1.

B. Chiral chemical potential

Now let us consider a chiral chemical potential, with the
finite density Lagrangian term L as in (3.2). The equation
of motion for the fermion is

iy oy — wpy°yy =0, (3.30)
or equivalently
o Pxr = (E— p)xr (3.31)
and
o-pyr=—(E+u (3.32)
Iterating we get
Pxr = (E—u)xr, (3.33)

giving two dispersion relations E|, = u £ |p| for the R
component. For the L component we get the other two,

025014-6
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K|

FIG. 3.

The fourfolds of the dispersion relation in the E,

E
o—>
Er
<0
Dirac Sea

p| plane in the case of a chiral chemical potential. For a vector chemical

potential the twofolds at £ = —u are superimposed with the other two at E = u, giving a twofolds solution.

separate dispersion relations E; = —u + |p| and E, =
—u — [p|.
Also in this case we encounter the same equations of the

vector case. For E = E; = u+ |p| we have )(5:1) with

helicity +1, while for E = E, = u — |p|, the chiral solution
)(1(?_,2) has helicity —1. Similar results hold for £5 and E,, with

;(2_3) of energy F5 and ;((Lz) of energy E,. The fourfolds are

shown in Fig. 3.

C. The massive fermion case and the propagator

The generalization to the massive case can be worked out
in a similar way. We choose a vector chemical potential.
The equation of motion

irow —my —uyy =0 (3.34)
can be rewritten in the Hamiltonian form
Hy = Ey. (3.35)
We have the Hamiltonian equations
Eyi, = —o-Pyr + wyr + myg.
Eyr = o -Pyr+myr +myp, (3.36)
which we rewrite as before in the form
o Py = —Ey +myg,
o-Pxr = Exr —myyp, (3.37)

with E' = E — p. The eigenvalues can easily be found by
iterating the equations, yielding the eigenvalues

E, =u—E(m), E, =u+E(m), (3.38)
where
E(m) = /p* + m>. (3.39)

The equations for the L and R modes are obviously
coupled. One can check that the solutions can be obtained
in each case by selecting for y, the two options of spin up
¥k =(1,0) and down y% = (0,1) and then solving the
coupled equations. For the eigenvalue E; = u — E(m) we
derive the two degenerate eigenfunctions

_—pitip _—ps+E(m) 1}

1//112{
m m

- E — i
- {_ p3 + E(m) _Th +ipy , 1,0}’ (3.40)
m m

0<E<p E>0

0 0 |

k| +

E <0

\

14 ~
Re ]{JO

FIG. 4. The path in the integration regions in the finite density
propagator.
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while, for eigenvalue E, = u + E(m), they are given by

— i —E

1//21:{— P1+1P2’_P3 (m)Ol]

m m

-p3—E(m) —pi—ip,
m ’ m

Yoy = |:— ,1,0:|. (341)
Our analysis, in the next sections, will be limited to the
massless case. In the massive case, as already mentioned in
the Introduction, the corrections to the anomaly vertex
coming from nonzero y and m generate an axial-vector
Ward identity that contains, besides the anomaly, also an
additional contribution proportional to the product of m
and p.

Coming back to the massless case, the four chiral
solutions of fixed helicities can be mapped into the usual
u and v particle/antiparticle solutions

Wl =), uE = G ).
o =0 ), =0 =)

and can be used in order to derive the propagator.

(3.42)

D. Anatomy of the propagator at finite
T,,, and p and the T,,,, — 0 limit

In this section we proceed with an analysis of the
propagator at nonzero . Computations at finite temperature
have been traditionally performed both in the real and in the
imaginary time formalisms [64—66]. While the imaginary
time formalism is very efficient in the computation of
vacuum diagrams, such as in the derivation of the equations
of state of QED [67,68] and QCD [69] to rather large orders,
and in the resummation program of hard thermal loops
[70,71], the real time formalism has the advantage of
providing direct access to time-dependent quantities
directly [72]. The derivation of the propagator is rather
subtle in the relativistic case, due to the negative energy
solutions that appear in its retarded part due to the finite
temperature background. These parts describe antiparticles
that can be present in the thermal bath due to thermal
excitations, as we are illustrate below. At zero density, the
propagator can be derived more simply by sending the
positive energy solutions of momentum |k | > y in the future,
as part of the retarded propagator. The negative energy
solutions together with the positive ones with |k| < p
become part of the advanced propagator. A discussion of
this point in the Furry picture can be found in [73] that we
are going to specialize to the zero temperature case.

One introduces the expansion of the ordinary fermionic
field operator with creation and annihilation operators of
fermions (b', b) and antifermions (d', d):

W(x.1) = > by (x.0) +djyl) (x.1), (3.43)
Ak

where A runs over the spin states, k denotes the energy and
momentum

{dpp.diy} =800 = {byw. by}, (3.44)

while other anticommutators are zero. The statistical
averages are obtained from the expressions

(bibaw) = [F(EL)8.
(dydiw) = fr(EL)Sbum.

with the statistical averages given by the Fermi distributions

(3.45)

1

+ —
f (E) o eﬂ(E_”)

—. FE=1-1-5)

(3.46)

for the positive and negative energy states. Notice that the
dispersion relations defining the fermionic excitation
modes in this formulation are the ordinary ones, that for
massless fermions is derived from the usual equations of
motion

kv(k) =0, (3.47)

with k2 =0. In the expressions above, we have set
E = +|k| and identified the negative energy branch simply
as —E. Then, the expansion of the propagator in the vacuum
into its retarded [~6(7 — t)] and advanced [~0(¢' — )] parts

iSp(x' = x) = (O|T(¥(x'. /) ¥(x,1))0)
=0/ =) v (X )y (x.1) = 0 = 1)
Ak

<>y (x.1). (3.48)
Ak

at finite 7 and y is given by
iS(x' —x)

=S - (1 - fHEW (L e (x, 1)
k

+ = B (L O (x.1)
—0(t =) (fH(=E (X, ) (x. 1)
+ HEWS (O (x,0).

=

N

(3.49)

The sum over k, in the continuum limit, turns into an
ordinary momentum integration over the on-shell states of
energy, performed over the various kinematical regions.

Both the retarded and advanced parts in (3.49) are
characterized by two contributions, proportional both to
positive and to negative energy modes. For example, the
retarded part, in the thermal vacuum, is generated by the
combination
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S, =00 = 1) (<bb*>w§;> (. ) (x. 1)
Ak

+ (dr ) ()i (%)), (3.50)

where the products bb' and dd are statistically averaged.
At finite temperature and density, as one can see from
(3.49), the retarded part contains both a term

(bb™y =1 - (b'h) =1 - fH(E) (3.51)
and a second term proportional to
(d'd) = f~(E) = 1 - f*(-E), (3.52)

generated by finite temperature fluctuations that vanish in
the zero temperature limit. This means that at finite
temperature, thermal fluctuations can deplete the Dirac
sea of negative energy states that propagate into the future.
At temperature T,,, =0, these states are simply not
present, and the physical picture of propagation is the
one described above. Indeed, we have, in the retarded part

1= fH(E) = 1-0(u—[k|) = 0(k[ - p),

f(E) = O0(-u—|k)) =0 (u>0), (3.53)

with only the states with E > p propagating into the future.
On the other end, the advanced part,

iS00 = 0(t — ) ((dd" )y (X' ¢)irly) (x. 1)

+ (B by (g (x. ) (3.54)
in the same T,,,, — 0 limit, will contain all the negative
energy states since

1

(dd') = fH(-E) = SR 11

-1,

(3.55)

and in the same limit, the positive energy states with
O<E<up

(bb) = fH(E) = 0(u - |k|) (3.56)

are sent to the past. Equation (3.49) can be separated into a
vacuum part Sy, which is an ordinary Feynman propagator,
and a finite density/temperature part S,

iS(x' —x) =iSo(x' —x) +iS; (¥’ —x).  (3.57)

The thermal part given by

Si(x' =x)
=i (£ B ) (x.)
Ak

— FED (05 (x.1). (3.58)
Notice that of this part, only the first term survives in the
T, — 0limit, due to f~(E) — 0, and the integration over

the momentum is restricted to the 0 < E < u region
(see Fig. 4).

E. The covariant formulation

To derive a covariant expression of the propagator at
finite density, one needs to be specific about the form of the
expansion and effectively rewrite the integration as a four-
dimensional one.

We illustrate how to do this for the retarded part of the
propagator, the other terms being similar. We rewrite the
statistical average as

iSrer(x" = x) = 0(xp = x0) (Y (') ¥(x))

3L AL .
_ ;[ Ekdko i k) -+ 5
(2n)*
(rolk| =7 - B) et .
2K| ko + ie '

where the expansion covers the positive energy branch
E(k) = p+ |k| of the Hamiltonian. We have used the
contour representation of the step function (x{, — x,) using
the integration variable k, and performed the usual average
over the spin states

S k8 = 3 (3.60)

taken on-shell. Notice that in this expansion, formulated

over plane waves ~ei(tkD%+kT the Dirac operator at
finite density requires that the spinors satisfy the ordinary
massless on-shell relations (3.47). At this stage one
performs a change of variables by redefining the total
phase ko = ko +  + |k| in order to rewrite the expression
above as

. . k.,
Sl =) =i [ S Se Moo=

o K
(ko= (u + k| —i€)) (ko — (1 — [k | +-i€))

ki ¥
=i —ik(o=20)9(ky —u)=———— (3.61
l/(znr*e 0o —)zr— (361)
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with k = (kg — u, /?) Notice that the poles, in general, are
chosen in such a way to extract one of the two residues
present in the covariant formulation. Notice also that, the
integration over the momentum variable k;, once the
covariant expression is obtained, leaves a phase e((Xo—%)
in the propagator. This phase cancels in any closed loop and
can be omitted.

F. Simplifications in momentum space

It is widely acknowledged that a naive extension of zero-
temperature perturbation theory proves to be inconsistent in
any Feynman diagram featuring two lines with overlapping
momenta, as the square of distributions cannot be defined
as another distribution. The remedy for this challenge
involves a meticulous derivation of the Feynman rules
for real-time perturbation theory, extensively discussed in
the former literature [74]. However, this situation is not
encountered in the computation of the form factors in our
case, and we can simply use the fermionic version of the
real time propagator (at 7', = 0 and finite density) in the
form

Sp(k) = So(k) + S1(k),
k

So(k) -2

k Si(k) = 2mik€(ko)O(u — ko),

(3.62)
with only S; related to the chemical potential. More
generally, this result can be formulated covariantly in the
form

Sp(k) = % +27iks(k2)0(n - K)O(u —n - k), (3.63)

where the final expression has been written in terms of a
four-vector ##, which is the velocity of the heat bath. This
simplified expression can be obtained from (3.58), which in
general takes the form (8 =1/T,,,,)

Sp(k, B, u) = (k+m)Gp(k, B, p)

1

[ k)
eﬂ(E_/") + 1

+ eﬁ?,s(;];ﬁ 1] } (3.64)

Notice that in the T, — 0 and m — 0 limits this result
reduces to (3.62).

The computations that we will present in the next
sections will be performed in a special frame where
n = (1,0). The propagator for chiral fermions can be
obtained from (3.62) by the inclusion of the appropriate
chiral projectors P; and Pp and corresponding chemical
potential u — p;/p in (3.63), as in previous analyses
performed within the Standard Model [75].

+
+ +<+
+ +<+

FIG. 5. List of the vacuum and finite density contributions in
the expansion of the AV'V three-point function. The finite density
insertions are indicated with cut lines.

IV. GENERAL PARAMETRIZATION
OF THE CORRELATOR

The correlation function

4 = (T4 (@) 7" (p1)J* (p2))s (4.1)

is realized in free field theory by the simple AVV Feynman
diagram (see Fig. 5). In (4.1) the suffix y indicates that the
quantum average is performed at finite density.

The analysis of this correlator will be performed both on
general grounds by the classification of the minimal
number of form factors appearing in its expression and
at the same time, perturbatively, by using the expression of
the propagator at finite density. The general dependence
of I' on the external momenta of the incoming axial-vector
line (g) and outgoing vector lines (p; and p,),
(¢g = p1 + p,), is extended by the inclusion of a four-
vector 7 characterizing the velocity of the heat bath in a
covariant formulation. As already mentioned, the analysis
of these interactions has been performed in the previous
literature by focusing the attention on the Ward identities
satisfied by the correlator at the perturbative level, showing
that the anomaly is protected against these corrections [51].
Our goal is to extend such previous studies and proceed
with a complete analysis of the vertex, proving the
emergence of a 1/¢ interaction in its anomaly form factor,
which is the signature of the new effective degree of
freedom associated with the chiral anomaly.

When the two vector lines (photons) are on-shell, we are
going to show explicitly that the interaction reduces just to
the anomaly pole, as in the vacuum case. For off-shell
photons, the transverse sector of the correlator will be
shown to be y-dependent, but the longitudinal contribution
will also be shown to exhibit the same massless pole
structure, deprived of any correction. The minimal
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decomposition of I" differs from the standard AV'V vertex at
zero u (the vacuum contribution), which is rather elemen-
tary, since it requires only six form factors. In that case two
separate formulations are the most useful ones in the
perturbative analysis: the Rosenberg decomposition and
the longitudinal/transverse (L/T) ones. The latter has been
used in [52] in the derivation of the expression of the
interaction from CFT in momentum space.

The expansion is complicated by the presence of a four-
vector characterizing the heat bath (1), and the number of
allowed tensor structures increases quite significantly. The
complete list of 60 tensor structures 7' and form factors B;
formally written as

0
)
% = Bi(q* pi.p3.p1 1. p2 -7 (4.2)

6
i1
is reported in Appendix B.

We have denoted with g the momentum of the axial-
vector line and with p; and p, the momenta of the two
photons. We pause for a moment and define our conven-
tions for the vacuum contributions and the finite density
parts. We are going to denote with I" the entire contribution
to the vertex, which we split into a vacuum part (I'"?)) and a
finite density part (1), This second part is y-dependent,

=140, (4.3)
The action of the longitudinal and transverse projectors
defined in the axial-vector channel allows us to separate the
entire vertex I as

mprer =T, s =T,

A A
o= go L i 44 (4.4)
g’ q*

Similar projections can be introduced on both T®) and T().
This decomposition gets reduced, once we impose the
Ward identity on the free indices y, v.

The general dependence on the external momenta in each
of the form factors B; can be expressed in terms of the scalar
products of external momenta (p?, p3,¢* py -1, P2 n).
Using the Schouten identities, we can significantly lower
the number of form factors. We will consider their reduction,
first in the general case and then, at a second stage, assuming
a simplifying kinematical condition, in which both vector
lines (i.e., the two photons) have equal projection on the four-
vector of the heat bath (p, -n = p, - ).

A. Schouten relations

The analysis of the Schouten relation is rather involved.
In d =4 spacetime dimensions, tensors created by the
complete antisymmetrization over five indices must vanish.
We need to consider all the tensors of such a type

contracted with the two momenta p;, p,, and 5 in order
to obtain the corresponding identities. We start with tensors
with three free indices (Auv) and three contracted indices
(afy). The possible tensors are

ewvaghly - glwabgria - clwabgrlv — glvapgrln

(4.5)

Contracting these with p, p,, and 5 yields 12 equations,
with 11 of them independent, that allow us to solve for
the structures below. We use the simplified notation
PP = et p, prs, and similarly in the other cases,
to obtain the relations

v A LA A v Ay 2
6/'4 p1p2p1 =€ p1p2plﬂ_€ ﬂp1p2p1 _|_€/4p2p1

A
— e P (py-pa),
v A_— LA /] A v A 2
gﬂ plﬂp] =€ pl’/p]f _eﬂplr]p] _|_€ﬂ77p1

A
— VP (pl r])7
PP poh — P12 p P12 Y D2 (p1-p2)
_eﬂ/”/plpzz,

eﬂyp,pZnﬂ _ €/1vp|172,7;4 _ &ﬂplﬂznv 4 ehp (pl . ;7)
— eMp (]72 . 7])’
HUPYI ok — P p ol PV oY e () )
— eMp <p2 . ;7)’
P p = P p 1 P p Vg e"‘””(pl “D2)
_€ﬁﬂvpz<pl ),
€,4pp]qn/1 _ elluplr];,]ﬂ —6’1”1"'771” +€lﬂun(p1 .;7) —ellwplnz,
€}w1)z'7p2i _ €/1yp2y,p2;4 _ elypquzu 4 €/1/ll/71p22 — Mps (p2 . ;7>’
Pt = P2yt — Py 4 MV (py i) — e
EHPIPNGY — AP\ PNV _ €l;4p217pllx +€/1}4P|’7p21/ _ 611/4111172771/7

EVPIPYIFH — eAPIPIGHY — MV py By PN F PP

(4.6)

A second set of Schouten identities can be obtained by
considering tensors with two free indices and four
contracted ones

lrapsrlp, elmabsrlp elvaBsrlp. (4.7)

After contracting with the three available momenta, we
complete the rank-3 structure using p;, p,,#n, and the
remaining free index. Using (4.6) to eliminate redundan-
cies, we get 21 new independent relations that we can use to
eliminate the following structures:
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PP FEPIP p Fp AerPiPal gt p HeVPiPan PIApLHEPIPI . pohp eV PIP - Reb PP 0t p PP,

nt pyterripa, nyterripan, piip Lerrip p A ptetripan W p letPiPl p Y p tetPiPa pahp Vel Pt

W pytetripa, ' pYerPipa, 1 pyrerripa, i etripan, Np el p Y p RetPiP g p o RetP Pl
(4.8)

All the possible relations obtained from other types of antisymmetric tensors have been verified to be automatically satisfied
using Egs. (4.6) and (4.8). There are altogether 32 Schouten identities that lower the number of independent tensors to 28
from the original 60:

e , e , e/lﬂWI’ Setpipan, plﬂelvpl P2 plﬂeflvmr/’ plﬂelvpzr/’
petripr petri, potetran ntetripe ntetrin, nHevpa, Lt
piretrn, pyretpan piF petripan, poletPipy polePi povetpat P poretripan,
Dot porerripan nt poretripan, n ey neMPin, N et " p e, ntyrerripan,
(4.9)

At this stage, the vertex is simplified into the form

D% (py, pasn) = By(p1, pa.m)e¥ P + By(py, pa.m)e¥ P + By(py, pa.m)e¥™ + pi#By(py, pa,n)e PP

+ p1*Bs(p1, P2, )P + pi#Be(p1s pasm)e* P + py#Ba(py, pa, )€ P P2 4 py#Bg(py, pa, )€

+ P2 Bo(p1. 2. )€™ + 1 Bio(p1, p2.m)e* 7> + 1By (pr. pa. )P + 1 Bia(pr. pa.i)e !

+ P1*Bi3(p1s pas ¥ P2+ pPBia(py, pas )€ 4 pi¥Bis(pr, P )P + pa¥ Big(pis pasn)et PP

+ P2"Bi7 (P p2. )€ P + po¥ Big(pi. P2 m)eH P + 1 Bio(p1, p2.n)e P P2 + 11 By (pr. pa. i)

+ 17 Bo1 (P1s P2 )EHPY 4 pi# pi¥Boy(pis p2s )€Y 4 pi¥ po¥ Boz(pis pa, )€ PP

+ 1 P1"Bag(Pr. P2 )€ P + ot p3¥ Bos(pi., pa. )€ P + 1y Bag (. pa. )€ P

+ 10 By (1, 2. )€ P + 8 Bog(py, pa.m)el P (4.10)
(reduction 60 — 28) that we are going to simplify even further by imposing the Bose symmetry of the two photon lines. The

relations among the form factors can be found in Appendix C, where we report the structure of the vertex after imposing this
symmetry.

B. Bose symmetry

The relations among the form factors obtained by imposing the Bose symmetry are presented in Appendix C. Using those
relations the expression of the amplitude takes the form

T4 (py, pa.n) = Bi(p1, pa. n)e¥ Pt — By (pa, p1.n)e¥ P> + By(py, pa.n)e*™ + pi*By(py, pa.n)e 17
— P2"By(p2. p1.n)€¥P 172 4 pi#Bs(py, pa.n)e™ P (4.11)

+ P2*Bs(pa. pr.m)e P + pi#Be(p1. pa. 1)€*P! + py¥Be(pa. p1.0)e¥ P + pr# By (py, pa. )€ PiP

= P1"B7(pas prom)e* PP + poF Bg(py, pa,m)e™ P + pi*Bg(pa, p1om)e* " + pyBo(py, pa. )€

+ P1*Bo(pas prom)e* P + 1 Bio(p1, pas )PP = " Bio(pa, prom)e* P + 1By (py, po. )€

+ 1”Bi1(pa. p1.0)EHP + # By (py. pa.n)e*P + 0 Bio(pa. p1.n)e€¥ P + piF pi¥Byy(py. pa.n)eriren
— P2 P2 Boa(pa, 1o N)EP P + P pa¥ Bos(py, pas )€ P+ 0¥ ¥ Bog(py, pasm)e? P

— 1 P2* Bos (P2, p1s )€V P+ o By (pys po, )€1 P21 4 8 Bog(py, po, )€1 P, (4.12)

which, at this stage, is expressed in terms of 16 independent form factors. Therefore, we have reduced the structures
according to the sequence 60 — 28 — 16 from the original (60) ones.
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C. Vector Ward identities

The last step involves the implementation of the Ward identities on the vector lines. We proceed with the first requirement

and impose the conservation Ward identities on the two vector indices y, v,
1 l* (p1.pan) = 2, (1. paun) = 0.
By imposing these conditions, we get the additional relations
Bg(pa, p1.1) = —=p1*Boa(p1s P2 i) = P2°Baa(pas p1o1) — Bs(py, pas ),

—(p1-m)B11(p1.p2.n) — P1i2(P2 - n)Bas(p1. p2.n) — P2 (p1 - 1)Bas(pa. P1.1)
P2-n

Bll(Pz,Ph’Y) =

that will be essential for further simplifications.
Substituting (C2) into I'*(p, p,,n) we recover the final expression of the amplitude

T4 (p1. pan) = 20" (P12 ) By (1. paun) + 10" (P22 1) By (P2 prom) + 45 (p1. p2.1)Ba(py. pa.)
+Z§W(P27P1’ n)B>(pa. p1» >+2(3 “(p1. p2.1)B3(p1. pa. ’1)+)(3 “(p2. P1-1)B3(p2. p1.1)
+x4 “(P1-P2m)Ba(pr. pa.n) + 24" (P2. Pr-m)Ba(pa. pi.n) + 24" (p1. p2.1)Bs(py. p2.n)

Y(pae p10)Bs(pa. p1on) + 4" (P1. p2.m)Bs(p1. p2.1) + 1 (p2. pr.1)Bs(pa. pr.m)
"‘”(pl,pz, n)B;(p1. paun) + ”(pz,pl’ M B;(p2. p1.n) + 28" (P12 P22 1)Bs(p1. p2.1)
(Pz’Pla n)Bs(pa. p1.1) + (Plvpz n)By(p1. p2.1) +)(1o (P1.p2.1)Bio(p1. p2u)

(reduction 28 — 10 generic), where we have introduced the new tensor structures

A
27 (p1.pan) = (MP2pt + Ppirp i),

VPNt 12
Y € np
K (prspaom) = | €49yt = — 1)’
- P

)
255 (p1spam

_ <€ﬂvp1pzp2ﬂ + ei””pz(p1 : Pz))v
A
/'{/4ﬂy(p17p2”1 - <

) _
)
Avp, .
) = (errpyp — et (py P2)>’
pi-n
A
25 (pr pasn) = (X0t 4 402 (py - 1)),
P
xe" )
)
)

1 1 1
p1.pa.n) = | €PPpEp Y — 561’”’2'71712171” - Eelplpmg’wplz - 55/1”7‘”172”[?12

1
e*Piip H(py - py) +§€i”””1912(1?1 ‘P2)>v

GAFIFZ}’/’/Iﬂplznl’
2(py - m)

Auv

X

(

Auv
X7 (P17P2,’1
(P1-p2m) =

AP1P2M 3y M v_l PN 5y 200
€ pPin 26 pin

+
lﬂppﬂ Ky V 1/1/41711 2, v llvpfv Uy 2 11/41/71 2,52
= §€‘ZP1P2 —5€ "pi°p2 +§€ piEpo +§€ P P2 s
+

Pt p 2 (ps - n)>
2(!’1 "7)
X1y pasn) = (PG 4 P p — P v i (p - poY),

P P2 Y AP Py

i L T '

/Yll(;y(ph p2, 71) = <€jﬁum’l + _ )
PN P> N (p1-n)(pa-n)

1
WPIp ! (py ) + €M 12 (pa ) =
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Therefore, using the Schouten relations and imposing the
symmetry of the interaction, we have simplified the off-
shell vertex from its original expression in terms of 60 form
factors in (4.2), down to 10. The procedure can be
summarized according to this sequence: 60 initial form
factors — 28 form factors using the 32 Schouten relations
— 16 using the Bose symmetry — 10 using the vector W1s.

V. SYMMETRIC DECOMPOSITION
WITH OFF-SHELL PHOTONS

A simplified decomposition follows if we impose some
kinematical constraints. We consider the following addi-
tional conditions:

pi=r;="r"
pin=pyn=p-, (5.1)
in which the two photons have equal invariant mass as well
as equal projections on the four-vector of the heat bath.
These relations constrain the form factors to depend only
on three scalar products, namely g% p?, and p -7 and are
automatically invariant under the exchange (p; <> p»).

The Schouten identities are left almost untouched, the
main difference being merely a relabeling of their scalar

products. From the 60 structures included in (B1), using the
Schouten relations, also in this case we end up with 28 form
factors and tensor structures, on which we apply the
constraints from Bose symmetry. These are more con-
straining, leaving us with only 12 form factors instead of
16. They take the form

B, = -By, B3 = —B;,

B3 = —Bj, B4 = By,

Bs = Bg, Bis = —By,

By; = Bg, Byg = Bs,

B9 = =By, Byy = By,

By = By, By; = =By,

Bys = =By, Bys = =By,

By; = —By;, By = —Byg (5:2)

that differ from (C1). It is clear that the relations regarding
Bs, Bys, By7, and B,g now force such form factors to be
zero. Therefore, their number is reduced to 12 instead of 16,
and their decomposition is given by

Fl”’“(pppz,’?) = Bs(plue/lupm + pzue/lypzn) + B6(p]”€/1”p2’7 + pzue/lupm) + Bg(pz”e’l”p‘” + plue/lypm)
+ Bo(p#P1 + poHetPl) + By (e P1P2 — pp PiP2) 4 By (P A M)
+ Blz(nueﬂumr/ + nueﬂupzr/) + Bzz(pluplzxellplpzq _ pz”pz”e’lplpm)

+ B4(p1ﬂ€/1vmpz — pzveiﬂmﬂz) + B7(p2ﬂ€/1vmpz — plveﬁumm)

+ By (1 pit e’ PP — y prtePiPa) By (eMPr — herz),

(5.3)

At this stage, we finally need to impose the conservation Ward identity

pgyl—%’”’(pppz,ﬂ) — ellﬂplpz(_Blo(p -n) = By(p1 - p2) — By — B4p2)

+ e#P1(Byy(p - ) + Bg(py

p2) + Bsp*) + e#Pi(Byy(p - n) + Bo(py - p2) + Bep?)

+ P1P21(—(Byy + Byyp* )" + p1*[Bas(p - 1) + By (p1 - p2) — Bs] — (Bg + Byyp*)pa*) =0, (5.4)

obtaining the following set of relations:

By = —B;(py - p2) — Bio(p - n) — B4p?,
Bs = By (py - p2) + Bo(p - 1),

By = —Byp?.
By = —Byp.

By, =

_ By(pi - pa) + Bgp?

p-n

(5.5)

The decomposition thus can be expressed in terms of a reduced number of seven form factors, compared to the ten of the

general decomposition
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T4 (p1. pan) = Byt + Bord™ + Bsyd™ + Buxd™ + Bsyd™ + Bexd"” + Boyy” (5.6)
(reduction 10 — 7 for off-shell photons of equal invariant mass and p; - n = p, - ), where
2,02 2z
)(/}MV _ <_p nrEm P B pyterri n plﬂé,h,pzn + p2u§/1ﬂ17111> ,
p-n p-n
A )
pos <_ 1 (p1- p)EP i (py - p2)E e pzyézum)
p-n p-n
’W = (—=(p-n)e HYPL 4 (p - )EWVPr A R PIPY — P eMPip)
ﬂ”” = (=p?p V&P — PP FEPI L p i p VEPIPI — pot patEIPIP - piH(py - py)EMPYT A po¥(py - py)EMPT),
= (=p*f &Pl + pH(p - )P — pIptena - poV(p - )P 4t pot (—EPIPAN) Y p REPIPT),
’W” ( p2€/1ﬂwm +p 2gMrpy 12 HgAvp1P2 _ p2v€/1ﬂmﬂz)
= (&P = p I — (py - p)ERI 4 (py - o)), (57)

VI. THE PERTURBATIVE REALIZATION

Let us now analyze the perturbative realization of the
vertex. The perturbative contribution is expanded into a
zero density and a finite density part

I (6.1)
on the left-hand side (lhs) of (6.1), while the right-hand side
(rhs) of the same equation is identified by the expansion
into form factors presented in (4.16) in the general case and
in (5.6) in the symmetric p”> # 0 case. The perturbative
expansion into form factors present in I** will be reduced
to various sets of scalar equations by suitable projections.

We will act with several types of projections on both sides
of (6.1) in order to eliminate the dependence of the
antisymmetric € tensor present on both sides of this equation.

The list of projections is rather long and the equations
that are obtained need to be carefully investigated in order
to extract the independent ones. At a final step, the
inversion of the linear system of equations derived by
the procedure allows one to derive the perturbative expres-
sions of the form factors on the rhs of (6.1).

While the general description of this procedure will be
discussed in a following section, one can check whether the
approach matches known results on the perturbative AVV
at zero density. For example, it is well-known, in this
specific case, that the pertubative vertex reduces only to its
longitudinal sector, if the two vector lines are set on-shell.
In our case, this check is performed by taking, for example,
the # — 0 limit of (5.6), combined with the p?> —= 0
condition or the transversality of the polarization of the
two photons (g1 - p; =0, &, - p, = 0) on the rhs of (6.1).
We illustrate the method in some detail. The two contri-
butions to the AVV, given by the direct and the exchange
triangle diagrams, are modified at finite u as

|
Fiﬂebrt = 1—‘pert + 1—‘Eve)rl

/ (j ];4 r[(k = d)r* (k= p1)r"kr'r*1Gr (k)

X Gp(k = p1)Grlk - q) + (”1 - pz), (6.2)

U<v

where we have separated the scalar and tensor components
of the propagator Sr(k) in (3.62), together with their finite
density and vacuum parts as

Sr(k) = kGr(k),

Gr(k) = Go(k) + Gy (k).

Go(k) =

Gy (k) = 27”5("2) (n-k)Ou—n-k).  (6.3)

Notice that the trace part factorizes from the scalar part, as
shown in (6.2). We expand the trace in the following form:

Tr[(k = ¢)r* (k= p1)r*ky'y’)]
= iDy " (p1. p2)k* 4 iDs 5™ (1, p2) k°KP

+ iD3 45,4 (1. p2) KKK, (6.4)

where we have defined the tensors

Dy M (pr. py) = 4gHenia — Ageiid 4 4p, tethd
_ 4q/1€(w1/p| + 4p1u€(1iuq + 4qy€a/l,up] ,
y(pl’p2> — 4gﬂﬂ€a/,wp| +4d5y€alypl _ 4d5v€a/1;4p]
_ 4gaﬂ€ﬂuvq — 89ﬂﬂ€aivq + 4p1/3€a/1uv’
= 4gfreime, (6.5)

D 5™

Ds aﬂy (Pl, Pz
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The perturbative integral can be written as

4

v . d*k
F’;eiz(m,l)z;ﬂ) = iDy,*(p1. p2) /WkaGF(k)GF(k - q)Gp(k—py)

4

: Auv d’k
+ lDZa/} a (pl’ p2) (27[)4

d*k
(2r)*k

+ iD345.*(p1. P2) /

We will use the following notation to describe such
integrals:

d*k
JIf (k. p1.p2n)] = /—f(k,pl,pz,ﬂ)GF(k)

(2n)t
X GF(k - pl)GF(k - ‘1)’
4
HIf(k. py. paon)] = / %ﬂk,p,,pz,mo‘p(m

X Gp(k = py)Gp(k—q), (6.7)

where f(k, pi, p>,n) indicates, generically, a contraction
of py,ps.n with one or two four-momenta k* in the
numerators. These integrals turn into a sum of eight
terms when we expand Gp(k) as a sum of Gy(k) and
G, (k).

We need to introduce some extra notation in order to
illustrate the approach, by labeling every term of in J|- - -]
and H|[- - | appropriately.

We introduce three upper indices, indicating for each
Gr(k),Gp(k — p;), Gg(k — q) which part of the propagator
we are choosing, between G, (labeled as f) for the “free” or
vacuum contribution and G; (labeled as &) for the
u-dependent part. J[---| and the H|[- -] refer to the direct
and the exchanged graph, respectively. Here are some
examples

d*k
JOLN[f(k, p1, parn)] = /—f(lﬁphpz,’?)Gl(k)

20y
x Go(k = p1)Go(k — q),
4
H8.) [f(k, p1,p2sn)] = /%f(k,Pl,stﬂ)Go(k)
x G (k= py)Go(k - q),

4
J(6.19) [f(k, p1, pasn)] = /(;’T]; [f (k. p1. p2.1)]G (k)

X Go(k = p1)Gi(k—q).

k“kﬁGF(k)GF(k —q)Gp(k—py)

KK G (k) Gk — )Grlk — py) + (p‘ < ) (6.6)

u<v

|

In almost all of the finite 7',,,,, / u cases, the integration cannot
be performed covariantly. Indeed, such integrals can only be
computed in a specific frame of reference. This defines the
last step of the procedure that takes place only after having
totally contracted both sides of the amplitude in (6.1) with
appropriate projectors in order to extract the scalar expres-
sions of the form factors.

The only UV divergences contained in the (f, f, f) part
that correspond to the standard AVV diagram at zero
temperature and density are eliminated by the vector
Ward identities, while other terms are automatically free
of UV divergences due to the presence of a cutoff given by
the chemical potential. There can be, however, other types
of divergences, such as IR or collinear (the latter present in
the on-shell photon case). We will deal with the latter using
dimensional regularization (DR). We are going to show that
while they are present in specific contributions, they cancel
in the complete amplitude.

A. TV

pert>

Before studying the perturbative contributions at finite
density, we concentrate on I“E,Oe)r,, the u = 0 part of the
correlator, summarizing earlier findings.

As we have already mentioned, a chiral anomaly vertex
can be completely identified by two conditions: the
presence of an anomaly pole in the axial-vector channel
and the conformal symmetry of the vertex. The method is
entirely nonperturbative and has been presented in [52].

This is essentially one of the main reasons why it is
conceivable to identify the new degree of freedom inherent to
the anomaly, with the pole. The approach does not rely on a
Lagrangian and is therefore nonperturbative. A similar result
has been obtained in the case of the gravitational anomaly, in
the TTJ5 vertex, where T is the stress energy tensor [46]. In
this case as well, the reconstruction of the vertex is performed
just by the inclusion of a single pole in the axial-vector
channel and by requiring conformal symmetry.

The first parametrization of the AVV was presented in
[76] in the symmetric form (with p3 = ¢? in this case)

the pole and the on-shell limit
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(J(p1)J*2(p2)J5 (p3)) = Bi(p1. pa)elikeis + By(py, py)el>#1k2is + By(py, py)eliPaiibs p ke
+ B4(P1,P2)€p‘p2”‘”3pgz + Bs(l’h pa)eP1parats pht 4 Bﬁ([’hpz)ep‘pwzml’gl’ (6.8)

with B, and B, divergent by power counting. If we use a diagrammatic evaluation of the correlator, the four invariant
amplitudes B; for i > 3 are given by explicit parametric integrals

B3(P1’P2) = —Bé(Pz,Pl) = 16”2111(171,192)’
B4(P1,P2) = —BS(PQ,Pl) = —16”2[120(171,172) —110(1717172)], (6-9)

where the general [, integral is defined by

1 1-w
I”(pl,pz)=A dWA dzw'z'[z(1 = z) p7 + w(l = w)p3 + 2wz(p; - p2)] 7. (6.10)

Both B; and B, can be rendered finite by imposing the  will be particularly useful in order to check our ansatz for
Ward identities on the two vector lines, giving parametrization of the same vertex at nonzero density. We

are going to extract the zero density part from the para-
B\(p1,p2) = p1 - p2Bs(p1, p2) + p3Bs(py, p2),  (6.11)  metrization of the vertex (5.6), taking the limit of zero four-
vector 7. Since the check will be performed for equal
invariants p? = p3, we provide here the expression of (6.8)

By(p1, p2) = piBs(p1, p2) + p1- p2Be(prs pa),  (6.12) ! P, We provice )
in the same kinematical limit. One obtains (we set

: . 22— a2
which allow one to reexpress the formally divergent P1 = P2= M)
amplitudes in terms of the convergent ones. This expansion

BI(S’MZ’MQ)__4_—71.2’ (613)
B (s, M?>, M?) = —2i—M4¢> (s —M?)
S st (s —4AM?)? M
e e +2(2M? + 5) log M M?* + 8M* (6.14)
27%s(s — 4M?)? s '
B,(s, M?*, M?) = L@ (s2 = 3sM? +2M*)
s msi(s —am?)? M
+ i 2sM? + (s* —4M*) 1 s sm* (6.15)
——— |25 §° = og| — | — , .
27%s(s — 4M?)? &S
with the functions @(x, y) and A(x, y) defined in this specific case by
M?* M? 1 2M? 2M? 2
@y =0 ) = = |log2 S ) +4Li, S+ 2. (6.16)
s s Ayt s(Ay +1) —2M —s(Ay +1)+2M 3
» » aMm?
Ay =AM s, M?[s) = /1 ———, (6.17)
s

as in Eqgs. (6.37) and (6.38), with x = y = M?/s. The symmetry relations on the external momenta give
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B, (s, M*,M?) = =B, (s, M?*, M?), (6.18)
Bs(s, M*,M?) = =B, (s, M?, M?), (6.19)
Be(s, M?>, M?) = —Bs(s, M?, M?), (6.20)
and in the total amplitude simplifies into the form
(s, M2, M?) = By (s, M2, M2)ry" (k. ko)
+ By(s, M2, M) (ki ko)
+ BS(S,MQ,Mz)’YéW(kh ky)
+ By (s, M2, M) (ky k), (6.21)

where the expressions of the tensor structures #; are given
in Table I.

An alternative parametrization of the AVV correlator,
using the longitudinal/transverse decomposition, is given

by [77] (with ps = q)
(J4 (p1)J*2(p2)J5 (p3))

1
812

— (WLﬂ1ﬂ2ﬂ3 - WTﬂ1ﬂ2ﬂ3)’ (622)

where the longitudinal component is specified in
Eq. (6.32), while the transverse component is given by

WTHEH (py, py, p3) = wi (p?, p3, p3) i mms (py py)
+ i (p2, p3, ph)iOminn (py | p,)
+WT (Pppz’l’z) i >”‘”2”“(171 P2)-

(6.23)

This decomposition is in order with all the symmetries of
the correlator. The transverse tensors are given by

TABLE I The six pseudotensors needed in the expansion of an
amplitude T#* (ky, k,) satisfying the vector current conservation
for u = 0.

n elp1. pa.u. v pf
m elp1. pa.p. v ph
3 ki - paelpy, A, p, V] + plelky, pas p, ]
M P2 P2€[p1s A V] + phe[p, pa, s A
ns p1 - Pr€lpas A V] + plelpy, pa,v, A
e P1 - P2epas A V] + phelpy, pa,v, A

(s (Pl,Pz) = p/l‘zgﬂlﬂzplpz — pglgﬂzﬂﬂ’lpz

— (pl .pz)gﬂlﬂzm(m—[’z)

2 2 2
pi+p;—p
+17§3(P1 _i_pz)MzgﬂlﬂzPle’
pP3
pi-p3
(s (py pa) = | (pr = pa)s =52 (p1 + pa)
3
X gﬂ]ﬂzplpz’

FHpimons (P1,P2) = p/l‘zgﬂlﬂzplpz + pglgﬂzllsplpz

— (pl .pz)gﬂlﬂz."‘S(Pl"'Pz)‘

The map between the Rosenberg representation given in
(6.8) and the current one is given by the relations

= 1 _(«) DI+ P}
By(pr. pa) — {WL ) g

872 wr

p1- P2+ P} (—)]
2 wr |
P3

|:WL+2pl P2 i)

P3

-2 (6.24)

- 1
By(p1.p2) = 32

. + p2
Jr2171 P22 P1

(=)
w ’
P3 ’ ]

which can be inverted in the form

(6.25)

81’ -
WL(p]’p27p3) p2 [B BZ]
3

(6.26)

or, after the imposition of the Ward identities in Egs. (6.11)
and (6.12), as

wo (. 3. ) = Sp— (By— Bs)py - pa + Bap}— By,
(6.27)
Wi (ph.p3. p3) = —4n*(By — By + Bs — Bg).  (6.28)
Wi (p3. p3. p3) = 4% (B, + Bs). (6.29)
W (p2, p3, p?) = —4n2(Bs + By + Bs + Bs),  (6.30)

where B; = B;(p;. p,). As already mentioned, Eq. (6.26) is
a special relation, since it shows that the 1/ p% pole is not
affected by Chern-Simons forms, telling us of the physical
character of this part of the interaction.

Also in this case, the counting of the form factor is four,
one for the longitudinal pole part and three for the trans-
verse part. Notice that all of them are either symmetric or
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antisymmetric under the exchange of the momenta of the
two photon lines by construction

wi(p1. p3, P3) = wi(p3, 1. P3),
+
wi (P31 p3. p3) = wi (P3. P} P3).
wi (p3, p3, p3) = —wi (P2, P2, P2,
v (p3, 3. p3) = =y (p3, P p3). (6.31)
Notice that
Wﬁlﬂ2ﬂ3 e WL pg3€ﬂlﬂ2p5p1pp26 = WL pg3€”]ﬂ2p]p2’ (6'32)

where w; is the anomaly form factor that in the massless
photon limit has a 1/p3 pole. The entire structure emerges
as a solution of the conformal Ward identities once we
require that the longitudinal (anomaly) sector built around
the axial-vector line has an anomaly. We are going to show
that the same description holds, if the two photon lines are
on-shell at finite density. In this case the u-dependence of
the perturbative expansion vanishes. We will refer to this
case as to the “on-shell AVV.” In other words, the on-shell
AVV at zero and at finite density are identical. This implies
that at finite density this diagram can be reconstructed by
on-shell conformal Ward identities in momentum space,
just by the inclusion of a single pole in the axial-vector
channel. The vertex has no transverse part, and it is just
given by the pole term.

|

1. Consistency of the expansion with the p=0 case for
off-shell photons in the symmetric configuration

In this subsection we perform a consistency check of our
expansion (4.16) (reduction 60 — 10) derived before for
the on-shell AVV.

The vacuum contribution to this amplitude is expected to
agree with the expansions presented in the previous section
in the two forms (6.8) and (6.22). The limit of zero density
and with photons of equal virtuality can be performed from
(5.6) (i.e., the reduction 60 — 7),

2 2 _
pi=Dp3p1-n=py-n, (6.33)

in which we will take the limit # — 0. We start by checking
that the decomposition (5.6) reduces to the longitudinal

sector of W, = F(LO) of the AVV, Eq. (6.8), in the zero
density limit.

In the # — 0 limit of (5.6), all the tensors in (7.4) vanish
with the exception of y4 and y5. This limit leaves in the lhs
of (6.1) only the zero density part. We obtain

lim[™ = 36)(’61”” +B )(’71””

lim (6.34)

that we equate to the perturbative computation, subjected to
the same limit and parametrized as in (6.8). They can be
identified starting from the general expression of the zero
density AV'V, given in terms of the four form factors in

FE,OE),,, once the conditions (6.33) are taken into account. The
perturbative evaluation of the two form factors gives

s 4n*(p* = py - Pzi)z(l’z +pip2) { {(pl P’ <log (W))
+p*(p1- p2) <2log (W) - 1) + p“]

- p*(p1 - p2)(P* +2(p
B i
7 p—
47*(p* = p1 - p2)*(P* + p1 - p2)

- p2))Co(p* p*.2(p?

+Pp1-P2

),0,0,0)},

{p4(172 +2(py - p2))Co(p*. p*.2(p* + p1 - P2).0.0,0)

(6.35)

where we have defined the unique scalar three-point function with all the momenta off-shell and g incoming, while p; and

po are outgoing

Co(q* p3. p3 =/ddk
0( 1 2) (k_q)z

where the ®(x, y) function is defined as

@) = 3 {21Lis(-p2) + Lis(-p)

1 in?
k=~ g o) (63¢)
y, 1+4py z*
+In= ln] s —l— In(px) In(py) + — (" (6.37)
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with

Axy)=vVA,  A=(1-x-y)-dxy,
plx,y)=2(1-x—-y+2a)7",

-___r (6.38)

Equation (6.35) is in agreement with the analysis in [52] for
the same kinematical case defined by (6.33).

VII. THE FORM FACTORS FOR ON-SHELL
PHOTONS IN I' IN THE SYMMETRIC CASE

The case of the decay of the axial-vector line into two on-
shell photons (p} = p3 = p*> =0, p; -1 = p, - 1) is surely
one of the most interesting, since the computations are
slightly simplified and one discovers, as we have already
anticipated, that the anomaly pole is not affected by any u
dependent correction. We are going to illustrate this point
by an explicit computation.

Notice that this kinematical constraint must be imple-
mented from the very beginning of the expansion of the
vertex into form factors, since the Schouten relations
should be chosen in such a way to avoid possible 1/p?
singularities. For this reason the relations (4.6) and the
respective equations that are derived for the tensor struc-
tures listed in (4.8) are modified. Equations (4.6) become

A — Av v A Apv
pl €lll/p1172 e plﬂe PiP2 pl € HP1DP2 (pl . p2>€ H p]’
pl/.{e/“/pln — _(p . ]/I)eﬂ,"wp] + plﬂeﬂl’plr] — pll/elﬂp]n’

A v — AV VLA Apv
p2 €ﬂ P1P2 — pzﬂe P1P2 — p2 € HUP1DP2 + (pl . p2>€ H p2’
7]/1614’/.01172 — _<p . ;/I)eﬂﬂl/p] + (p . ]/[)ej'MVPZ + nﬂelyp1p2

— e
APl — —(p . )P Hepin — p Vethpin
pa' e = —(p - )e¥ P + pylle pate
Apv
+ (p1 - p2)e™™,

12 Aghvpan — —(p- ,7) AUV Dy +pl/4€/1”172’7 - ple i

+ (1 pa)e,
,Ileuvpm — (p ) A 4 nue/h/pm — ,Ivgiﬂpm — ,76/1/41/1111
poletvr = —(p - n)eP2 4 pyFetPan — povethra,
nieﬂwpzn — ( p- ,])e/lﬂm + nue/lvpzr/ — ;71’6/1#]72’/ _ ﬂeiuvpz’
GEEHPIPI = PP p VMDA | VeHPUL _ p HP1P2
GHeVPIPI = PP p BeAPAI | o HeMPi

— phetvpipr (7.1)

The overall picture is nonetheless the same, as we obtain a
slightly modified version of the 32 relations we have

derived in the off-shell case, without any relation becoming
redundant. Hence, under these conditions, we end up with

the same 28 tensors and form factors of the off-shell case.
It is thus clear that relations (5.2) are unmodified; hence,
the structure of the amplitude before the implementation of
the conservation Ward identities for the vector currents is
still given by (5.3).

The first differences start to appear as we impose
vectorial WIs. In this case the contraction of the on-shell
decomposition with p5 gives

e#rip2(=By(p-n) — B7(p1 - p2) — By)
+ e (B (p-n) + Bs(pr - pa))
+ e (B (p i) + Bo(py - pa))

+ PP (=Bt + piF[Bos(p - 1) + Bar(py - p2) — Bs)

— ngzﬂ) —_ O (72)
These equations allow one to derive the constraints
By = By(=(p1 - p2)) = Bio(k - 1),
Bs = Byy(k - n) + By (p1 - p2)
Bg — 0,
Bll - 0,
B .
B, = — o(P1 - P2) , (7.3)
p-n
leading to the on-shell decomposition
2 B A 2
T4 (p1, pain) = Bu™ + Bord™ + Bayd™ + Bur"”
+ Bsy™ 4 Boy? + By, (7.4)

where

= (_'7”(]’1 )Pt (py - py)et
! P P

+pll’€/1.uplr/ +p2ﬂ€j'yp2'7> s

)(/ZW_( (p_n)eg,wpl +(p‘r])€/1/wp2 +,1u€/1up1pz_,]u€/wpmz),

K= (pi#(pen)e P+ pay¥ (pn)ehr
— 1t Pyl etPiP 4 p HetPiPaN)

24" = (pyretr 4 pyretnn),

)(g;w _ (plﬂellyplpz _pzueﬂumpz),

e = (piF pi &P — pt py PP 4 p H(py - py )P
+p2" (i p2)er),

K = (pytehrivr — p relnip: —

+ (p1 - pa)eHr?)

(p1-pa)e
(7.5)
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are the new tensor structures. Therefore, both in the on-shell case and in the symmetric off-shell case—in this second case
we require (6.33)—we have seven (but separately different) tensor structures and corresponding form factors instead of the
ten that have been identified in the most general off-shell case in (4.17).

A. The longitudinal component

To analyze the anomaly, we focus on the longitudinal component of the correlator. This component is defined with
respect to the momentum of the axial-vector line, connected with the anomaly contribution. Using the z and X projectors,
we extract from the perturbative part its longitudinal components. We apply the longitudinal projectors on the amplitude,
obtaining

B -m?%  Bon? B+ B
0% (py, pasn) = (prreh i — Pl”ebp‘pz)( 2(p 1) b2y (p-n) <Bzz - 10) - B7>
pi-p2 2p-m)

+ (eMer — ) ((pl - P2) (12(;—%) + (By + Byo)(p - n))

2 .
+ (pl”elﬂplpz _ pzﬂexlvplpz)( Byn _ (39 + BIO)(p ’7) _ 37)
2(p-n) P P2
y)
1 HeAvpii Ve pF Dol pk cAipin Hpv — phpt e B .
+5 | P + pie pie pae™ P+ (ph Py Pzpz)p o (Boa(p - 1)
.

+ Byn(p1 - p2) — Bs + By) (7.6)
having used (6.6). It is clear that in the expression above we have several tensorial structures multiplied by linear
combinations of form factors. Now we introduce two new form factors that we call C; and C,, so that we can write two of
these linear combinations as

By(pi-p
~Bo(p ) = Buolp 1)+ 2L L By py)) = €, a7
2(p-n)
—Boy(k-n) = Byu(p1 - p2) + Bg— Bg = C,. (7.8)
Solving for B; and By, we get
B, — —2Bo(p 1) = 2B1o(p 1) + Bs(p1 - p2)/2(p 1) = 2C(p - 1)
(P1-P2)
Bg = Bou(p 1) + Bxn(py - p2) + Bo + Cs. (7.9)
Substituting these two solutions into (7.6), we get
H(p . n)evPiP2 V(ip.p)eMrire 1 Hp VetP1Pall
(@0 (py, pan) = Cy (pl W we _ potp W L i i Ly e 2L PIENE
pi P2 pi P2 2 2 2(p1 - p2)
A A A
poprtetit lplﬂezupm _ lpzyezﬂpm> _Ci(py” + pat)er ‘ (7.10)
2(py - p2) 2 2 P1- P2

Notice that C, does not contribute to the amplitude, since
this form factor vanishes after the contraction with the
physical polarization vectors of the two photons. Therefore,
we obtain in the on-shell photon case that

q/l

()T (py, pa.n) = wpePr2 = (7.11)
q

where @w; = C; is the only longitudinal form factor that
survives the limit. Contracting both sides of the equation
with the antisymmetric tensor, we get a scalar equation for
;. that we decompose in terms of a vacuum (u = 0) and of
a finite density contribution

w, = o+, (7.12)

a relation that we are going to investigate in detail.

025014-21



CORIANO, CRETI, LIONETTI, and TOMMASI PHYS. REV. D 110, 025014 (2024)

The analysis of the zero temperature part in (7.12) is quite direct. Using the notations introduced above, and applying the
same longitudinal projection of (7.11) on Fpe),,, the contribution to @, takes the form

w’zzozgi(l’l'Pz)H(f'f'f>[P1' ]+85(P1'Pz)J<f’f’f)[P2'k]_giH(f’f'ﬂ[(m‘k)(Pz'k)]+4iH(f'f’f)[ k) (p1-k)]
) k

(k-k
—4iHYSD[(k-k)(pa- k)] 4+ 8iH LD [(py - k) (py - k)] = 8T SS D (py - k) (pa - k)] = 4id VLD (k- k) (py - )]
+8iJ S [(p1-k)(p )}+4l]<fff)[<k'k)(l’2‘k)]—85J(f’f‘f)[(P2'k)(Pz'k)]_8iH(f'f‘f)[(P1'k)(Pl'kﬂ‘ (7.13)

A computation gives

i

=0
U=

(7.14)

as expected, corresponding to an anomaly pole term —ﬁ /q*. Indeed, when the two photons are on-shell, the AVV
coincides with the contribution of the anomaly pole and a vanishing transverse component. Instead, the finite density part is
given by the contributions

" = 8i(py - p)HOI [py - K] +8i(py - p2)J 1D [py - K] = 8iHI D (py - k) (p2 - b))

[
T 4iHOFD(k- ) (py - K)] = 4HOTD[(k- ) (ps - B)] + 8HOLD (s - ) (ps - )
=8N [(py - k) (py - k)] = 4 LD [(k - k) (py - k)] + 8i N [(py - k) (py - k)]
+ 4iJ31) [(k-k)(py- k)] — 8iJ@SF) [(p2-k)(p2- k)] = 8iH %1 /) [(p1-k)(py - k)]
+ (f.8.) + (f. f.6) + (5. f.6). (7.15)

I
We are going to show by a direct computation that this ~ H[---] integrals simplify. We choose a frame where the
contribution vanishes. The computation is performed in the  particle of momentum ¢ and invariant mass 4 p(z) decays into

p? = 0 case, i.e., for the on-shell AVV. two on-shell back-to-back photons. The heat bath is
assumed to be at rest in this frame, with #»* =
B. Evaluation of the integrals in a special frame (1,0,0,0). Together with (5.1) (and p*> = 0), this choice

The explicit evaluation of (7.15) is performed by translates into the following parametrizations:
choosing a frame of reference in which the J[---| and
|

Py = (po.0.0. py), P = (p0.0.0,—py).
¢" = (2p,.0.,0,0), 7 = (1,0,0,0). (7.16)

As it will become apparent soon, integrals in this frame are plagued by collinear divergences as well as IR ones that will cancel
out in the overall sum (7.15). As an explicit example, we will sketch the evaluation of the H(p,, k) integral, treated in DR.
We start with (1) that we evaluate in the special frame (7.16)

dk 1 1
HOpy K =i [ ke pa(Ou=n- K)ol ()
‘ (2m)=1n (k= q)? (k= pa)?
dk 5(ko — |Kk|) 1 1
’/(2 -t (kopo = [K[po cos )( W= ko) =30~ ) 352 5 12 = Fkope 1% = 2kopo + 2K|pycos
(7.17)
and perform the energy dk” integration
j d 'k 1 1 —cosé
HOLND [ k] = / O(u — K|). 7.18
1K = 16pe ] 2 KK = p9) T+ cosg?# ~ 1K (7.18)
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We use spherical coordinates in d — 1 dimensions
| ‘d—?’

i d/K| k
= O(u— |k
mewW'Ww

In the frame that we have chosen, there is a factorization of
integrals, since the angular and radial integrations do not
intertwine. This takes place in every integral computed in
this special frame, and it is one of the main reasons why we
are able to evaluate the result analytically. If we take
the photons to be off-shell, this factorization is not present.

The radial integration is cut by the theta function. The
angular part can be integrated for every integration variable
but 6, yielding a Q(d —3) volume. The integral can be
reexpressed in the form

HOLD(p, -k

- Q(d-3 H k|3
H(é»f,f>[pl - K] _(—d>—l/ d|k| | |
16po(27) k| -
Lo 1—t d
dt—— (1 —12)! 7.20
< [LarTia-p) (7.20)
Using

I i, Vm(d=2) T(d/2-1)
/_1dt1—+t(1_tz)2 = Ty

|k|d—3 Iud—Z
d Fi(l,d-2,d-1, .
/ | "k‘ 0 (d_z)p02 1( M/p())
7d4/2-3/2

r(d/2=1/2)’

where ,F| is an hypergeometric ,F; function, we obtain

Q(d-3)= (7.21)

H(é-faf) [pl . k]
Pir(Gh)? |

(7.22)

The limit d — 4 is singular due to collinear divergences.
Notice that we need to require that p, > u in order to
guarantee the convergence of all the contributions. This
requirement, in this case, is necessary only at the inter-
mediate stage, since all the contributions, as already
mentioned, add up to zero.

The integrals are reported in Appendix D. One could
argue, looking at the table of integrals, that the possibility
of residual IR divergences cannot be ruled out a priori. We
now demonstrate how in (7.15) such divergences do not
intervene in the overall sum.

From (D12), it is apparent that the only cases in
which IR divergences could be present are JU-%/)[p, - k],
HY2D[py - k], JU9N[(p,-k)?], and HUSD[(p, - k).

/ do,de, ---do,_,
Po

—cos b,

d-3 g ind—4
7511 0;sin“"* 0, - - -
1 4 cos 6,

sin 911_3 . (7 19)

The IR divergent part of (7.15) thus can be identified in
the contributions

o = 8i(p1 - p2) (HE ™ [py - K+ I5 [py - k)
. 0, 0,
—8i(HE ) [(py - k)2 +I5 [(pa - K)2).

In our frame, p,-p,=2p; and JUO[p, k| =
HUS py -k, JU30[(py k2] = HUSD[(py k). In
these integrals the IR divergent part takes the form

8i 2pg/u 3 /1 (1-2)!
=—— | — d|k||k|4? dt——5—
o = gyt (52 [ awiiee [Tt

2(p1-p2)HY D [p k]

(- t2 %’—
) (7.24)
and therefore vanishes.

Using the integrals in Appendix D, one is able to show
that the whole (7.15) combination vanishes in the limit
d — 4, leaving us with the conclusion that

(7.23)

2
+@/”d|k||k|d 5
2 Jo

2HU S ((pykP]

Wy = a)ﬂ:o + (Uﬂ#() = W,—0- (725)

We conclude that the anomaly contribution, at least in the
on-shell photon case, is identified by an anomaly pole that
does not acquire any correction even at finite fermion
density. By covariance, obviously, the result remains valid
in any frame. Therefore, we have shown that the entire
diagram is uniquely identified by the anomaly pole, since the
transverse part is zero. Obviously the anomaly constraint
(0,J5) = a,FF (7.26)
for on-shell photons is satisfied also for u # 0 and m = 0,
and no extra corrections are present in the equation. In
addition, we have shown that the expression reduces only to
the pole contribution. The result, as discussed in the previous
section, can be viewed as a consequence of conformal
symmetry, since the amplitude, in this special kinematical
limit, satisfies conformal Ward identities, and the anomaly is
simply given by the residue of the massless 1/¢> pole.

VIII. THE TRANSVERSE SECTOR

As we have shown in the previous section by an explicit
computation in the on-shell case, the independence of
the anomaly—and hence of I'j,,,—from the chemical
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potential, claimed by previous analyses [49,51], is correct.
For this reason we are now going to rely on such previous
results, which are valid also off-shell, in order to reduce the
number of form factors in our parametrization.

Once we have verified that the chemical potential does
not affect the chiral anomaly part of the correlator, we can
reduce (7.4) even further, by imposing the axial WI. Our
explicit evaluation of the anomaly was worked out in the
on-shell case p?> = 0; nonetheless, we will now proceed in
the general p? # 0 case. Formally, we impose the constraint

g, = qu(OWUI = a, e, (8.1)
which is valid in general. This constraint is the result of the
analysis presented in [51] that we have independently
verified. The proof does not require the explicit evaluation
|

of the integrals and can be used to impose additional
constraints on our explicit tensorial parametrizations.

This implies that the pure finite density corrections
contained in I'(1) are transverse with respect to the axial-
vector channel

)
' =q, q_zelwnmz + [";ﬂ”
q

A

=a, q_zepr]pz + rgm"” + F(Tl)’l’"’. (8.2)

Therefore, we now focus on the transverse part FAT’”' which
can also be decomposed as in Eq. (7.4) but with the
following additional constraint:

0 = q,T#" = (2Bgp® +2B5(p - n) + 2B;(py - pa))e™P1P

+ ettt [(B4P2 + By)p1¥ + p2*(—=Bs(p -n) — Byp1 - p2 + By) +1*

+ bt |:p1”(B5p N+ Bypy - py — By) + (—Byp* — By) pot + i <Bl

The standard procedure that we have used for the vector
WIs, in this case leads us to the relations

By =Bsp-n+Byp;-pa.
BZZ—B4P27

1 - _
By = ———(Bg p* + B3 p1 - pa).

- (8.4)

The final form of the decomposition (for p? = p3 = p?,

P11 = p>-n) can then be written as

2 .
e | S
p-n p-n
J
g =i
q N N
= a, 5 e + Blﬁw + Bz)(/zlw
+ By + Buyl” (8.5)

(on-shell symmetric), where we have defined new form
factors (B) corresponding to the recombined structures

- pa)etP _pt(p - pa)etrn

1) VA
){/l;w . <P2”P2 PPt pFpteth P pik(p,
o — _ _

p? p?

P (P PP pyt(py - pa)e
p2 p2
A pit (k- n)e™ripz  py¥(k - q)etrip:
X2 =\~ P + 2

p? p?

+ pHetPil - p YeMPa - p Vet | pzﬂell’m’?)’

A A
_|_ ]/[ﬂe vp1p2 ;7”6 ﬂp1p2> s

){é{”y — (pzl’(k . n)eiﬂplrl + plﬂ(k . n)e’lIJFZW — pznﬂe/{yplrl — pznyeﬂ”p]" + pl.u(k . n)eiyp]" — pznﬂeﬂypﬂ/]
—_ pzﬂyeﬂﬂpzﬂ + pzy(k . ’7)6/1.”]72” — nﬂpzbeﬁp][h” + ”Vplﬂeip]pzn)’

(_ Pi(py- pa)e™ P | py*(py - py)etnir:
p2 2

Ay
Xy =

+ potePipr — plvgluplpz)
In summary, Eq. (8.5) describes the entire vertex at nonzero y in the symmetric case in the off-shell case.
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A. General expressions of the form factors in the
transverse sector

While the explicit computation of the scalar integrals in the
off-shell case cannot be evaluated explicitly, it is still
interesting to determine the structure of the form factors in
the parametrization worked out in (8.5). Therefore, here we
present the expressions of all the form factors in terms of
integrals that can be computed numerically, since all the

L
M2(M* = 4pd)
+ (=M* = 6M?pj + 8p)J [k - nk - po] +
—4M?poJlk- pik- py] + (3M* po +2M? pj —

37 [ = Mk 0 -

+ poJ [K*k - py]
8
o _(4M*p,—16
M4(M2 2[7 )[( Po pO) [ }+
+ (4M?*po — 8pd)J [k - nk - po] +8piJ k- pi]
+ (=2M* — 4M? p + 8p)J [k - po])].

A 8i
By=—————=[3M*
4 Mz(Mz 2p ) [( pO

+ (M2 po —2p3)J[k -nk - py] + (-M* + M?*p}
+ (M* = p§)J[(k- p1)*] + (-M* + 3M? p} —

(oo}

[(MS +4M?pt + 16p5)J [k - 5] +

32:

o

3= (16}73 -

8M?2pi +4p3)J [k - )

(4M* py = 16p3)J [(k - 1)*] +
(=3M*py — 2M?p} —
8p3)J [k - pa] +M?poJ[(k- p2)?]l,
2p5)J k- nk - py] + (M —
— poJ[(k- p1)*] + (=M*po = 2p3)J [k - pa] + poJ[(k - p2)])],
AM*)J[(k - n)’]

+ M?J[K*k - p,]

+ (4M?pg —

+2p$)J k- pi]+ (P —
2p$)J k- pa] + (P3 —

integrals are finite. This is guaranteed since the nonzero
virtualities of the external vector lines are sufficient to remove
both the collinear and infrared divergences. As we have
shown in the previous sections, these are only present in some
of the integrals appearing in the on-shell case, canceling in the
complete expression. Here instead they are all finite.

Starting from (8.5), we derive a system of equations that
allow us to compute the form factors in terms of the scalar
integrals. We obtain

(=M* —6M?p +8pj)J [k - nk - py]

8p3)J k- pi] —3M? poJ [Pk - pi] 4+ TM?* poJ[(k - p1)?]

2p§) k- nk - pa] + (M?po +2p3)J [k - pi]

+ (4M?py — 8p)J [k - nk - py]
—2M?J[(k- py)*] +2M?*J[k - pik- p]
2M*)J[(k-n)?) + (M?po —2p3)J [k - nk - py]

Mz)J[kzk'Pl]

M?)J (k- p2)?]]. (8.7)

Notice that in the expressions above, the integrals H[f(p, p,,n. k)] are not present due to relations such as
H[p; - k| = J[p> - k]. Some additional details on the manipulations of these integrals are given in Appendix E.

B. 1 independence of the amplitude I'; in the on-shell symmetric case

At this point, using the simplifications presented above, which allow us to reduce the number of form factors in the
general vertex, we move to compute explicitly the finite density corrections in the on-shell case. Performing the p> — 0
limit we obtain

. 4i
B, = —(pl oo pa =20 (=(Hn - k| +J[n-k])(p1 - p2)?
+ (1 - p2)(=(k-n)(=H[py - k| + H[p, - k] + H[k - k| 4+ J[py - k] = J[p - k] + J[k - k])
+H[(py-k)(n- k)] +H[(p2-k)(n- k)] +I[(p1-k)(n- k)] +I[(p2- k) (n - k)])
+ (k-n)(H[(k - k)(py - k)] = H[(p1 - k)*] = H[(k - k)(ps - k)] + H[(p2 - k)?]
—J[(k-k)(py - k)] + J[(p1 - k)*] + J[(k - k)(pa- k)] = I[(pa - k)*]), (8.8)
B, = B,, (8.9)
B;=0 (8.10)
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B, does not play any role in the on-shell case, given that tﬂ” g
is always perpendicular to the photon polarization e* and
€. In this case, the denominator of Eq. (8.8) happens to be
singular, since

pi-p2=2(p-n)* (8.11)

) d?k
H<5’f’f)[p1 k] — Z/Wk

1

-p1(0(u =1 - k)O(n - k)8(k*))

To overcome this singularity we slightly modify the
heat-bath velocity by setting # = (1 +¢,0,0,0), with
€ = d —4. The denominator in (8.8) is now proportional
to 1/(2p3e). This allows us to proceed with the analytic
computation of the integrals.

For example, in this new reference frame a typical
integral takes the form

I I
(k= q)* (k= p2)?

= (kopo — |k|pg cos 0) (9(,4 — ko[l + GDW)

X
4p(% + k2 - 4k0p0 k2

The next step, in this example, is to perform the k° integration

HG-L.f) [py - k] =

i / dk
16p.) (27)* |k|(|k|

and use spherical coordinates in d — 1 dimensions. The integral can be reexpressed in the form

H.f.f) [p: -

iQ(d—3) [wli+d K[43 11—
k] :4‘{_1/ d|Kk| / dt
16po(27)*" Jo k| - 1+1

1
. (8.12)
—2kgpo + 2|k|pocos @
1 1 —cosé@
O(u — k|[1 A
T eaeg O = I+ €) (8.13)
(1-2) 1, (8.14)

If we redefine i = u/[1 + €], the computation is identical to the one encountered in Eq. (7.20). Therefore, we get

2—d—4ﬂ.—d/2ﬂd—2r(% _ 2)2F

C2id— 1k
(1d=2d =135

H(é’f’f)[pl . k} [

It is easy to show that the linear combinations of integrals in
(8.8) go as ~O((d — 4)?), giving

~ 1
B, =
> 2ple

o((d —4)?). (8.16)
This shows that the transverse part of the AVV at finite
density, I', is not modified by the chemical potential in the
on-shell limit. By separating I' into its longitudinal and
transverse contributions

r=r" 41?4+ 4, (8.17)
we have
r = 41l = o, (8.18)

and using the result of Sec. VIA, F(TO J =0 (the on-shell
vacuum amplitude in the symmetric case is just given by
the pole), we obtain

A
[ — Fi’w(ﬂ — O) — MDD %

5 (8.19)

P o

|
Therefore, we have shown that the on-shell vertex does not
acquire any correction from a chemical potential. The
implication at the level of the on-shell effective action is
that this takes the exact form

Sy, :/d4xd4y0-BD_l(x,y)FF(y), (8.20)

with B, denoting the external axial-vector source field.

C. Scaling violations in g in the off-shell case

The extension of previous studies to the off-shell case,
along with the challenge of explicitly evaluating perturba-
tive form factors, leaves us with an unanswered question on
whether this dependence also cancels out in the off-shell
case. We are going to show that this is not the case, and we
will do it applying the operator d/du to the transverse part
of the vertex.

The derivative operator acts only on the hot propagator
term, in particular on one of the step functions
n-(k=py)). Ou—n-(k—q)).

Ou—n-k), O(u- (8.21)
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Deriving these functions, we get different new Dirac Deltas. In the (8, f, f) cases this leads to a further saturation of the
integration variables, as it can be seen in

5(5(“)9(’1'@9(#—”'@)) = 5(k2)0(y - k) — 1 k)
= 57 ka = = k) (822)

The first delta saturates the temporal integral while the second delta eliminates the |k| one, leaving us with only angular
integrals. This process happens in all integrals with only one hot propagator, while for (5, 5, f) cases and permutations, the
additional delta generates conflicting conditions that cancel the integral altogether. We take the following case as an

example:

0

W (8(k*)0(u — 1 - k)S((k — q)*)0(u —
u

= 6(k*)8((k—q)*)0(n - k)O(n - (k —

We note that, for the first term of the product

8(k*)8(u —n-k)s((k—q)*)0(n - k)O(n- (k- q))

o 5(k” = |k[)o(u — [k |)8(=4po(|k| = po)).  (8.24)
it becomes apparent that the two deltas of |k| cannot be
satisfied at the same time, and thus, the whole contribution
vanishes. Similar reasoning works for the other term in
the sum and for (f,8,8) and (8,6, f), as well as for
(6,6,6).

Using these principles, one can flesh out the whole
evaluation of this derivative for all the form factors written
as linear combinations of scalar integrals as in (8.7). We
present here some examples of integrals that appear in this
evaluation

I A—t
JOrN Ty = H /
P1-H 16po(po+u)J-1 B, +t
1 1
T Po y 2/ dt ’
8(po +m)\/psg—M*>J1 B, +t
(8.25)
where
_ Po
Py —M?
M2
2u\/py — M? o
M2
M ii-B, (8.26)
2un/p — M? !
JUSNpy - K] ! /1 (8.27)
20 p o ’ '
8v/py—M*J-

n-(k—q))o(n-k)o(n

g)6(u—n-k)O(u—

(k=q)))
n-(k=q) +0(u—n-k)su—n-(k—=q)).  (8.23)
Ffop k] — b ATt
s M pO(pO_/")/—ldth'i‘t’ (8-28)
1/ P
J[(py - k)AL = 161)0(;0_#) B,,,+t’ (8.29)
1 (A t+7—Mz)2
J[(p - k)0 = 8/_1dt (Bp—t)ﬂ(BV:,—t) . (8.30)
1’0 2
W/ p§—M? N pn—M’)
J[(plk)z](fﬂs) 16]70 ](;0 B 4+t
(8.31)

Performing the full computation of the derivative for the B,
form factor with respect to the chemical potential, we get

0 -
—B, #0. 8.32
u? # (8.32)
In fact, the log independent part reads
0 - —uM? + 4p3 + 2up?
) & ﬂg K 2+ p02+ #Po) + Log terms.  (8.33)
o 47’ po(M?* = 2pg) (1 + po)

This result clearly means that for the off-shell case the
chemical potential plays an important role, different from
the on-shell case, although its contribution is limited to the
transverse sector.

IX. FURRY’S THEOREM AND MORE
GENERAL CORRELATORS

Before coming to a discussion of other chiral correlators,
we turn to investigate the role of finite density effects
in C-violating backgrounds that may be present in out-of-
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equilibrium configurations of the background sources. The
relation of the AV'V with other diagrams built with the J; and
Jg currents require an investigation of the role played by
charge conjugation in the presence of both chiral and vector
currents, including the VVV correlator of three vector
currents. This vanishes by C invariance in the ordinary
vacuum sector, but is nonzero in the presence of finite density
backgrounds.

According to Furry’s theorem, Feynman diagrams con-
taining a closed electron loop with an odd number of
photon vertices vanishes. In a closed loop there can be an
electron as well as a positron “circling around.” These
particles interact with the electromagnetic field with an
opposite sign of the charge. Thus, their contributions cancel
each other for an odd number of vertices. From a Feynman
diagram perspective, denoting with M, and M, the dia-
grams in Fig. 6, one is able to show that

My =M, + M, =0. (9.1)

4

FIG. 6. Diagrams with opposite fermion flow in the symmetric
vertex.

However, as we will see, Furry’s theorem does not
hold anymore in the presence of a chemical potential
due to the breaking of charge conjugation invariance by
the background.

Let us first write the expression of the diagrams
displayed in Fig. 6:

d'k
Ma(ﬁuu) - /—TI{SF(k,ﬁ,ﬂ)yﬂnSF(k+Pl +p27/))7lu)y;l2SF(k+pl’/}’ﬂ)yﬂl}’

(2m)*
4

d*k
My(B, ) = /—Tr{mlSF(k—puﬂ,ﬂ)mSF(k—pl = P2, Bot) .7, Sp(k, B ) }.

(27)*

9.2)

Such diagrams are closely related to each other. To see this we make use of the charge conjugation matrix C= iy?y° with

the property

Applied to the Feynman propagator at finite temperature and density, this transformation yields

CSp(k.pop)C™" = (KCy,C™" + m)Gr(k.p.u) = (—KyL + m)Gp(k. . )

Now, inserting multiple factors of C~'C into the exchanged diagram M, we get

4

d*k i s A s aia
M,(B, 1) —/<2ﬂ)4Tr{C 'Cy,, C'CSp(k = p1.p.u)C7' Cy,,CT' CSp(k — py — pa. o) - -

x C'Cy,, C' CSp(k, p, 1)}
Using the properties (9.3) and (9.4), we can then write

d*k

My(Bor) = (~1)" / R ey Se(—k 4 pro o),

(27)*
&k

= (_l)n/—Tr{SF(_k’ﬁ’ _ﬂ)yﬂ” T SF(_k +p1+ p2’ﬁ7 —,Ll)}/”ZSF(—k + pl’/}’ _ﬂ>yﬂ1}T‘

(27)*

Applying the change of variable k — —k in the integral, we arrive to

Cr,.C™' =~ (9.3)
= (=K'yi +m)Gp(=k, B, —p) = Sp(=k,p,—p)". (9.4)
9.5)
Sp(=k+ pi+ po. Bo =) -1y, Se(=k, p, =)'}
(9.6)
My(B.p) = (=1)"M (B, —p). (9.7)
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For an odd number n of vertices, this condition reduces to
Furry’s theorem for any value of the temperature when
u=0,

M (B =0) =M, (p,0) =M, (p,0)=0.  (9.8)
However, in general the sum of the two diagrams M, will
not vanish:

Mtot(ﬁ’/") :Ma(ﬁvﬂ)_Ma(ﬂ’ _ﬂ)' (99)
The presence of a chemical potential manifestly breaks
charge conjugation invariance and leads to the appearance
of new processes in a perturbative expansion. Note that
there is still a case where p # 0 and Furry’s theorem is
satisfied. Indeed, in the limit § — O (infinite temperature)
the fermion propagator (3.64) does not depend on the value
of the chemical potential and therefore M, = 0.
Using this result, we can address the extension of the

analysis of the previous sections to more general correlators
built with left- and right-handed currents

Jo=wir've, Jr = YR Wr- (9.10)
The propagator of a chiral fermion is modified by the
inclusion of the chiral projector as

SL,R _ /d4ke—ik(x’—x)PL‘R
koo
X |+ 2imd(k)0(k - )0~ k)| (9.11)

where we introduce two different chemical potentials p;
and pp for the chiral modes. We are going to analyze this
point, which requires a careful look at the role of Furry’s
theorem at finite temperature and density.

Consider the correlator A; = (J;J;J;) 4, that we
expand using J;, =% (V — A), where we denote with V
the vector part of the chiral J; interaction, and A the
corresponding axial-vector part. In the perturbative reali-
zation of the diagram we insert three chiral projectors at
each vertex, reducing the computation to the former AVV
one as

AL =((V=A)V-A)(V-A)),. (9.12)

0| —

In this expression we will be using the propagator in the
form given by (9.11) with g = p;. Expanding on the
components of (9.12) we obtain

A, = é(<vvv> — (VVA) = (VAV) = (AVV) + (VAA)

+ (AVA) + (AAV) — (AAA)). (9.13)

The relation between the (AAA) interactions, as well as the
(AAV) ones, with the (AVV) and the (VVV) are easily
worked out in the form

(Vvv),, == ((AAV) + (AVA) + (VAA)), .

W] =

(AAA), == ((VVA) + (VAV) + (AVV)), .  (9.14)

[OSTIE

One may reexpress the result in terms of the only
contribution for A;  in the forms of (AAA) and (VVV)
in the form

ALE

((VVV) = (AAA)), . (9.15)

N[ =

Proceeding in a similar manner for right-handed fermions,
we obtain

Ap =5 ((VVV) + (AAA)), . (9.16)

N[ =

We now introduce a symmetric notation for the external
momenta (py, p,, p3), all of them off-shell. By symmetries,
the AAA diagram can be organized in the form

1 1, 2
<AAA>,’3‘AZ’13 _n (p_lzellthpzm +p_22€}~1/13171!’3 _|_p_32€/1112171172>
3\ pi D3 r3

2223
+A7

(. p1.P3.P3): (9.17)
with A';Mm transverse in p;, p,, p3. The three anomaly
poles distribute the anomaly equally across the three axial-
vector vertices. Equation (9.17) is a natural consequences
of (9.14), since each permutation of the (AVV) in (9.14) is
characterized by a p-independent longitudinal sector in the
axial-vector channel. By symmetry, the result can be
extended to the (AAA) case.

Similarly, recalling Egs. (9.15) and (9.16), one can verify
that the longitudinal sector of A; and Ay is u-independent,

A A A3
A = _& (p_leﬂz/kmm _|_p_22€/1|/1317|l73 _|_p_32€ﬂ|/1217|ﬂz>

6 \pi P P3
+ AL,T(luLv p%7 p%a p%)v
a, (P} Py Py
Ag = gn <_12 eMAa3p2ps + _22611/13171.03 + _3261112.01172)
P1 P2 P3

+ Ag 7 (ug. P}, P3. P3) (9.18)

with A, 7 and A 7 transverse in py, p,, ps.

X. COMMENTS

A distinct disparity exists between the asymptotic state
associated with a chiral anomaly interaction, the axion, and
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its perturbative description. The former is characterized by
a direct (local) coupling denoted as @ FF, representing the
interaction between the pseudoscalar (asymptotic) degree
of freedom (¢) and photons. The coupling of the axion field
occurs through the divergence of the axial-vector current
(pdJs) (see Ref. [78] for recent developments). Generally,
an asymptotic axion is conceptualized as an elementary
state, although composite models have also been formu-
lated. In contrast, the perturbative description of this
interaction assumes a nonlocal form. It arises in the
perturbative analysis of a chiral anomaly diagram in
momentum space, wherein the interaction is defined by
the exchange of a massless pole. In this context, interpret-
ing this state as the topological response of a physical
system to an external chiral perturbation, essentially a
quasiparticle, is quite natural.

While the anomaly vertex remains identical in both
descriptions from a perturbative standpoint, stemming from
an explicit symmetry breaking of a global symmetry, the
two descriptions exhibit partial overlap. An ordinary axion
is an asymptotic state whose decay into photons is sup-
pressed by a large coupling constant (f,) and whose
dynamics is linked with the nonperturbative vacuum of a
non-Abelian gauge theory, such as QCD. Its mass is
generated by a periodic instanton potential at the hadronic
scale, thereby linking two separate scales.

On the other end, as mentioned in the Introduction, the
chiral anomaly interaction in a topological material, from a
relativistic perspective, can be classified only as an analog
one. The effective action, in both cases, can be articulated
by incorporating both a local and a nonlocal operator, yet
the underlying physical manifestations remain distinctive
for each scenario. For instance, in the context of a
topological material, the interpolating state is naturally
perceived as nonelementary, with a pseudoparticle inter-
pretation. This is the description that we have investigated
in this work, by resorting to a complete perturbative
analysis of the chiral anomaly interaction.

XI. CONCLUSIONS

In this work we have classified all the tensor structures
that are part of the interaction and provided a direct
perturbative identification of its corresponding form fac-
tors. The parametrization that we have presented is min-
imal, since we have kept into account all the symmetries
and the Ward identities that are part of its definition. We
have shown that the on-shell vertex, where the photons are
physical, reduces to a massless anomaly pole even at finite
density, similar to the ordinary AVV at zero density.

In the off-shell case, the longitudinal part of the vertex is
not modified by the chemical potential, while the transverse
part is. Therefore, from the perspective of the 1PI effective
action, our main conclusion is that such an action acquires a
form identical to (2.2) in the on-shell case, even at finite
density. Nonlocal actions of such type cover, at least in the

vacuum case, all the chiral and conformal anomaly inter-
actions, thereby characterizing a unique trend.

The current result is therefore in line with a previous
analysis of other important correlators in the vacuum, such as
the J5TT, responsible for the generation of the gravitational
chiral anomaly. A complete nonperturbative analysis, based
on the solution of the trace Ward identity by the inclusion of a
1/ “anomaly pole” in the trace part of this correlator, allows
the reconstruction of its entire effective action, by solving the
related conformal Ward identities [46,52].

The interpolating states emerging in the conformal case
are similar. The related 1PI vertex, in this other case, is the
TJJ, with one graviton and two photons. For instance, in
this vertex, a scalar dilaton field couples to F'F, generating
a dilatonlike intermediate pseudoparticle. This interaction
can be reproduced, in an analog setting, by subjecting a
topological material to a thermal gradient, using Luttinger’s
relation [54], where gravitational interactions are related to
thermal fluctuations.

From the theoretical perspective, in recent years, it has
become increasingly evident that chiral anomalies, asso-
ciated with the breaking of classical global symmetries by
quantum corrections, play a crucial role in the dynamics of
fundamental interactions, not only in the vacuum (u = 0)
case, but also in the presence of chiral chemical potentials,
as shown in the case of the chiral magnetic effect. The
possibility of performing experimental tests of these
interactions that could identify the nature of the pseudo-
particle emerging from the virtual corrections, as predicted
by the current and previous analyses [79-82] should be
taken very seriously at the experimental level. We have
pointed out that this behavior is directly related to con-
formal symmetry. Along this line, one could envision
possible tests of chirally odd trace anomalies in table-top
experiments, in analog gravitational setups involving topo-
logical materials. For instance, one unanswered question is
if gravity may be the source of CP violation at a non-
perturbative level, a point that is undergoing a new debate.
Analog gravitational systems could play an extraordinary
role in settling the recent debate concerning such anomalies
from the experimental viewpoint [83—-89] and offer also an
avenue for even more exotic realizations, by investigating
the conformal behavior of analog correlators [90] in gravity
in general, and in particular in de Sitter space, in an
engaging correspondence with recent analysis [91-93].
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APPENDIX A: SUMMARY ON THE
TENSORIAL DECOMPOSITIONS

The original tensor structures are 60 and have been
introduced in Eq. (4.2). Then we impose the Schouten
identities as in Eq. (4.6) and also on the tensorial structures
reported in (4.8). In total we impose 32 Schouten identities
that bring the number of structures down to 28 as in (4.9)

Schouten Identities:
60 — 28.

The second step consists in imposing the Bose simmetry on
the external photons. The starting point is the 28 form
factor in (4.10). We request that under {py,u} <> {p,,v},
[ is invariant, obtaining

Bose symmetry:
28 — 16.

The third step is given by imposing the vectorial Ward
identities. In fact, imposing (4.14) and (4.15) we obtain
(4.16), so the scheme for this third step is

Vectorial Wls:
16 — 10.

When we impose the symmetry constraints, namely
pLn=pyn=p-, (A1)

pi=p3=p* (A2)

we get further reductions on the number of form factors.
The reduction by Schouten identities remains the same, so
the difference in the number of final form factors is
generated by the other two steps, i.e., the Bose symmetry
constraint and the vectorial WIs constraint. In fact, as we
can see in (5.2), the reduction in form factors is obtained by
imposing

Bose symmetry:
28 — 12,

and using the set of equations (5.5)

Vectorial Wls:
12 - 7.

This reduction process generates (5.6).

APPENDIX B: STRUCTURES

We list the tensor structures that appear in the expansion of the AVV vertex. They are

e ,
piletran,
n'errin,
poetrip
,7;46/11/172'7’
pzveﬂﬂmr/,
piipLetrip,
,7/1p21/€lll71172'7’
pl’lpll‘e”’lf’z”,
”ipzﬂevpmzn,
plf‘plbe’lplpz”,

v A
]/[ p2ﬂ€ p]p2'7’

ell;wpz’
pzieﬂvm P2,
;/]/15!”/!’2’7’
pzﬂg’wpl’]’
plveﬂﬂpmz’
pzveﬂﬂﬂzn,

1Y poletPipa,
' p, etPipa,
it pyterripa,
0t piterPipa,
plﬂpzveiplpzn’

N preripa,

6,&/41/;77
pzieﬂvpm’
piletrip
pzﬂeivpzm
p]veiupm,
nvelﬂmpz,

0 perripa,
1 pyetPipan,
nﬂplﬂevmpzn’
nupzievmpzn’
n”plﬂe/lplpzﬂ’

A
;/Iﬂpzl/e P1P2'7’
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piletripy
pzieﬂvpzn,
piietr,
nretripe
plvgﬂupzm
,71/631417171,
plﬂpzveﬂmpzﬂ,
;71,71/6#1711727/’
pitpoterripa,
”ﬂ”ﬂgvmpzn,
plvpzﬂelplpzn’

nﬂiflyelplpﬂ']’

p 1/1€/wpm’
n'ervPiP2
plﬂgivpzn,
;/]ﬂg'll’plr/’
pzvgﬂum P2,
;/]l/ellﬂﬂzﬂ’

Dot prretPipl,
SWenripan
pzipzﬂevmpzn’
SHevr pan
pzﬂp2’/€3171172’77

S etpipan, (B1)
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APPENDIX C: BOSE SYMMETRY AND WARD IDENTITY

Imposing the Bose symmetry, we find the following set of relations between the form factors in the expansion:

By(p1, p2:11) = =By (P2, P15 1), B3(pa, p1:1) = =B3(p1, p2: 1),

By3(p1. p2.n) = —B7(p2. p1.1). Byy(p1. p2.1m) = Bo(pa. p1.1),

Bis(p1. pa.n) = Bg(pa, p1.1). Bis(p1, P2.n) = —Ba(pa. P1.1),

By7(p1. p2.1) = Bs(P2. p1.1). Big(p1. p2.n) = Bs(pa. p1.1).

Byg(p1, p2.n) = =Bio(p2. P1.n).  Bao(p1, p2.n) = Bia(pa. Prom),

By (p1, p2.n) = Bu(pa. P1.1), By(pa, pr.n) = =By (p1. pa.n),

Bys(p1, p2:m) = —By(p2. p1.1)s Bas(p1> P2:1) = —Bau(p2. P1.1)s

By7(pa, p1.m) = =By (p1s p2.1)s Bog(pa, p1.1m) = —Bys(p1. p2.1) (C1)

that reduce their number to 16.
Further simplifications are introduced by requiring that the interaction satisfies the vector Ward identities. These give the
relations

Bi(p2, p1:1) = =p1*Ba(p1, p2on) = (P1 - P2)B7(p1s p2om) = (- p1)Bio(p1, p2s i),
B3(p1, p2:i) = —p1>P2*Bas(p2, pion) + (p1 - p2)Bs(p1s p2sn) + pi*(p1 - p2)Boa(pis p2n)
+p12(1 p2)Baa(pr. P2s1) = 2> (- p1)Baa(pa. prom) = (1 p1) (1 p2)Byr(Pa. P1o1),
Bs(pa, p1:1) = —=p1*Bas(p1, p2sn) 4 (p1 - p2)Boa(p2s p1n) + (1 p1)Bas(p2s p1s),
Bi1(p2, p1:1) = =p1*Baa(py, p2on) = (1 p1)Bar (1, pas ),

2
1" Bs(p1.p2,m)  (p1 - p2)Bo(pi, pasn)
B12<P1,P2,’7) =- 1 e 1 )
n-pi n-pi

Bog(p1.p2.n) = —p1*Bou(pi. pa.n) — Bg(pa. p1.1). (C2)

APPENDIX D: SCALAR INTEGRALS: ON-SHELL CASE

In this appendix we provide some details concerning the analysis of all the integrals that appear in (7.15). The procedure
is based on the factorization of the radial and angular integrals in dimensional regularization. As explained in the main
sections, we indicate by “0” the finite density contribution coming from the insertion of the finite density part of each
propagator in a given internal leg of the loop. “f” stands for the ordinary propagator. The resulting final integrals will be
written using the following basic integrals:

Olf () = 2 [ -y RF(KD = [l FOKD: DI
[f()]_l“[d/z—l/z]/_l f()(1 = 17)4=72, £ |)]—A Ik[f(k|); (D1)

JIp1 k| = H[p, - k]

(8.1.f) ] ! |k|d_3
WARE [P1 'k] - = (zﬂ)d—l 16py | po+k ®[1L
, 1 1 1
J(fx&f)[plk]:—ws—m@[l—ﬂ]a
1 1 k|43 -1 L1 [k !
SISy . k R <R
J [pl ] ( >d116p0 |:p0+k®1+t +(2n’)d—18 po—‘rk@l—l—t,
1 pit
JOL[p, k] = (2ﬂ)d =T O[1]0(u — po); (D2)
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Hlp, - k] = J[p; - k]

11 K[ (1=t
HOS D p, - k] = R ® ,
1K = = o  1ep R oo = &) @15

1 1 1 I 1 1
~ i 19 ] - e g 0

HUSDp, k) = 1 1 Rpk'd_g]@er 1_1%R[|k|d—4}®[ 1 ]

HY5D(p, - k]) =

(2m)4" 16py | po +k (27) po+ k] Ll=1
i 1 pd_4 1—1
HS ) p, k] = (27)42 f6 © [1 + t} O = po);

J[Pl 'kkﬂ = H[Pz : kkz]

J@:1-f) [py - kk*] =0

15y ] =~ 1)“4 ko1
5 1 1 |
SO0y 2] = o R0 1 o T RIke
Hlpy %) = Jlps k] =0
J[(p1 - k)*] = H[(ps - k)?]
GLD(py - k)] = — k[ _
IOy K] = = R[po_k]@u 7

16

1 k|“2] [(1=-1)? L po [Ik[“P] [1-1¢
(f.f.0) k)2 = —R 2R
/ ((p1- k)] (2r)4-116 [po—i—k © 1+t +(2n’)d_l 4 |pot+k © 1+t
1 pg o[ k[ 1
2OR e|—I,
+(2n)d-‘ 4 |:p0+k 1+1

(6.5.8) 2 L pg?
JOIO(py - k) ]:WTG[I —1]0(u = po);

J[Pl'kpz‘k]:H[Pl‘kpz'k]

1 k|42
JOLD[py - kpy - k] = ~ 216 RL'DO'_ k]®[1+t],

11 1 p ) 1
JUSN[py - kpy - k) = Rk R[|k|*7]O(1] —WZORHM’J ‘e [H—J

L1 L po [KI]T
£ py - kp,y - k ek Ol —1 Z2R 0|—
S0Py -kp2 K = 55T 76 [po—l-k i e ol Frd el g

L 1
—R C) .
* (2z)4-1 4 [po +k| |1+t

(6.1.) 1L pg?
JOLpy - kpy - k| = (20)72 ?9[1]9@ - Po);
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H[(p 'k)z] =J[(p2- k)z]

o K[
HOID[(py - k)] = — Qﬂd]ERLO_4®{1+I}
5 2 — ;l el _ 1 Po el L)1 n - !
HI (7)== e RIKEI0 [ 4| = o Do RIpt0 | = e T Rkl 1.
o 1Tk L py [ K[ L[k
I k7] = _6R e H1O0 =1 G e O G B e )
6L (. . k)2 Lpi2g[=01,
H [(pl k)] (27[)d2 16 C) 1+1 0(” pO)- (D7)

(6,8, f) integrals are identically zero, since the two deltas can be written as

5(1 —cos )

OU)O((k = p1)?) = 6(k*)6(=2k - p1) = 6(k)A(=2[k|po(1 = cos0)) = (k) = -

(D8)

The second delta applied on the dimensional regularization factor (1 — ¢2)4/>=2 yields zero, making the whole integral
vanish. A similar argument can be made for §(k?)5((k — p,)?), which will be transformed into

8(1 + cos0)
5(k*)6((k— p = 6(k?) ——mi—2 D9
(2)o((k = p2)?) = 8(4) = 5> (D9)
and for (f, 8, 5) integrals as well, since after a translation k — k + ¢ can be transformed into
(1 —cos@
3((k = )0k = p?) = 8k = P )a(lk-+ p)7) = 800K py) = (87) P2 (D10)
(6,6, 8) integrals obviously vanish.
1. d — 4 expansions
a. Angular integrals
rG-1
0l1] dj2-1_ 2" 4,
MY’
O] =0,
Ol +1 =0[1 -1 = 06[1],
1] ! r¢-2) 4
O|—| =0|—| = z4/*! 2 2(y — 2+ 2log(16 o(d-4),
[1+z_ _1-;} P TE e T a-4 " (y =2 +2log(16)) + 0(d - 4)
1—1] 1+1¢ rE-1) 8
— | = = (d=2)gY* 122 4(y — 3 + log(1 —4
[H,_ ®_1—J (d-2)x 2F(%)2_)d—4+ (y =3 +log(167)) + O(d — 4),
(=07 _o[0+07] _ g TE=1) 16
=0|———| = 42y — 7+ 2log(1 d—4
6[1—4—1‘_ MEETE R & T d-a (27 =7+ 2log(167)) + O(d - 4),
1] rE¢-2) 4
= /-1 2 2(y —2+2log(16 0o(d—4). D11
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b. Radial integrals

(k2] n p k[ p u
R — = (u—2pgy) + pilog (1 +— |, R — —=(u+2py) —pilog (1 -],
LPo + k] 2( 0) 0 Do | Po — k| 2( o) = Po Do
r kd—3' 'kd—S“
R K] —>,u—polog<1+'u>, R K| —>—/,4—p010g<1—'u>,
|Po + k] Po |Po — k] Po
r kd—4' r kd—4'
RL —>log<l+i), RL e—log(l—i)
LPo + k] Do |Po — k] Do
3 2
R[|k|*2) -2 R[k|*?) - £
[[é-2] = £ Kjo=5] 2
1
R[[k|*] = p, R[|k|4] *m+10gﬂ+0(d—4)-

APPENDIX E: RADIAL INTEGRALS: OFF-SHELL SYMMETRIC CASE

In the following we will analyze all the integrals that appears in (7.15). Here we introduce y. defined as

Po
x —\/pQ—MZ(ij:cos€>|p|< j:cos@)
. 0 NEE G pl

The procedure is based on factorizing radial and angular integrals and solve only the angular ones. H[p, - k]

dcos@—
Po— |k|/

2p; M? 1
HU5.0) k—i/dkk/d 0
P K== Ik [ deos 0 (2 = 21kl )

1
HOID[py k] = —— ‘

8po Jo

+1/”d|k||k|2/ldc059 £
2Jo -1 (M + 2|k, ) (M? = 2[k[y)’

k2

1 H X-
HY IO [p, -k ——/ dlk dcos@—
PR =g dy M e k1L O 2l
Po [* k| 1
+ =0 d dc 56’—;
4 Jo M por L )
J(py - kk?]
JOLN[p, - kk*] =0
d|k| |k\ M2+Iklx-
JESH [ - k2] = / !
[Pl ] 2|k|;(_
-, dk| |k 1 2p? k
J(j,j,é)[pl kK] = /” |_|2u dCOSHI;()+—|IX_;
o (27)* 2 ) M* +2[k|y
J[ps - kK]

J@.1.f) [p, - kk?] =0,

o cdlk| k| [1 2p2 — M? + |k
](f*é*f>[p2-kk2]—/}|—|2|— dcos® Po > + | IX—’
o (27)° 2 Jo M =2[kly
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dk| [k 2 k
J(f’f’&)[]?z . ka] _ /” | | | | pO + |kl . (E12)
+2[kly.
J(p1 'k)z]
1 [rdk| |k [ X
JELN(py - k)? / dcos—2——— E13
[(p1-k)*] = 800 Jo (27)2 po— K| ) M? = 2|k|y_ (E13)
dk| k| /1 (M* + [k|y-)?
JU8.) 2k)?) = /” —/ dcosf , El4
e BT= ) G2 L e 2k (M - 2kl Y
1 [rdk| [K| ! (2pg + klr-)
JUf9) - k)2 :_/ deos -0 — 2= EI5
[(p1 - k)] 800 Jo (27)2 po+ K| /i M? +2|kly, (E13)
J[Pl ~kpy - k]
- 1 [rdk| |k ! XX
JOSNp - kps -k :_/ dcos@—22r El6
[pl b2 ] 8po Jo (2”)2P0—|k| -1 M2_2|k|)(— ( )
. u dk| |k M2+k 2p3 —M?* + |k
J(f’é'f)[Pl'kp2~k]:/ | || | M2| |2)rk)( Po = M+ |kly.), (E17)
+ 2[kly_)(M° = 2[K|yy)
- 1 k k 1 2p2 + |k 2p2 + |k
J(fﬁf-‘s)[pl.kpz.k]_—/ﬂ d| |2 K| deosg 2P0t l)(‘)( Pot| |)(+); (E18)
8p0Jo (27)° po + k| ./ M* +2[kly,
J[(p2 - k)]
JOID(py - k)] :L/” L LR < S (E19)
8poJo (27)? po — |K| /- M? = 2|kly_’
JUSD(py - k)] = /" d|k| |k| 21’% M2+|k|)(+)2 (E20)
2 b
+2[k|y ) (M* = 2[klr,)
1 k| |k I 2p3 + |Klry)?
JULI(py - k)?] :—/ﬂ q |2 K] dcosGM. (E21)
8p0.Jo (27)° po + |Kk[ /- M? + 2[kly,
APPENDIX F: ANGULAR INTEGRALS FOR p2 #0
H[Pl 'k]
1 2(|p| + log(:2&2) p
/ dcos %= = — (Pl + log(Gpiz) 0), (F1)
—1 X+ p|
(2[k|([p|=po)+M*)(2[k|(po—|p|)+M?)
[ dcoso ! S — (F2)
. (M? +2|kly, ) (M? = 2[kly_) 81k |*[p[po
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8|k|3|P|Po
2 —1¢_ 2[k]lp|
(2|k|po + M*) tanh (2\k\p0+M2) )
8|k[*Ip|po ’
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APPENDIX G: VECTORIAL WARD IDENTITIES

In this appendix we will analyze the vectorial Ward identities (WIs), which must be verified so that the gauge field is
preserved and the theory is consistent. We can consider the contraction with the p;, photonic leg

pl/,tr%ﬂy(plv szﬁ)

=Pu / d*KTe[y ky'y> (k = )y (k = B1))(Go(k) + G(k))(Go(k = q) + G(k = q))(Go(k — p1) + G(k = p1))

+ P / d*KTrly*ky'y> (k = f)r* (k = $2))(Go(k) + G(K))(Go(k = q) + G(k = q))(Go(k = p2) + G(k = ps)).  (G1)

The algebra that we will use in order to give a full computation is quite straightforward; in fact, passing p; in the trace, we
can write in the first integral p; — —(k — p;) + k and in the second one p; - —(k—¢) + (kK — p,):
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plﬂl—%’w(plv pZ’ﬁ)

— [ @i = 710k = )2 Go(K) + GO Golk = ) + Glk = ) Golk = pi) + Gk = p)
+ [ KT = (k= OG0 + G Golk ) + Glk = @) (Golk = pr) + Gl = 1)
- [ @iy = ANk = 0 (Golk) + GO (Golk = ) + Glk = a))(Golk = ps) + Gk = p)
+ [ ERT R = )K= p2P(Goll) + G Golk =) + Glk = @) (Golk = p2) + Glk = p2)). (D)
Taking into account only 15 cases, we have
Pyl (p1. pa. B) = — / d*KTrlky' > (k = f)r*)(Go (k)G (k = q) + G(k)Go(k - q))
+ [ Tl | = (= PGk = )Gk = p1) + Gk = )Golk = 1)
= [ @ty (= ) (GolkIG K = pa) + GGk = p2)
+ [ T (= DIGolk = )GK) + Gk = )Go(K). (G3)

The first and the fourth integrals cancel each other. Through a shift of the variable of integration, namely k — k — p;, we
have also that the third integral cancels out the second one. We can observe that the contributions with two §’s are trivially
null when we consider the vectorial WIs. A shift is always allowed in the hot part of the AVV diagram because the integrals

are not linearly divergent as in the cold part, in fact,

ri~ [ akee
0

with a > 0.
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