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For the spatial discretization of elliptic and parabolic partial differential equations (PDEs), 
we provide a Matrix-Oriented formulation of the classical Finite Element Method, called 
MO-FEM, of arbitrary order k ∈ N . On a quite general class of 2D domains, namely 
separable domains, and even on special surfaces, the discrete problem is then reformulated 
as a multiterm Sylvester matrix equation where the additional terms account for the 
geometric contribution of the domain shape. By considering the IMEX Euler method for 
the PDE time discretization, we obtain a sequence of these equations. To solve each 
multiterm Sylvester equation, we apply the matrix-oriented form of the Preconditioned 
Conjugate Gradient (MO-PCG) method with a matrix-oriented preconditioner that captures 
the spectral properties of the Sylvester operator. Solving the Poisson problem and the heat 
equation on some separable domains by MO-FEM-PCG, we show a gain in computational 
time and memory occupation wrt the classical vector PCG with same preconditioning or 
wrt a LU based direct method. As an application, we show the advantages of the MO-FEM-
PCG to approximate Turing patterns on some separable domains and cylindrical surfaces 
for a morphochemical reaction-diffusion PDE system for battery modelling.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

We are interested in the discretisation of parabolic PDEs of the form

ut −L(u) = f (u, x, t), (x, t) ∈ � × [0, T ], (1)

where � ⊂R2 is a compact domain, and −L(u) is a linear second-order elliptic differential operator, and f is a sufficiently 
smooth reaction term, for instance C1 in all variables. Problem (1) is endowed with either Dirichlet or Neumann boundary 
conditions and suitable initial conditions. The relevance of the PDE problem (1) is well-known, as it finds numerous appli-
cations across all fields of science. In particular, we are interested in the case of parabolic reaction-diffusion systems (RDSs) 
where u(x, t), f ∈Rm, m ≥ 2 because they are the playground of Turing’s theory of morphogenesis [45] which encompasses 
extremely diverse applications. Among them we recall: biological patterning [2,19], developmental biology [32], predator-
prey systems [15], biomembrane modelling [13,18], tumour growth [8], metal dealloying [12], financial risk management 
[4], oscillating chemical reactions [46] and the recent applications to metal growth by electrodeposition [5,30] which we 
will consider in the present work. We focus on the approximation of Turing patterns, because, from a computational point 
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of view, this is a challenging task since fine meshes are required in space to capture the morphological class of the pattern 
itself (spots, labyrinths, etc) that must be attained as steady state of the PDE dynamics for long time of integration [9].

Among the existing methods for the spatial discretisation of (1) we mention finite differences [25], finite elements [24], 
spectral methods [8], kernel methods [26] and many more. The time-dependent problem (1) is commonly treated with the 
so-called method of lines (MOL), which consists of discretising the spatial variables with a spatial method of choice, thereby 
producing a continuous-in-time ODE system. Hence, in a general setting including several spatial methods, the resulting 
spatially discrete problem (for the single equation m = 1 in (1)) takes the form of the following ODE system in vector form

M ż + Au z = b(z, t), z(0) = z0, t ∈ [0, T ], (2)

with the vector z = z(t) ∈ Rd (where d ∈ N is the dimension of the discrete spatial function space) containing the 
time-dependent coefficients of the expansion of u, the matrix Au approximating the operator −L(u), the vector b(t) ap-
proximating the right-hand-side of (1), and the matrix M depends on the spatial methods (e.g. the identity matrix for finite 
differences, mass matrix for finite elements).

The main computational challenge for the solution of (2) is dimensionality. If the discrete function space has dimension 
d, then z ∈Rd and the matrices Au, M are of size d × d. This work explores the case where such matrices possess a general 
Kronecker structure with n ∈N and m terms respectively, e.g.

Au =
n∑

i=1

Ri ⊗ Li, M =
m∑

i=1

Pi ⊗ Q i, (3)

with ⊗ denoting the Kronecker product and Ri, Li, Pi, Q i being matrices of lower dimension, e.g. 
√

d × √
d, see for instance 

[9,22,33,36,38,41]. In such cases, by considering the matrix U ∈ R
√

d×√
d such that vec(U ) = z, we have

Au z = vec

(
n∑

i=1

Li U RT
i

)
, M ż = vec

(
m∑

i=1

Q i U̇ P T
i

)
, (4)

see [36], and the problem (2) can be reformulated as the following linear matrix ODE equation

m∑
i=1

Q i U̇ P T
i +

n∑
i=1

Li U RT
i = B(U , t), (5)

where B(U , t) is such that vec(B(U , t)) = b(z, t). Problem (5) is called a multiterm differential Sylvester equation, see [44]. 
After time discretisation on the grid tn = nht , n = 0, . . . , NT :=

⌈
T
ht

⌉
, for example by a one-step solver, at each timestep an 

algebraic multiterm Sylvester equation (with p terms, for suitable p ≥ 2) must be solved:

p∑
i=1

Si Un+1T T
i = Fn, (6)

where Un+1 ≈ U (tn+1), Si, Ti are suitable matrices depending on the coefficient matrices Q i, Pi, Li, Ri in (4) and Fn is a 
matrix including all terms from the previous timestep. In this paper, we will show that the number of terms p is related to 
the shape of the spatial domain � and on the differential operator L in (1). In this work, for time discretisation we choose 
the Implicit-Explicit (IMEX) Euler because it is the simplest solver particularly effective in the simulation of Turing patterns 
(see e.g. [19,30]) and already applied in matrix form on square domains in [9]. However, we point out that more general 
and higher order time solvers can be applied. We will not face this aspect here, since we are mainly concerned with space 
discretization on domains as general as possible.

The solution of multiterm algebraic Sylvester equations of the type (6) is mostly uncharted territory. The vast majority 
of methods available for such matrix equations are iterative methods that rely on low rank approximations [43,44] which, 
however, are not suitable for the simulation of high-rank solutions such as Turing patterns. A special case of (6) worth 
mentioning is the two-term case p = 2, when (6) specialises to a generalised Sylvester equation

S1Un+1T T
1 + S2Un+1T T

2 = Fn, (7)

that can be attained for instance when � is rectangular, see e.g. [9]. For the special form (7) multiple closed-form algorithms 
are available, such as the Bartels-Stewart algorithm [3] or its improvement proposed by Golub and others [21]. If Li, Ri in 
(5) further fulfil suitable assumptions, even more efficient closed-form algorithms based on spectral decomposition are 
available, see for instance [9], as we will also discuss in the next sections.

Matrix-oriented (MO) formulations of spatial methods for PDEs were successfully carried out in some notable cases. 
Elliptic problems on rectangular or parallelepipedal domains were discretised via MO finite differences in [36]. The approach 
was then extended to more general, but still polygonal domains, see [22]. Stochastic elliptic PDEs were approximated with a 
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MO Galerkin method in [38]. MO isogeometric analysis was successfully applied to elliptic problems, see [1,33,41], where, on 
quite general domains defined through splines or NURBS, a Sylvester form can be achieved with low-rank approximations, 
see [33]. The work in [9] addresses time-dependent problems including RDSs on rectangular domains, solved via MO finite 
differences. A MO space-time method is proposed in [35] for parabolic problems and in [23] for the wave equation.

In the present work, we consider elliptic and parabolic PDE problems such as the Laplace equation, the semilinear heat 
equation (1), and parabolic RDSs, posed on a class of two-dimensional spatial domains � called separable domains. For such 
PDE problems we propose a MO Finite Element Method (FEM) for the spatial discretisation, that we will define as MO-FEM. 
The proposed framework advances the existing theory on MO spatial discretisation of PDEs in several directions, as listed 
below.

1) To the best of the author’s knowledge, here we provide the first MO formulation of FEM for elliptic and parabolic PDEs. 
The proposed theory is general and applies to a large class of basis functions, such as Lagrangian Pk basis functions, 
k ∈ N , thereby covering arbitrarily high-order convergence in space. Special focus is given to the practical special case 
of lumped P1 FEM.

2) Thanks to a suitable coordinate transformation, the proposed approach applies to domains more general than rect-
angles, namely separable domains. To the best of the authors’ knowledge, our work is the first applications of a MO 
method to curvilinear domains without needing low rank approximations. This property is crucial in the numerical ap-
proximation of Turing patterns, which are typically high rank. Moreover, we can solve PDEs in MO form also on special 
surfaces, namely cylinders with curvilinear bases. In fact, a subclass of separable domains, namely normal domains can 
be wrapped around a cylinder. Elliptic PDEs on structured surfaces were considered for instance in [14,37], but the 
special shape of the surface was not exploited in a matrix-oriented fashion.

3) In all cases, the discrete problem takes the form of a p-terms Sylvester equation, where the additional terms for p > 2
account for domain shape different from rectangles. In this case, for the numerical approximation of general multiterm 
Sylvester equations, we propose an iterative method: a MO Preconditioned Conjugate Gradient method (MO-PCG). We 
prove that it always converges for the considered PDE problems, because the involved differential operators are coercive 
and self-adjoint, see [40, Section 6.7]. We also show theoretically that the MO-PCG strongly surpasses its classical 
vector counterpart in terms of memory storage and, for sufficiently high FEM polynomial order k (depending on the 
PDE problem) there is also an advantage in computational cost.

4) We provide numerical experiments that demonstrate (i) optimal spatial convergence (for the Poisson problem) and (ii) 
a significant gain in terms of memory storage and execution time for MO-PCG compared to the standard vector PCG 
and to the LU based direct method. We exploit this feature to face with numerical challenges in the accurate simulation 
of Turing patterns, obtained as asymptotic solutions of RDSs. In particular, here we solve the morphochemical reaction-
diffusion PDE system for battery modelling (see e.g. [30]) on some separable domains with curvilinear boundaries.

The work is structured as follows. In Section 2, we state our model problem on a general separable domain and we show, 
through a reparametrisation onto a reference square domain, that the discrete differential operator possesses a multiterm 
Kronecker decomposition. In Section 3, we present the MO-PCG strategy to solve the discrete problem. In Section 4, we 
show three numerical examples to illustrate our findings on the Poisson problem and the heat equation, in Section 5 we 
will apply the MO-FEM approach for the approximation of Turing patterns. In the Appendix, we theoretically analyze the 
MO-PCG performances in terms of memory and computational cost.

2. Model and its FEM discretisation

We consider the model problem{
v̇ − ∇ · (D∇v) = f (v, x, t), x = (x, y) ∈ �S , t ∈ [0, T ];
v = 0 or (D∇v) · n(x) = 0, x ∈ ∂�S , t ∈ [0, T ] (8)

where �S ⊂ R2 is a compact domain as general as possible as discussed later, D = {dij} ∈ R2×2 is a symmetric positive 
definite diffusivity matrix, n is the outward unit normal vector on ∂�S , and T > 0 is the final time. For ease of presentation, 
we show the derivation for the case of homogeneous boundary conditions, of Dirichlet or Neumann type. As discussed 
later in Remark 1 (Section 3), the proposed methodology still applies for general non-homogeneous Dirichlet or Neumann 
boundary conditions. In order to derive a MO-FEM discretisation of the model (8), we start by parameterising such model 
onto the square � := [0, 1]2, see [22].

2.1. Parameterisation onto the reference domain

Assume that there exists a smooth mapping G : � → �S , (ξ, η) �→ (x(ξ, η), y(ξ, η)), where � = [0, 1]2 is the unit square. 
Let J be the Jacobian determinant of G. As shown in [27], the problem (8) can be rephrased as{

J (z)u̇ − ∇ · (E(z)∇u) = J (z)g(u, z, t), z = (ξ,η) ∈ �, t ∈ [0, T ];
u = 0 or (E(z)∇u) · n(z) = 0, z ∈ ∂�, t ∈ [0, T ], (9)
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where u := v ◦ G, g(u, z, t) := f (u, G(z), t) and E : � → R2×2 is a symmetric matrix-valued function whose entries are 
defined by

e11(z) = d11 y2
η(z) − 2d12 yη(z)xη(z) + d22x2

η(z)

J (z)
; (10)

e12(z) = e21(z) = −
d11 yξ (z)yη(z) − d12

(
xξ (z)yη(z) + xη(z)yξ (z)

)
+ d22xξ (z)xη(z)

J (z)
; (11)

e22(z) = d11 y2
ξ (z) − 2d12 yξ (z)xξ (z) + d22x2

ξ (z)

J (z)
, (12)

where the subscripts ξ and η denote partial derivatives w.r.t. ξ and η, respectively. In particular, the boundary conditions 
(homogeneous Dirichlet or Neumann) of the model problem (8) are transformed accordingly as in (9). We remark that, in 
the more usual case when d11 = d22 =: d̃ and d12 = d21 = 0, i.e. L(u) = d̃�u, the formulas (10)-(12) reduce to

e11(z) = d̃
y2
η(z) + x2

η(z)

J (z)
; e22(z) = d̃

y2
ξ (z) + x2

ξ (z)

J (z)
(13)

e12(z) = e21(z) = −d̃
yξ (z)yη(z) + xξ (z)xη(z)

J (z)
. (14)

Now, to derive a matrix oriented FEM formulation of (9), it is key for the entries of E(z) to be finite sums of separable 
functions. To this end, we specialize G to be a separable mapping of the form{

x(ξ,η) = A(ξ)B(η),

y(ξ,η) = C(ξ)D(η),
(15)

which implies that the terms xξ (z), xη(z), yξ (z), yη(z) appearing in (10)-(12) are separable. We are thus left to ensure that 
J (z) is separable. Hence, observe that

J (ξ,η) = xξ (ξ,η)yη(ξ,η) − xη(ξ,η)yξ (ξ,η) = A′(ξ)B(η)C(ξ)D ′(η) − A(ξ)B ′(η)C ′(ξ)D(η). (16)

In order for (16) to be separable, it is sufficient to ensure, for instance, that the terms depending on ξ can be grouped, i.e. 
there exists χ ∈R such that

χ A′(ξ)C(ξ) = A(ξ)C ′(ξ). (17)

By solving the separable ODE (17) we obtain that

C(ξ) = c|A(ξ)|χ , (18)

for arbitrary c, χ ∈R. By substituting (18) into (16) we obtain the following separable form for J (ξ, η):

J (ξ,η) = c|A(ξ)|χ A′(ξ)
[

B(η)D ′(η) − χ B ′(η)D(η)
] =: σ(ξ)ζ(η). (19)

Now, since J is separable, then from (10)-(12) it follows that each entry of E can be expressed as the sum of three or four 
separable terms. We can adopt the following notation for the entries ei j of E:

eij(ξ,η) =
4−δi j∑
s=1

λs
i j(ξ)ρs

i j(η), i, j ∈ {1,2}. (20)

2.2. FEM discretisation of the parameterised problem

The weak formulation of problem (9) is: find u ∈ H∗ such that∫
�

J u̇ϕ +
∫
�

(E∇u) · ∇ϕ =
∫
�

J gϕ, (21)

for all ϕ ∈ H∗ , where H∗ = H1(�) in the presence of homogeneous Neumann boundary conditions while H∗ = H1
0(�) in 

the presence of homogeneous Dirichlet boundary conditions. The weak problem (21) is often discretised in space via the 
finite element method (FEM), see for instance [7]. Let � = ⋃

T ∈Th
T , where Th is a collection of non-overlapping triangles 

or squares covering � and let Vh be the usual Lagrangian function space on the mesh Th of given polynomial order k ∈N . 
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Furthermore, let Vh,0 = {V ∈Vh|V (x) = 0 ∀x ∈ ∂�} and let V ∗ =Vh or V ∗ =Vh,0 depending on the boundary conditions. 
Let {ϕi}d

i=1 be the usual Lagrange basis of V ∗ , where d ∈N is the dimension of V ∗ . The FEM spatially discrete formulation 
of (21) is then: find U ∈V ∗ such that∫

�

J U̇ϕ +
∫
�

(E∇U ) · ∇ϕ =
∫
�

J ghϕ, (22)

for all ϕ ∈ V ∗ , where gh ∈ Vh is the interpolant of g in the space Vh (and not V ∗ , regardless of the boundary condi-
tions). By expressing the numerical solution U in the Lagrange basis, i.e. U (z, t) = ∑d

i=1 μi(t)ϕi(z), (22) becomes: find 
μ ∈ C1([0, T ]; Rd) such that

d∑
i=1

μ̇i(t)

∫
�

Jϕiϕ j +
d∑

i=1

μi(t)

∫
�

(E∇ϕi) · ∇ϕ j =
∫
�

J ghϕ j, (23)

for all j = 1, . . . , d. The discrete problem (23) then takes the form of an ODE system:

M̃μ̇(t) + Ãμ(t) = b̃(t), (24)

where the mass matrix M̃ = (m̃i j) ∈Rd×d , the stiffness matrix Ã = (̃aij) ∈Rd×d and the load term b = (b j) ∈Rd are defined 
by

m̃i j =
∫
�

Jϕiϕ j; ãi j =
∫
�

(E∇ϕi) · ∇ϕ j; b̃ j =
∫
�

J ghϕ j, (25)

for all i, j = 1, . . . , d. The main computational issue of (24) is the curse of dimensionality. In particular, the dimension of 
the ODE system (24) is equal to the dimension d of the discrete space V ∗ and involves the matrices Ã, ̃M which are of 
size d × d. In this paper, we aim at rephrasing the vector ODE system (24) as a matrix ODE system involving much smaller 
matrices. The main idea is to use the separability property to express the FEM matrices in tensor form and apply the 
properties of the Kronecker product.

Now, in (22), J (z) and the entries of E(z) are finite sums of separable terms, and this needs to be mirrored by the basis 
functions {ϕi}d

i=1 being separable themselves, and the construction of such a separable basis is in turn made possible by the 
domain � of (22) being a square.

2.3. Square mesh and separable basis functions

On the one-dimensional reference domain: K := [0, 1], we consider the equally spaced mesh Kh with (N + 1) nodes, 
with N ∈N . For m = 0, . . . , N , we define the m-th node as ξm = m

N . Each element of Kh is of the form Em = [ξm, ξm+1] for 
some m = 0, . . . , N − 1. Let {ψi}N

i=0 be any finite element basis on the one-dimensional mesh Kh , e.g. piecewise Lagrange 
polynomials of any fixed degree k ∈ N . On � = [0, 1]2 we consider the Cartesian mesh �h with (N + 1) × (N + 1) nodes. 
For m, n = 0, . . . , N , we define the nodes zmn := (ξm, ηn) = (m

N , n
N ). Each element of �h is of the form Q mn := [ξm, ξm+1] ×

[ηn, ηn+1] for m, n = 0, . . . , N − 1. On �h we choose the tensor-product local Lagrange basis {ϕi}(N+1)2

i=1 defined as

ϕi(ξ,η) := ψ�(ξ)ψr(η), for all �, r = 0, . . . , N, (26)

where i := � + (N + 1)r + 1, meaning that every 2D basis function can be uniquely decomposed as a product of 1D basis 
functions. The choice of the tensor-product Lagrange basis into the discrete parameterised problem (22) will yield the 
desired Kronecker decomposition of the mass matrix M̃ and of the stiffness matrix Ã in (25), as described in the next 
subsection.

2.4. Kronecker decomposition of the FEM matrices

All the ingredients are ready to derive a Kronecker decomposition of the mass and stiffness matrices defined in (25). By 
substituting (10)-(12) and (26) into (25) we obtain

m̃i j =
∫
�

J (ξ,η)ϕi(ξ,η)ϕ j(ξ,η)dξdη =
1∫

0

σ(ξ)ψ�(ξ)ψm(ξ)dξ

1∫
0

ζ(η)ψr(η)ψn(η)dη; (27)

ãi j =
∫

(E(ξ,η)∇ϕi(ξ,η)) · ∇ϕ j(ξ,η)dξdη (28)
�
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=
3∑

s=1

1∫
0

ψ ′
�(ξ)ψ ′

m(ξ)λs
11(ξ)dξ

1∫
0

ψr(η)ψn(η)ρs
11(η)dη

+
4∑

s=1

1∫
0

ψ ′
�(ξ)ψm(ξ)λs

12(ξ)dξ

1∫
0

ψr(η)ψ ′
n(η)ρs

12(η)dη

+
4∑

s=1

1∫
0

ψ�(ξ)ψ ′
m(ξ)λs

21(ξ)dξ

1∫
0

ψ ′
r(η)ψn(η)ρs

21(η)dη

+
3∑

s=1

1∫
0

ψ�(ξ)ψm(ξ)λs
22(ξ)dξ

1∫
0

ψ ′
r(η)ψ ′

n(η)ρs
22(η)dη,

for all i, j = 1, . . . , (N + 1)2, where i depends on �, r and j depends on m, n as in (26). Hence, the mass matrix M̃ can be 
expressed as a single Kronecker product, while the stiffness matrix Ã can be expressed as the sum of fourteen Kronecker 
products, some of which can vanish depending on the domain shape, as we will see in the following. Specifically, we can 
rewrite (27) and (28) as

M̃ = Mη ⊗ Mξ ; Ã =
14∑

s=1

Aη
s ⊗ Aξ

s , (29)

where Mξ , Mη ∈R(N+1)×(N+1) are defined by

mξ

i j =
1∫

0

σ(ξ)ψi(ξ)ψ j(ξ)dξ, mη
i j =

1∫
0

ζ(η)ψi(η)ψ j(η)dη, (30)

for all i, j = 1, . . . , N + 1. Similarly, the entries of Aη
s and Aξ

s are defined by the univariate integrals appearing on the right 
hand side of (28). We omit the explicit definitions for ease of presentation.

2.5. Kronecker form of FEM matrices in the presence of lumping

The Kronecker forms (29) are general and encompass arbitrary choices of the FEM basis function, thereby including 
the case of Lagrangian spatial methods of any order k ∈ N . This section is devoted to the special case of Lagrangian P1
finite elements with mass and stiffness lumping, see [34]. We show that such special case significantly simplifies the matrix 
identities (29), thereby providing a counterpart of the standard FEM of low order k = 1 where the matrices Mη , Mξ , Aξ

s and 
Aη

s in (29) are easier to compute.
First, we introduce the element-wise interpolant operator, see [34]. If u : Em → R is a univariate continuous function, 

let Ih(u) ∈ P1(Em) be the unique first degree polynomial on Em = [ξm, ξm+1] such that u(ξi) = Ihu(ξi) for i ∈ {m, m + 1}. 
Analogously, if v : Q mn →R is a bivariate continuous function, let Ih v ∈P1(Em) ×P1(En) be the unique bivariate polynomial 
on Q mn that matches u on the vertexes of Q mn , i.e. u(ξi, η j) = Ih v(ξi, η j) for i, j ∈ {m, m + 1}. With slight abuse of notation, 
we have denoted the interpolant operator of both univariate and bivariate functions with the same symbol Ih . Moreover, 
we will apply Ih to functions that are defined on the whole domain rather than on a single element, in that case the 
interpolant is applied elementwise. We introduce the so-called lumped mass and stiffness matrices M̂ ∈Rd×d and Â ∈Rd×d

with entries

m̂i j =
∫
�

Ih( Jϕiϕ j); âi j =
∫
�

Ih((E∇ϕi) · ∇ϕ j), i, j = 1, . . . ,d, (31)

which represent an approximation of the mass and stiffness matrices M̃ and Ã defined in (25). We can see that lumping 
can be regarded as the usage of the element-wise bivariate trapezoidal rule for quadrature. Crucial in the next computation 
is that the interpolant of a separable bivariate function is separable, i.e.

Ih(A(x)B(y)) = Ih(A(x))Ih(B(y)). (32)

Another key property is that the univariate and bivariate Lagrange basis functions {ψi}N
i=0 and {ϕk}(N+1)2

k=1 are orthogonal 
with respect to the interpolant, i.e.
291
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Ih(ψiψ j) =
{

ψi if i = j

0 otherwise
Ih(ϕkϕ�) =

{
ϕk if k = �

0 otherwise
(33)

for all i, j = 0, . . . , N and k, � = 1, . . . , (N + 1)2. Thanks to these properties, we can obtain a Kronecker decomposition of the 
lumped mass and stiffness matrices M̂ and Â. By substituting (10)-(12) and (26) into (31) we obtain:

m̂i j =
∫
�

Ih

(
J (ξ,η)ϕi(ξ,η)ϕ j(ξ,η)

)
dξdη (34)

=
1∫

0

Ih

(
σ(ξ)ψ�(ξ)ψm(ξ)

)
dξ

1∫
0

Ih

(
ζ(η)ψr(η)ψn(η)

)
dη

= σ(ξ�)ζ(ηn)

1∫
0

Ih

(
ψ�(ξ)ψm(ξ)

)
dξ

1∫
0

Ih

(
ψr(η)ψn(η)

)
dη;

âi j =
∫
�

Ih

(
(E(ξ,η)∇ϕi(ξ,η)) · ∇ϕ j(ξ,η)

)
dξdη (35)

=
3∑

s=1

1∫
0

Ih

(
ψ ′

�(ξ)ψ ′
m(ξ)λs

11(ξ)
)

dξ

1∫
0

Ih

(
ψr(η)ψn(η)ρs

11(η)
)

dη

+
4∑

s=1

1∫
0

Ih

(
ψ ′

�(ξ)ψm(ξ)λs
12(ξ)

)
dξ

1∫
0

Ih

(
ψr(η)ψ ′

n(η)ρs
12(η)

)
dη

+
4∑

s=1

1∫
0

Ih

(
ψ�(ξ)ψ ′

m(ξ)λs
21(ξ)

)
dξ

1∫
0

Ih

(
ψ ′

r(η)ψn(η)ρs
21(η)

)
dη

+
3∑

s=1

1∫
0

Ih

(
ψ�(ξ)ψm(ξ)λs

22(ξ)
)

dξ

1∫
0

Ih

(
ψ ′

r(η)ψ ′
n(η)ρs

22(η)
)

dη.

Since the derivatives of the ψi ’s are piecewise constant, (35) reduces to

âi j =
[

3∑
s=1

λs
11(ξ�) + λs

11(ξm) + (λs
11(ξ�−1) + λs

11(ξ�+1))δ�m

2 + 2δ�m
ρs

11(ηn)

]
(36)

·
1∫

0

ψ ′
�(ξ)ψ ′

m(ξ)dξ

1∫
0

Ih

(
ψr(η)ψn(η)

)
dη

+
[

4∑
s=1

λs
12(ξm)ρs

12(ηr)

] 1∫
0

ψ ′
�(ξ)ψm(ξ)dξ

1∫
0

ψr(η)ψ ′
n(η)dη

+
[

4∑
s=1

λs
21(ξ�)ρ

s
21(ηn)

] 1∫
0

ψ�(ξ)ψ ′
m(ξ)dξ

1∫
0

ψ ′
r(η)ψn(η)dη

+
[

3∑
s=1

λs
22(ξ�)

ρs
22(ηr) + ρs

22(ηn) + (ρs
22(ηr−1) + ρs

22(ηr+1))δrn

2 + 2δrn

]

·
1∫

0

Ih

(
ψ�(ξ)ψm(ξ)

)
dξ

1∫
0

ψ ′
r(η)ψ ′

n(η)dη.

To rewrite (34) and (36) in matrix form we need some matrix notation. For any v ∈RN+1 we define the operators diag v ∈
R(N+1)×(N+1) and convol v ∈R(N+1)×(N+1) as follows:
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diag v =

⎛⎜⎜⎜⎝
v1

v2
. . .

v N+1

⎞⎟⎟⎟⎠ ; convol v =

⎛⎜⎜⎜⎜⎜⎜⎝

v1+v2
2

v1+v2
2

v1+v2
2

v1+2v2+v3
4

v2+v3
2

. . .
. . .

. . .
v N−1+v N

2
v N−1+2v N+v N+1

4
v N +v N+1

2
v N +v N+1

2
v N +v N+1

2

⎞⎟⎟⎟⎟⎟⎟⎠ .

Using the operators diag and convol we define the matrices

W = diag

⎛⎜⎝ ζ(η0)
...

ζ(ηN)

⎞⎟⎠ ; � = diag

⎛⎜⎝ σ(ξ0)
...

σ (ξN )

⎞⎟⎠ ; (37)

�s
11 = diag

⎛⎜⎝ ρs
11(η0)

...

ρs
11(ηN)

⎞⎟⎠ ; �s
11 = convol

⎛⎜⎝ λs
11(ξ0)

...

λs
11(ξN)

⎞⎟⎠ , s = 1, . . . ,4; (38)

�s
22 = convol

⎛⎜⎝ ρs
22(η0)

...

ρs
22(ηN)

⎞⎟⎠ ; �s
22 = diag

⎛⎜⎝ λs
22(ξ0)

...

λs
22(ξN)

⎞⎟⎠ , s = 1, . . . ,4; (39)

�s
12 = 1

⎛⎜⎝ ρs
12(η0)

...

ρs
12(ηN)

⎞⎟⎠
T

; �s
12 =

⎛⎜⎝ λs
12(ξ0)

...

λs
12(ξN)

⎞⎟⎠1T , s = 1, . . . ,3; (40)

�s
21 = (�s

12)
T ; �s

21 = (�s
12)

T , s = 1, . . . ,3, (41)

where 1 ∈RN+1 denotes a column vector of ones. We now define, for all p, q = 1, 2, the following large matrices:

Ĵ = W ⊗ �, Ê pq =
4−δpq∑

s=1

�s
pq ⊗ �s

pq. (42)

With these notations and denoting by ◦ the (elementwise) Hadamard product, (34) and (36) can be expressed by the 
following matrix decompositions

M̂ = Ĵ ◦ (M0 ⊗ M0); (43)

Â = Ê11 ◦ (M0 ⊗ A) + Ê12 ◦ (C ⊗ C T ) + Ê21 ◦ (C T ⊗ C) + Ê22 ◦ (A ⊗ M0)

= Ê11 ◦ (M0 ⊗ A) + Ê12 ◦ (C ⊗ C T ) + [̂E12 ◦ (C ⊗ C T )]T + Ê22 ◦ (A ⊗ M0), (44)

where A, C, M0 ∈R(N+1)×(N+1) are the stiffness, convection, and lumped mass matrices in 1D, defined by

aij =
1∫

0

ψ ′
i ψ

′
jdξ, ci j =

1∫
0

ψ ′
i ψ jdξ, (m0)i j =

1∫
0

Ih(ψiψ j)dξ = δi j

1∫
0

ψidξ, (45)

for all i, j = 1, . . . , N + 1. It is evident that M0 is a diagonal matrix. Since C is tridiagonal as a consequence of the ψi ’s being 
compactly supported, only the tridiagonal part of the four matrices defined in (40)-(41) is relevant, thanks to the Hadamard 
products in (44). Moreover, we observe from (43)-(44) that the general lumped discrete operators in (31) are obtained by 
weighting, through the matrices Ê pq , the discrete operator

Ã := M0 ⊗ A + C ⊗ C T + C T ⊗ C + A ⊗ M0, (46)

associated to the model equation on the unit square domain

−∇ ·
((

1 1
1 1

)
∇u

)
= f . (47)
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2.6. Examples of separable domains

In this section, for aim of clarity, we present several examples of separable domains �S , i.e. domains that fulfil our 
hypotheses in (15) and (18). First of all, (15) and (18) imply that �S can be characterised in parametric way as the set 
enclosed by the four curves⎧⎪⎪⎪⎨⎪⎪⎪⎩

γL : (x(t), y(t)) = (A(0)B(t), C(0)D(t)), t ∈ [0,1];
γR : (x(t), y(t)) = (A(1)B(t), C(1)D(t)), t ∈ [0,1];
γB : (x(t), y(t)) = (A(t)B(0), C(t)D(0)), t ∈ [0,1];
γT : (x(t), y(t)) = (A(t)B(1), C(t)D(1)), t ∈ [0,1],

(48)

which are the images of the left, right, bottom and top edges of the reference square � = [0, 1]2, respectively. As an 
illustrative example, we show in Fig. 1b the separable domain �S obtained by the following choices in (48) and recalling 
from (18) that C(ξ) = c|A(ξ)|χ :

A(ξ) = ξ3 + 1, B(η) = sinη + 1, D(η) = eη − η, c = −1.5, χ = −1. (49)

A remarkable subclass of separable domains is that of x-normal domains i.e. domains obtained when the transformation (15)
is specialized to{

x(ξ,η) = A(ξ)B(η);
y(ξ,η) = D(η),

(50)

i.e. in the case when C(ξ) = 1, which automatically fulfils (18) for χ = 0. It is possible to show that it is not a loss of 
generality, in terms of attainable domain shapes, to assume that A(ξ) and D(η) are non-decreasing linear functions in 
(50). Under these assumptions, the x-normal domain defined by the transformation (50), which we denote by �N , can be 
characterised as

�N = {(x, y) ∈R2 | A(0)B(η) ≤ x ≤ A(1)B(η) ∀η ∈ [0,1] ∧ D(0) ≤ y ≤ D(1)}. (51)

For instance, the x-normal domain defined by A(ξ) = 2ξ − 1, B(η) = 1 + 1
2 cos 2πη and D(η) = 2η − 1 is shown in Fig. 1c. 

This domain has the property that A(0) = −A(1) and therefore the curves γL and γR are symmetric w.r.t. the y-axis, we 
then call it a symmetric x-normal domain. Another remarkable case of x-normal domains is when A(0) = 0 or A(1) = 0, 
which implies that either the curve γL or γR is a portion of the y-axis, we then call such domain a one-sided x-normal 
domain. For instance, the one-sided x-normal domain defined by A(ξ) = ξ , B(η) = 1 + 1

2 cos 2πη and D(η) = η is shown in 
Fig. 1d.

2.7. Special surfaces

The proposed matrix-oriented FEM approach also applies to some surface PDEs, i.e. PDEs whose spatial domain is a 
smooth curved surface � ⊂ R3, see for instance [11]. Specifically, surface PDEs lend themselves to the matrix-oriented 
approach in the special case when the surface � is a curvilinear cylinder, i.e. the image of any x-normal domain �N through 
the mapping S : �N →R3 defined by

S(x, y) =
(

x,
sin 2π y

2π
,

cos 2π y

2π

)
, (x, y) ∈ �N . (52)

We can thus define the curvilinear cylinder � as � := S(�N ), see Fig. 2 for an illustration. We close this section by 
observing that, thanks to (10)-(12), the number q ≥ 2 of nonzero terms in the Kronecker decompositions of the standard 
and lumped stiffness matrices Ã and Â, respectively, depends on (i) the generality of the diffusion matrix D in the model 
problem (8) and (ii) the generality of the domain �S . Case-by-case, the value of q is reported in Table 1. This information 
is relevant as it directly impacts the performances in time and memory of the MO-FEM approach.

3. The discrete problem and its solution

In this section we will show how to exploit the matrix decompositions (29) and (43)-(44) to solve the discrete problem 
(24). In the absence of lumping, thanks to (29), the vector trick (4) allows to rephrase the ODE system (24) in the usual 
vector form as the following matrix ODE system:
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Fig. 1. Some examples of separable domains. The curves γL , γR , γB and γT are defined in (48). The blue dots inside the domains are the images through 
the map (15) of the corresponding blue dots inside the reference square � = [0, 1]2. (For interpretation of the colours in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 2. An x-normal domain �N is transformed to the curvilinear cylinder � := S(�N ). The transformation S in (52) joins the top- and bottom edges γT

and γB of �S , highlighted in red.

Mξ U̇ MηT +
14∑

s=1

Aξ
s U Aη

s
T = B, (53)

where vec(U (t)) = u(t) and vec(B(t)) = b̃(t). In the case of lumped FEM, the matrix decompositions (43)-(44) together 
with the vector trick (4) allow to rephrase the discrete problem (24) as the following matrix ODE system:
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Table 1
Number q ∈N of nonzero Kronecker terms in the decompositions (29)
and (44) of the standard and lumped stiffness matrices Ã and Â, re-
spectively.

Domain �S

Diffusion D
Diagonal (d12 = d21 = 0) General

Rectangular 2 4
x-normal 5 8
Curvilinear cylinder 5 8
Separable 8 14

�M0U̇ M0W +
3∑

s=1

(�s
11 ◦ A)U M0�

s
11 +

4∑
s=1

(�s
12 ◦ C T )U (C T ◦ �s

12
T
)

+
4∑

s=1

(�s
12

T ◦ C)U (C ◦ �s
12) +

3∑
s=1

�s
22M0U (A ◦ �s

22
T
) = B.

(54)

The numerical solution of the matrix ODE systems (53) or (54) is not trivial. In order to show how we can address this 
problem, we first take one step back to a stationary counterpart of our model PDE in (8).

Remark 1 (General boundary conditions). Suppose that the model problem (8) is endowed with general non-homogeneous 
Dirichlet boundary conditions v =B(x, y) for (x, y) ∈ ∂�S . Following [39], this case is faced by considering an extension or 
lifting of B(x, y) that is defined for all (x, y) ∈ �S . Then, by performing the change of variable ṽ(x, y) := v(x, y) − B(x, y)

for (x, y) ∈ �S , the continuous problem (8) can be rephrased into an auxiliary problem for ṽ , with the same differential 
operator, that fulfils homogeneous Dirichlet boundary conditions. Hence, our methodology still applies.
Suppose now that the model problem (8) has general non-homogeneous Neumann boundary conditions ∇v · n(x, y) =
B(x, y) for (x, y) ∈ ∂�S . Following [27] and references therein, it is possible to show that the corresponding parametrized 
problem (9), posed on the reference domain � = [0, 1]2, fulfils the boundary conditions (E(ξ, η)∇u) · n(ξ, η) = J (ξ, η)×
B
(

x(ξ, η), y(ξ, η)
)

for (ξ, η) ∈ ∂�. Such boundary conditions can be inserted in the weak formulation (21) and take the 
form of an additional boundary integral on the right-hand-side of (21). Once again, the proposed matrix-oriented method-
ology illustrated so far still applies unchanged.

3.1. Multiterm Sylvester matrix equation and the matrix-oriented Preconditioned Conjugate Gradient (PCG)

In this section, we illustrate that the full PDE discretization by our MO-FEM approach leads to the solution of multi-
term Sylvester matrix equations. Towards this aim, for the moment we neglect the time dependence and we consider the 
following linear elliptic PDE problem{

−∇ · (D∇v) + γ v = f (x, t), x = (x, y) ∈ �S , t ∈ [0, T ];
v = 0 or ∇v · n(x) = 0, x ∈ ∂�S , t ∈ [0, T ], (55)

where �S is a separable domain as described in Section 2.1, while γ ≥ 0 for the case of Dirichlet boundary conditions 
and γ > 0 for the case of Neumann boundary conditions. By proceeding as in Section 2.2, the FEM and lumped FEM 
discretisations of (55) lead to the usual linear systems of dimension (N + 1)2 in the unknown vector μ:(

Ã + γ M̃
)
μ = b̃; (56)(

Â + γ M̂
)
μ = b̂, (57)

respectively, which we encompass with the unified notation

(A + γ M)μ = b. (58)

The linear system (58), which is sparse, symmetric and positive definite, is often solved with the following Preconditioned 
Conjugate Gradient Method (PCG):⎧⎪⎨⎪⎩

r(0) = b − (A + γ M)μ(0);
z(0) = P−1r(0);
q(0) = z(0);

(59)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(p) = q(p) · r(p)

((A + γ M)q(p)) · r(p)
;

μ(p+1) = μ(p) + α(p)q(p);
r(p+1) = r(p) − α(p)(A + γ M)q(p);
z(p+1) = P−1r(p+1);
β(p) = ((A + γ M)q(p)) · z(p+1)(

(A + γ M)q(p)
) · r(p)

;
q(p+1) = q(p) − β(p)q(p),

p ∈N ∪ {0}, (60)

where μ(0) ∈ R(N+1)2
is an initial guess for the solution μ, and P ∈ R(N+1)×(N+1) is a suitable preconditioning matrix. In 

the remainder of this section we will carry out a matrix-oriented counterpart of the PCG method described above, which 
we will call MO-PCG. To this end, observe that the MO-FEM counterpart of the discrete problem (56) reads:

14∑
s=1

Aξ
s U Aη

s
T + γ Mξ U MηT = B. (61)

The MO-FEM counterpart of the lumped discrete problem (57) reads

3∑
s=1

(�s
11 ◦ A)U M0�

s
11 +

4∑
s=1

(�s
12 ◦ C T )U (C T ◦ �s

12
T
)

+
4∑

s=1

(�s
12

T ◦ C)U (C ◦ �s
12) +

3∑
s=1

�s
22M0U (A ◦ �s

22
T
) + γ �M0U M0W = B.

(62)

Remark 2 (Isotropic diffusion). When d11 = d22 =: d̃ and d12 = d21 = 0, thanks to (13)-(14), the matrix equations (61)-(62)
become simpler. Specifically, in (61), it holds that Aξ

s �= 0 only for s ∈ {1, 3, 4, 7, 8, 11, 12, 14}. In (62), instead, it holds that 
(i) �s

11 �= 0 and �s
22 �= 0 for s ∈ {1, 3}, while (ii) �s

12 �= 0 and �s
12

T �= 0 for s ∈ {1, 4}. In summary, the discrete differential 
operator has q = 8 terms, see also Table 1.

Both (61) and (62) are multiterm Sylvester equations and, for ease of presentation, we will denote by L(U ) and R their 
left- and right hand sides, so we can treat both cases using the compact notation

L(U ) = R. (63)

Because the multiterm linear matrix equation (63) is equivalent to the symmetric positive definite systems (58), we can 
formulate the following matrix-oriented counterpart of the PCG method, which we call MO-PCG, in terms of the above 
operators:⎧⎪⎨⎪⎩

R(0) = R−L(U (0));
Z (0) =P−1(R(0));
Q (0) = Z (0);

(64)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(p) = Q (p) : R(p)

L(Q (p)) : R(p)
;

U (p+1) = U (p) + α(p) Q (p);
R(p+1) = R(p) − α(p)L(Q (p));
Z (p+1) =P−1(R(p+1));
β(p) = L(Q (p)) : Z (p+1)

L(Q (p)) : R(p)
;

Q (p+1) = Q (p) − β(p) Q (p),

p ∈N ∪ {0}, (65)

where U (0) denotes an initial guess for the solution U , while A : B denotes, for any two matrices A, B ∈ Rm×n of same 
dimension, the double tensor contraction defined by

A : B =
m∑ n∑

Aij Bi j, (66)

i=1 j=1
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while P :R(N+1)×(N+1) →R(N+1)×(N+1) is a suitable preconditioning operator. The study of optimal initial guesses, optimal 
preconditioners, and optimal stopping criteria is outside the scope of this work. Here we will focus on the comparison, in 
terms of time and memory, between the PCG (59)-(60) and its MO counterpart (64)-(65), on equal initial guess, precondi-
tioner and stopping criterion.

For the choice of the preconditioner, we address the practical case when d11 = d22 =: d̃ and d12 = d21 = 0. We choose a 
preconditioner such that (i) in vector form can be expressed as a single Kronecker product, so that its MO counterpart is 
easily invertible and (ii) aims at capturing the spectral properties of the stiffness matrix. After a heuristic experimentation, 
for the matrix PCG we choose

P̃(U ) :=
(

δMξ + ε
∑
s∈I

Aξ
s

)
U

(
δMη + ε

∑
s∈I

Aη
s

)T

, I := {1,3,12,14}; (67)

P̂(U ) :=
⎛⎝δW M0 + ε

∑
s=1,3

(
�s

11 ◦ A + �s
22M0

)⎞⎠U

⎛⎝δM0� + ε
∑

s=1,3

(
�s

11M0 + �s
22 ◦ A

)⎞⎠T

, (68)

for the standard and the lumped case respectively, where (δ, ε) = (0, 1) for the elliptic problem (61)-(62), while (δ, ε) =
(1, ht) for the time dependent problem addressed in the next section. The above preconditioners contain only the second 
order terms of the discrete differential operators in (61) and (62). For this reason, in (67)-(68), the index s runs over less 
terms than in Remark 2. This comparison potentially extends to other linear iterative methods to solve the linear systems 
(56)-(57). We theoretically compare the complexity in time and memory between the vector and MO-PCG approaches in 
Appendix A. The numerical tests will be carried out in Section 4.

3.2. Time discretisation of the parabolic problem

Here we show how to address the MO time discretisation of the spatially discrete parabolic problems, that is the matrix 
ODEs (53) or (54). For ease of presentation, we will illustrate the procedure for the non-lumped version (53), since for the 
lumped counterpart (54) the procedure is analogous. We consider the IMplicit-EXplicit (IMEX) Euler method, which was 
proven to be particularly effective for the simulation of Turing patterns in reaction-diffusion systems [17] and also applied 
successfully in matrix form on square domains in [9]. Let ht > 0 be the timestep. For all n = 0, . . . , NT , NT :=

⌈
T
ht

⌉
, let 

tn := nht the time grid and let Un ∈ R(N+1)×(N+1), Un ≈ U (tn) be the nodal matrix of the fully discrete solution at time tn . 
By applying the IMEX Euler time discretisation to problem (53) we obtain

Mξ Un+1MηT + ht

14∑
s=1

Aξ
s Un+1 Aη

s
T = Mξ Un MηT + ht Bn. (69)

If S(Un+1) and Tn denote the left and right hand sides of (69), respectively, the IMEX-Euler-MOFEM full discretisation of 
the PDE problem (9) consists of the following sequence of multiterm Sylvester equations

S(Un+1) = Tn, n = 0, . . . , NT − 1. (70)

Hence, our idea is to solve (70) at each time step tn via the MO-PCG algorithm as explained in Section 3.1. For completeness, 
we report the IMEX Euler method in the classical vector form for the approximation of the semi-discrete ODE system in 
(24):

(M + duht A) zn+1 = Mzn + htbn, n = 0, . . . , NT − 1, (71)

where zn = vec(Un), such that at each timestep a large sparse linear system must be solved.

4. Numerical examples

In this section, we present some classical stationary and time dependent PDEs on separable domains, to highlight the 
performance of the matrix-oriented approach for FEM of different orders. In the next section, we will apply the MO-FEM-
PCG to simulate the formation of Turing patterns in a morphochemical reaction-diffusion system (RDS) for metal growth in 
batteries, where a high level of spatial resolution is required.

4.1. Stationary PDEs: Poisson equation

In this section, we consider the following Poisson equation with Dirichlet boundary conditions:{
−�v = f (x), x = (x, y) ∈ �S ;
v = 0, x ∈ ∂�S ,

(72)
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Fig. 3. Numerical solution of the Poisson equation (72) obtained by MO-PCG FEM on a Cartesian mesh on the unit square with N = 384. (a) Test 1 on 
x-normal domain �N (73). (b) Test2 on separable domain �S (76).

for two choices of the spatial domain, x-normal in Test 1 and separable in Test 2. Our goals are (i) to compare the perfor-
mances of the vector PCG algorithm (59)-(60) with the MO-PCG (64)-(65) in terms of execution time and memory storage 
and (ii) to show optimal convergence in space for both methods. All the experiments in this section are carried out in 
MATLAB R2019a on a MacBook Pro 2,3 GHz 8-Core Intel Core i9.

Test 1: x-normal domain
Let be �S = �N the symmetric x-normal domain defined by (50) with:

A(ξ) = ξ − 1

2
; B(η) = 2 − η2; D(η) = η, (73)

that corresponds to the cap-shaped domain

�S :=
{
(x, y) ∈R2

∣∣∣∣ 0 ≤ y ≤ 1, |x| ≤ 1 − y2

2

}
. (74)

f (x) is such that the exact solution is the lowest-order non-zero polynomial that fulfils the boundary conditions:

u(x, y) =
(

− y2

2
+ x + 1

)(
y2

2
+ x − 1

)
y(y − 1). (75)

We discretise the reference unit square � with a Cartesian grid of N intervals along each dimension, with N =
48, 96, 192, 384 and we apply both the vector (59)-(60) and MO (64)-(65) FEM PCG algorithms to solve the toy model 
(72). We recall that, since here we are considering Dirichlet boundary conditions, by the iterative scheme, in the first case 
we solve a huge linear system of (N − 1)2 equations and in the second one a multiterm Sylvester matrix equation of di-
mension N − 1 (for the internal nodes) and q terms, where the possible values of q are shown in Table 1. In both cases, 
the PCG iterations are stopped when the residual in Frobenius norm reaches a tolerance tol =1e-14, close to machine pre-
cision. Moreover, we choose the preconditioners defined in (67)-(68). The numerical solution obtained on the finest mesh 
(N = 384) is shown in Fig. 3a. The obtained results are reported in Table 2. For each N , we compute: i) the relative L2(�N )

error of the numerical solution on the original domain �N ; ii) the execution time and memory occupation required by both 
variants of the PCG; iii) the experimental order of convergence. We observe that, for all orders k = 1, 2, 3, 4, the MO-FEM 
method shows at least optimal convergence of order k + 1, thereby assessing the correctness of the matrix decompositions 
(29) and (43)-(44). For k = 2, we observe superconvergence of order k + 2 = 4, probably due to the symmetries of the 
problem.

Compared to the classical vector PCG, MO-PCG shows a strong advantage both in execution time (in seconds) and in 
memory storage (reported in MegaBytes) for all N and k, as also evident from the experimental ratios Ratiom and Ratiot , for 
memory and time, respectively. It is worth noting that the lumped case k = 1 is the cheapest in terms of execution time for 
all N . Moreover, we note that Ratiot increases with N and it is almost constant wrt k, while, as predicted in the Appendix A, 
Ratiom increases with k and slightly changes wrt to N . As consequence, the advantages in time are relevant for N > 100
and increase with the order k, for example for N = 384, k = 4, MO-PCG requires about 28 seconds and the vector PCG about 
13 minutes. (For the lumped case we have 5 seconds versus 5 minutes.)

Test 2: separable domain
We consider the separable domain defined by (50) with:

A(ξ) = ξ + 1; B(η) = η + 1; C(ξ) = (ξ + 1)2; D(η) = η + 1. (76)
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Table 2
Test 1: Poisson problem (72) on x-normal domain, solved through FEM by the PCG method in vector and matrix form on a sequence 
of meshes with increasing number N . For each polynomial order k = 1L, 1, 2, 3, 4, where the L stands for “lumped”, the experimen-
tal convergence rate in L2(�N ) norm is approximately k + 1 (except for k = 2 that superconverges of order 4), as expected. The 
performances of MO-FEM-PCG show significant gains in memory storage and execution times (sec) wrt the analogous vector formu-
lation, as evident from the ratios Ratiom and Ratiot , respectively. In particular, the advantages in time are relevant for N > 100 and 
increase with the order k, for example for N = 384, k = 4, MO-PCG requires about 28 seconds and the vecPCG about 13 minutes. It 
is worth noting that the lumped case k = 1 is the cheapest in terms of execution time for all N .

N k PCG Time (sec) Memory (MB) Rel error Conv 
rateit Vec Mat Ratiot Vec Mat Ratiom Mat

48 1L 246 0.4947 0.023969 20.639 0.94728 0.12479 7.5912 3.7973e-04 1.9991
1 381 0.75526 0.082341 9.1724 1.3211 0.12772 10.344 2.0767e-04 1.9998
2 438 0.98111 0.10091 9.7227 2.1872 0.13846 15.797 3.7761e-07 3.9907
3 443 1.1095 0.11787 9.4124 3.2896 0.14969 21.976 3.1155e-07 3.9909
4 494 1.3906 0.11196 12.42 4.6284 0.16066 28.808 2.5574e-08 4.9903

96 1L 464 4.3869 0.1793 24.467 3.8494 0.4243 9.0723 9.4946e-05 1.9998
1 712 6.8265 0.58746 11.62 5.4512 0.43021 12.671 5.1921e-05 1.9999
2 839 9.3508 0.81421 11.484 9.1489 0.45267 20.211 2.3683e-08 3.9950
3 827 8.4087 0.86241 9.7502 13.88 0.4761 29.153 1.9497e-08 3.9981
4 919 11.31 1.1227 10.074 19.644 0.49904 39.363 8.0045e-10 4.9977

192 1L 834 37.929 1.1226 33.787 15.594 1.5508 10.056 2.3737e-05 2.0000
1 1283 55.577 2.9653 18.742 22.149 1.5625 14.175 1.2980e-05 2.0000
2 1517 70.876 4.219 16.799 37.416 1.6084 23.262 1.4829e-09 3.9974
3 1464 72.817 4.5802 15.898 56.997 1.6563 34.413 1.2189e-09 3.9996
4 1616 103.21 5.7497 17.95 80.893 1.7031 47.497 2.5023e-11 4.9995

384 1L 1440 298.87 5.2272 57.176 62.639 5.9131 10.593 5.9344e-06 2.0000
1 2224 465.93 16.18 28.796 89.294 5.9366 15.041 3.2451e-06 2.0000
2 2628 610.87 21.669 28.191 151.33 6.0293 25.098 9.3294e-11 3.9905
3 2480 609.05 23.156 26.303 230.98 6.126 37.705 7.6202e-11 3.9996
4 2754 806.81 28.565 28.245 328.27 6.2207 52.77 1.771e-12 3.8206

Table 3
Test 2: Poisson equation (72) on separable domain �S (76). The results are similar to the previous experiment (see Table 2), the 
expected convergence order is obtained, the MO-FEM-PCG occupies significantly less memory and exhibits extremely lower com-
putational times wrt to its vector counterpart, as become also more evident for N > 100 and all FEM orders. The ratios reported 
indicate the classical vector approach is more than ten times expensive than the new proposed MO approach, both in memory and 
execution time.

N k PCG Time (sec) Memory (MB) Rel error Conv 
rateit Vec Mat Ratiot Vec Mat Ratiom Mat

48 1L 297 0.61462 0.050788 12.102 0.9487 0.12971 7.3137 1.6370e-03 1.9736
1 471 0.97949 0.099224 9.8715 1.2214 0.12978 9.4118 1.5785e-03 2.0001
2 693 1.7546 0.14222 12.337 2.056 0.14186 14.493 1.1940e-05 3.8887
3 845 1.932 0.18696 10.334 3.2377 0.1559 20.768 3.8359e-06 4.0853
4 931 2.7134 0.22742 11.931 4.6284 0.1689 27.403 2.1537e-07 5.0525

96 1L 541 4.968 0.27623 17.985 3.8637 0.4344 8.8944 4.1145e-04 1.9923
1 860 8.5345 0.69158 12.341 5.041 0.43446 11.603 3.9464e-04 1.9999
2 1288 13.851 1.2557 11.031 8.6053 0.45973 18.718 7.7465e-07 3.9461
3 1616 15.984 1.9447 8.2192 13.659 0.48891 27.937 2.3495e-07 4.0291
4 1754 20.967 2.406 8.7142 19.644 0.51607 38.064 6.6394e-09 5.0196

192 1L 987 43.476 1.7436 24.935 15.6 1.5711 9.9293 1.0302e-04 1.9978
1 1562 66.749 3.8078 17.53 20.485 1.5712 13.038 9.8664e-05 2.0000
2 2351 110.36 6.9562 15.865 35.204 1.6228 21.693 4.9273e-08 3.9747
3 2936 148.67 9.7303 15.279 56.087 1.6823 33.34 1.4602e-08 4.0081
4 3185 210.28 12.28 17.124 80.893 1.7377 46.551 2.0669e-10 5.0055

384 1L 1780 399.41 9.0593 44.088 62.698 5.9539 10.53 2.5765e-05 1.9994
1 2800 599.5 21.207 28.268 82.591 5.954 13.872 2.4666e-05 2
2 4249 1034.7 36.476 28.366 142.4 6.0584 23.505 3.1048e-09 3.9882
3 5168 1308.6 54.13 24.174 227.29 6.1784 36.788 9.1204e-10 4.001
4 5689 1729.7 65.345 26.47 328.27 6.2905 52.185 6.7072e-12 4.9456

The exact solution is given by

u(x, y) = (y − x)(y − 2x)(y − x2)(2y − x2). (77)

The numerical solution obtained on the finest mesh (N = 384) is shown in Fig. 3b. Table 3 shows the convergence and 
the performance benchmark in time and memory. The expected convergence order is obtained. In this case the Kronecker 
decompositions (29) and (44) have q = 8 nonzero terms, as opposed to the x-normal case where the nonzero terms are 
q = 5, see Table 1. The strong gain in memory storage and computational execution time of MO-PCG versus the vector 
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PCG method are still valid as evident from the results in Table 3. The MO-FEM-PCG occupies significantly less memory 
and exhibits extremely lower computational times wrt to its vector counterpart. In particular, for N < 100 both approaches 
require few seconds and at most less than 20 MB, while for N > 100 and all FEM orders the advantage of the MO approach 
increases. For example, for N = 384, k = 1, we compute the solution by MO-PCG in about 21 secs versus 10 minutes, for 
k = 4 in about 1 minute versus about 29 minutes. It is worth noting that the lumped case k = 1L is also cheaper than 
the unlumped case (same accuracy, but about half time). The ratios reported indicate that, in general, the classical vector 
approach is much more than ten times as expensive as the new proposed MO approach, both in memory and execution 
time.

4.2. Time-dependent PDEs: semilinear heat equation on x-normal domain

We consider the following heat equation with zero Dirichlet boundary conditions on the cap-shaped domain �N defined 
in (74) for the previous Test 1:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − du�u = f (x, y, t), (x, y) ∈ �S , t ∈ [0,1];
u(x, y, t) = 0, (x, y) ∈ ∂�S , t ∈ [0,1];
u(x, y,0) = y(y − 1)

(
− y2

2 + x + 1
)(

y2

2 + x − 1
)

, (x, y) ∈ �S ,

(78)

where du = 0.1 and f (x, y, t) is chosen in such a way that the exact solution is u(x, y, t) = u(x, y, 0) exp(t), we omit the 
cumbersome expression of such f (x, y, t). We consider both Pk , k = 1, 2, 3, 4, and lumped P1 elements. In this case, the 
matrix oriented approach will require the solution of a sequence of multiterm Sylvester equations like (69). Stemming 
from the results obtained in the previous section, where only one discrete problem was solved, we prefer to abandon the 
comparisons with the vector PCG method and solve the sequence of linear systems in the classical vector formulation of 
the IMEX Euler method in (71) via the MATLAB direct solver mldivide, with only one preliminary LU-decomposition 
and reordering of unknowns by symamd. Therefore, we will compare these results with the MO-PCG approach solving 
(65) with the operator S in (70) with preconditioner (67) (and (68) for the lumped case). Moreover, here we focus only 
on the computational execution times. We use the following stopping criterion for MO-PCG: at each timestep, we stop 
the iterations of (65) when the truncated solution U (s) fulfils ‖R(s)‖ ≤ 0.01‖R(0)‖, where R(s) is the residual defined by 
R(s) := S(U (s)) − T (U (s)), with the corresponding operators as defined in (70). This and all the following time-dependent 
experiments are carried out in MATLAB R2019a on a HP Z230 Tower Workstation with Intel Core i7-440 CPU and 16 GB
RAM.

To highlight the computational advantages of the MO-PCG approach we consider N = 480, 960, 1920 and fixed timestep 
τ = 1e-2, as representative test of typical user-case scenarios where high spatial resolution is required. The obtained results 
indicate a significant advantage of MO-PCG and are shown in Table 4 for all k and for all N . In all cases, the MO-PCG 
approach solving a multiterm Sylvester matrix equation at each timestep is quicker than the vector (direct) approach, es-
pecially for k = 1 and k = 2. The gap increases with N , as shown by comparing the time ratios. At each timestep, MO-PCG 
converges with just one iteration, except with lumped P1 elements, where up to two PCG iterations per timestep are 
required.

5. Applications to pattern formation in battery modelling

We now consider the following reaction-diffusion model in two variables η : � × [0, T ] →R and θ : � × [0, T ] → [0, 1], 
endowed with zero Neumann boundary conditions, on an arbitrary compact domain � ⊂ R2:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ηt − �η = ρ f (η, θ), (x, y, t) ∈ � × [0, T ];
θt − dθ�θ = ρg(η, θ), (x, y, t) ∈ � × [0, T ];
∇η · n = ∇θ · n = 0, (x, y, t) ∈ ∂� × [0, T ];
η(x, y,0) = η0(x, y), θ(x, y,0) = θ0(x, y), (x, y) ∈ �,

(79)

where dθ > 0 is the diffusion coefficient, ρ > 0 is a space-time rescaling factor and the kinetics are

f (η, θ) := A1(1 − θ)η − A2η
3 − B(θ − α); (80)

g(η, θ) := C(1 + k2η)(1 − θ)[1 − γ (1 − θ)] − Dθ(1 + γ θ)(1 + k3η), (81)

with α, γ , A1, A2, B, C, D, k2, k3 positive parameters.
The PDE system (79)-(81) is known as DIB model and has been introduced for the first time in [5] to describe elec-

trodeposition processes. Under suitable choices of the parameters and of the domain �, this model was shown to possess 
a variety of spatially structured solutions, known as Turing patterns, see for example [28,29]. An interesting application in 
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Table 4
Semilinear heat equation (78) on the cap-shaped domain (74). Computa-
tional execution time (sec) for Pk and lumped FEMs in space and IMEX 
Euler method in time with timestep τ = 0.01. In all cases, the MO-PCG ap-
proach solving a multiterm Sylvester matrix equation at each timestep is 
quicker than the vector (direct) approach, especially for k = 1. The gap in-
creases with N , as shown by comparing the time ratios Ratiot .

N k Time (sec)
Vec direct

Time (sec)
MO-PCG

Ratiot

Vec/Mat
PCG
Iter

480 1L 16.79 4.089 4.106 2
1 10.10 4.313 2.342 1
2 10.21 4.571 2.233 1
3 13.42 4.886 2.746 1
4 17.30 4.094 4.228 1

960 1L 129.1 18.58 6.949 2
1 131.7 16.41 8.023 1
2 54.98 19.10 2.879 1
3 58.79 20.25 2.902 1
4 89.18 21.62 4.126 1

1920 1L 1269 77.50 16.37 2
1 4337 74.35 58.33 1
2 497.9 87.01 5.722 1
3 473.0 81.17 5.828 1
4 3311 87.27 37.93 1

battery modelling is reported in [30,31]. Turing patterns are obtained as stationary solutions of (79)-(81) and then their nu-
merical approximation requires highly spatial accuracy for longtime integration, this motivates the development of efficient 
solvers. In this direction, a first work based on matrix oriented formulation of (79)-(81) is [9] where finite differences and 
several time solvers have been proposed on square domains. In [9], the Sylvester matrix equations obtained at each time 
step have been approximated by the reduced approach. For example, the IMEX Euler yielded the rEuler method, that revealed 
much more efficient than its classical vector approach (like (71)). On the other hand, domain geometry was also proven to 
play an important role in pattern selection, as shown also in [30,31], for this reason efficient solvers that can be applied on 
domains as general as possible are needed. Towards this aim, here we propose the MO-FEM spatial approximation and the 
MO-PCG approach presented in Section 4 with preconditioners (68) and (68) to deal with some separable domains. We will 
present three kinds of simulations: i) first on the (x-normal) cap shaped domain introduced in (74); ii) on a new separable 
domain; iii) on the jar-domain shown in Fig. 2a that corresponds to the curvilinear cylinder in Fig. 2b. In cases (i) and 
(iii) we will consider domains of increasing effective domain size given by A = ρ|�|, where |�| is the area of the domain 
in (79). In fact, as shown in [30,31] there exists a sufficiently large A∗ such that for A>A∗ the intrinsic Turing pattern 
corresponding to the given model parameter set arises (see also [30] for more details), otherwise only a portion of it can be 
approximated, giving rise to doubts about its morphological classification.

To solve on domains of large size, here we exploit the meaning and the role of the parameter ρ in (79), as follows. By 
introducing new variables ̃t := ρt and (̃x, ̃y) := √

ρ(x, y), the chain rule yields

∂η

∂t
= ρ

∂η

∂̃t
, ∇(x,y)η = √

ρ∇(̃x,̃y)η, �(x,y)η = ρ�(̃x,̃y)η; (82)

∂θ

∂t
= ρ

∂θ

∂̃t
, ∇(x,y)θ = √

ρ∇(̃x,̃y)θ, �(x,y)θ = ρ�(̃x,̃y)θ. (83)

Hence, if we define �ρ := √
ρ� and Tρ := ρT , ρ acts as a rescaling parameter in space and time. In the following sim-

ulations we always solve the DIB model in the reference domains � (cap shaped and jar shaped) with final time T and 
timestep τ such that Tρ = 300 and τρ = ρτ = 5e-3 which guarantees the stability of the IMEX Euler method. The corre-
sponding numerical solutions will be plotted in the rescaled domain �ρ for Tρ = 300. In all the experiments, we fix the 
following model parameters:

α = 0.5, γ = 0.2, A1 = 10,k2 = 2.5,k3 = 1.5,dθ = 20, (84)

and D = C(1 − α)(1 − γ + γα)/(α(1 + γα)). The initial data in (79) are given by θ0(x, y) = θe + 10−4rand(x, y) and 
η0(x, y) = ηe +10−4rand(x, y) as spatially random perturbations of the homogeneous equilibrium (ηe, θe) := (0, 0.5) (rand
is the Matlab command for generating uniformly distributed random numbers).

5.1. Cap-shaped (x-normal) domain

In this example, we consider the cap-shaped domain (74) and we choose A2 = 30, B = 25, C = 7, that, according to the 
segmentation results in [42], can yield mixed spots-worms Turing patterns at the steady state.
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Table 5
DIB model (79)-(81) on the cap-shaped domain for A2 = 30, B = 25, C = 7: numerical setting used for the 
simulations reported in Fig. 4 and computational execution times for the vector-direct approach based on LU 
decomposition and the MO-PCG method. The last column shows the amount of iterations required by MO-PCG 
for each of the two PDEs of the model. When the time ratio Ratiot is close to 1, the methods take approximately 
the same cost; Ratiot > 1 indicates that MO-PCG is quicker. MO-PCG is less expensive as Nx and N y increase, 
i.e. in Case (c) when the intrinsic Turing pattern for this model parameter choice (see main text for details) is 
attained. The best performances are obtained by the MO-PCG for k = 1 (lumped is quicker) and for k = 4.

A= ρ|�| ρ Nx N y k Time (sec)
Vec direct

Time (sec)
MO-PCG

Ratiot

(V/M)
PCG
iter (η, θ)

(a) Aa = 2000

3
400 100 50 1L 57.18 93.76 0.6099 (1, 6)

1 62.76 94.60 0.6635 (2, 3)

2 75.60 182.0 0.4159 (2, 4)

3 226.6 193.4 1.172 (2, 3)

4 270.2 207.7 1.301 (2, 3)

(c) 50Aa 20000 400 200 1L 1590 879.8 1.807 (1, 4)

1 1623 1249 1.299 (2, 3)

2 1809 1934 0.9352 (1, 3)

3 1973 2143 0.9209 (2, 3)

4 6323 2266 2.791 (2, 3)

Fig. 4. DIB model (79)-(81) on the cap-shaped domain for A2 = 30, B = 25, C = 7. Solution for η by the lumped P1 MO-FEM. Each row corresponds to 
the (A, ρ, Nx, N y) combination in Table 5. For ρ = 400 in (a) only few structures arise in the pattern. For ρ = 20000: in (b) Nx = 200, N y = 100 are not 
sufficient to identify the pattern structure, that instead is well-resolved for Nx = 400 and N y = 200 in (c). Smaller values of Nx and N y do not provide 
sufficient spatial approximation on the larger domain and the pattern appears grainy as in (b). The patterns obtained by the MO-PCG method and the vector 
(direct) method are very similar, they are the stationary solutions obtained at Tρ = 300, as shown by the increment dynamics (left subplots). Computational 
execution times are reported in Table 5.

We solve both equations for η and θ of the RD-PDE system by Pk elements (k = 1, 2, 3, 4) and lumped P1 elements in 
space and by IMEX Euler in time. As in the previous section, here we compare the vector approach solving for each PDE 
equation the sequence of linear systems like (71) by the direct method (that we will call “vec direct”) with the MO-PCG 
approach (65), solving the multiterm (q = 5) Sylvester equations (69) for this choice of the domain.

We solve the DIB model (79) with different combinations of ρ , Nx and N y as listed in Table 5, that is for domains of 
increasing effective area A. In all the computations, we consider Nx = 2N y nodes to reflect the aspect ratio of the domain. 
In Fig. 4, for each simulation, we report the final patterns obtained for the variable η by the MO-PCG (those by the vec 
303



M. Frittelli and I. Sgura Applied Numerical Mathematics 200 (2024) 286–308
Fig. 5. DIB model on separable domain (85) for A2 = 30, B = 25, C = 7, ρ = 5000. Right: Turing pattern for η obtained by the MO-PCG IMEX Euler method 
at final time T = 200 on the separable domain �S approximated with Nx = N y = 300. Left: time dynamics of the increment.

approach are very similar), together with the increments ‖ηn+1 − ηn‖F , n = 0, . . . , NT − 1 along the time dynamics, with 
‖ · ‖F Frobenius norm. If such increment decreases over time and tends to an almost small stationary value, we deduce that 
the numerical solution is converging to a steady state.

For increasing values of the effective domain size A the solution morphology changes and a pattern with more structures 
is attained, as shown for the unknown η in Fig. 4(a)–(c) corresponding to the values (a)–(c) in Table 5, respectively. In 
simulation (a) a good pattern is attained by both methods, but its morphology is not completely expressed. In terms of 
computational times, the vector approach is more convenient for k ≤ 2, the matrix approach is cheaper for k = 3, 4 (see 
Table 5). To capture the true Turing morphology a larger domain and then a sufficiently fine mesh is required, otherwise 
phantom patterns could be obtained. This is exactly what happens for the simulation (b) in the second row of Fig. 4, where 
the same mesh of case (a) yields a stationary “pixelated” pattern. For this reason, for this same domain, in simulation (c) 
a finer mesh is used and both methods are finally able to attain a “complete” more structured pattern. Note that, for each 
equation of the RD system (79)-(80)-(81), in case (c) we solve a sequence of Nt = 6 · 104 discrete problems, at each time 
step by the vector-direct we solve a linear system of Nx · N y = 400 ·200 = 8 ·104 equations, by the MO-PCG instead we solve 
a rectangular multiterm Sylvester equation of size Nx × N y = 400 × 200. Moreover, this example shows that the MO-PCG 
algorithm (65)-(67) can successfully solve also rectangular Sylvester equations. In Table 5, we do not report case (b), since 
a “wrong” solution is attained. For case (c), when the more significant pattern is attained, the time ratios indicate that MO-
PCG is quicker than the vector-direct approach with significant advantage for k = 4 and for lumped and no lumped k = 1
FEM. For k = 2, 3, very similar performances are obtained and we believe that a different preconditioner could improve the 
results of the MO-PCG.

5.2. Separable domain

In this example, we solve the DIB morphochemical model on a new separable �S domain defined by setting

A(ξ) = ξ + 1; B(η) = η + 1; C(ξ) = (ξ + 1)−2; D(η) = η + 1 (85)

in (50). In this case we consider the space approximation by k = 1 lumped FEM and we compare the MO-PCG with the 
vector-direct approach for ρ = 5000 and the other model parameters as in the previous subsection, here A = 11250. We 
take Nx = N y = 300 gridpoints and timestep τ = 0.01. The numerical solution at the final time T = 200 (by MO-PCG) is 
reported in Fig. 5 (right) together with the dynamics of the increment (left). For the vector direct approach, we register a 
storage of about 461.98 MB, which is remarkably reduced to just 5.199 MB with the MO-PCG approach. The computational 
execution times in seconds are 2197.4 for the MO-PCG and 2636.6 for the direct method. Also in this case, on a more 
general domain, the matrix approach is significantly more competitive.

5.3. Jar-shaped domain and cylindrical surface

Thanks to the results in the previous cases, here we solve the model only with P1 elements, with and without lumping. 
To further explore the robustness of the matrix PCG approach w.r.t. domain complexity and mesh distortion, we consider the 
jar-shaped domain in Fig. 2a. We fix the parameters A2 = 1, B = 30, C = 3 for the DIB model which are known to produce 
Turing patterns with holes (also called reversed spots) [42] and again we solve for increasing A with different combinations 
of ρ , Nx and N y as listed in Table 6. In all the computations, we consider Nx = 3N y to reflect the aspect ratio of the domain. 
The timestep and the final time are as in the previous test on the cap-shaped domain. We show the P1 solution obtained
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Table 6
DIB model (79)-(81) on the jar-shaped domain (cylindrical surface), for A2 = 1, B = 30, C = 3, other parameters 
as in Section 5.3: performance comparison between the vector (direct) method (71) with LU decomposition and 
the MO-PCG method (69). As evident by the ration Ratiot of the obtained execution times (in seconds), the two 
approaches are almost similar on the smallest domain, but matrix-PCG becomes quicker than the vector approach 
as Nx and N y increase, when the intrinsic Turing pattern is attained.

A ρ Nx N y k Time (sec)
Vec direct

Time (sec)
MO-PCG

Ratiot PCG
Iter (η, θ)

(a) Aa = 800 400 150 50 1L 309.6 306.6 1.010 (2, 16)

1 328.7 278.4 1.181 (3, 7)

(c) 50Aa 20000 600 200 1L 7995 2316.4 3.451 (1, 9)

1 8067 3028 2.664 (2, 7)

Fig. 6. DIB model (79)-(81) on the jar-shaped domain for A2 = 1, B = 30, C = 3: lumped P1 solutions for η by the MO-PCG (right) and time increments 
(left). Values of (ρ, Nx, N y) are given in Table 6. (a): on the smallest domain only few holes appear in the pattern. (b): for ρ = 20000 on the larger domain 
the mesh is too coarse and a phantom pattern arises. (c): the intrinsic Turing pattern is well-resolved for Nx = 600 and N y = 200. The MO-PCG and vector 
solutions are very similar, but the MO approach converges in significant less time (see Table 6).

by the MO-PCG in the case with lumping in Fig. 6. The stationary patterns are the same by the other schemes in vector 
form. As we can see in Fig. 6, in case (a) on the smallest domain only few holes arise in the pattern. In case (b) on the 
larger domain, more structures arise in the pattern, but the mesh is too coarse and a phantom pattern arises. In case (c), the 
intrinsic Turing pattern is well-resolved for Nx = 600 and N y = 200. The MO-PCG and the vector solutions are very similar, 
but the MO approach converges in significant less time (see Table 6). We can say that for the smaller area, all methods 
perform similarly, on the largest area (case (c), more structured pattern) the direct method requires a simulation of more 
than 2 hours, the MO-PCG instead in any case less than 1 hour, about 45 minutes by the lumped FEM.

We conclude this section by remarking that, since the jar-shaped domain in Fig. 2a can be transformed to the cylinder 
� shown in Fig. 2b, the solutions shown in Fig. 6 can be interpreted, after the coordinate transformation (52), as solutions 
to the surface DIB model, that is (79)-(81) where the Laplace operator � is replaced by the Laplace-Beltrami operator �� on 
the cylinder �, see for example [30]. As an example, we report in Fig. 7 the solution of the above cases (a) and (c) wrapped 
on a curvilinear cylinder. The application of the model on a cylindrical surface can be of applicative interest as shown in 
[6], in which the authors consider the use of cylindrical Zn sponges as a means of limiting the shape change and dendrite 
formation issues in Zn-based rechargeable batteries.
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Fig. 7. Numerical solution of Fig. 6 for ρ = 400 (left) and ρ = 20000 (right) mapped onto the cylinder � in Fig. 2b. These results can be interpreted as the 
solution of the DIB surface reaction-diffusion model on �.

6. Conclusions

In this work we have provided a matrix-oriented formulation for Lagrangian finite elements of arbitrarily high order k ∈
N on a general class of separable 2D domains. The proposed approach applies to both elliptic and parabolic PDE problems. 
The discrete problems take the form of a multiterm Sylvester matrix equation (or a sequence of these equations in the 
time-dependent case) of much smaller dimension that is mathematically equivalent to the much larger standard linear 
system in Kronecker form. Since the special case of square domains yields a generalised two-term Sylvester equation, our 
work extends the findings in [9] (based on classical finite differences) to the case of high order FEM in space. Moreover, our 
proposed approach adopts a curvilinear structured mesh that eliminates geometric boundary error and, through a coordinate 
transformation, it applies also to special surface domains, namely cylinders with arbitrary curved boundaries.

We solve each multiterm Sylvester equation through a matrix-oriented PCG method with a matrix-oriented preconditioner 
that is quick to evaluate thanks to its single-term form. We show that such solver is always quicker than the classical PCG in 
vector form for the Poisson elliptic PDE on x-normal and separable domains, both in terms of memory storage and execution 
time. For time-dependent PDEs we compare our approach with the optimised direct solver mldivide of MATLAB. In terms 
of computational time, the matrix-oriented PCG method always improves on the direct solver that relies on the full storage 
of the Kronecker matrix, and the gap increases both with the number of gridpoints N and the polynomial order k of the 
method.
Special consideration deserves the application to reaction-diffusion systems, where the simulation of fine-grained solutions 
requires high spatial resolution, which translates into computationally intense simulations both in time and memory. Our 
experiments for the approximation of Turing patterns in the DIB morphochemical RD system for battery modelling provide 
encouraging results in this direction and support the matrix approach in terms of execution times and storage. The best 
performance gains were observed with P1 elements, both lumped and not lumped. We believe that further improvements 
can be attained through the development of more efficient preconditioners and more efficient solvers for multiterm Sylvester 
equations, such as a truncated PCG [43]. Moreover, the proposed approach is deemed to be suitable for the extension to 
three space dimensions by using structured cubic meshes [20] and/or evolving domains and surfaces [16]. These aspects 
will be addressed in future studies.
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Appendix A. Performance analysis in time and memory

In this Appendix we theoretically compare the performances in time and memory of the vector (60) and matrix PCG 
approaches (65). For ease of presentation, we will consider the decompositions (29) in the absence of lumping for general 
FEM order k ∈N and Dirichlet boundary conditions (γ = 0 in (61)).
On a general separable domain �S , we start by observing that the 2q matrices Aη

s and Aξ
s appearing in (61) have a band 

structure with no more than 2k + 1 nonzero diagonals, amounting to 2q(2k + 1)(N − 1) entries. On the other hand, the 
huge sparse classical stiffness matrix Ã has a band structure with (2k + 1)2 nonzero diagonals, amounting to (2k + 1)2(N −
1)2 entries. Hence the ratio between the memory storage of the stiffness operator for the vector and MO approaches, 
respectively, is given by

Ratiom := (2k + 1)(2N − 1)

2q
=O(kN), (A.1)

i.e. MO-PCG requires a memory storage for Ã linearly smaller, in terms of N and k, than vector PCG. The storage of the 
numerical solution μ(s) and the other auxiliary variables r(s), z(s), q(s) in (59) is equivalent for both approaches. For the 
performances in time (number of operations), each matrix-vector product involving the (2k + 1)2-banded matrix Ã costs 
(2k +1)2(N −1)2 multiplications. In the MO counterpart, this operation translates to 2q matrix-matrix multiplications of size 
(N − 1) × (N − 1). In each of these multiplications, one matrix is full (e.g. U (s) in (65)), while the other is (2k + 1)-banded 
(one of the Aη

s or Aξ
s ). Hence, the MO counterpart of a matrix-vector multiplication costs 2q(2k + 1)(N − 1)2. It follows that 

the ratio in computational cost, for each large matrix-vector product in (60), between matrix and MO-PCG is

Ratiot := (2k + 1)

2q
=O(k), (A.2)

which means that the vector approach is more costly for sufficient high order k ≥ q. For instance, for an x-normal domain, 
we expect a computational advantage when k ≥ 5, because q = 5, see Table 1. It is worth remarking that, for k = 1, the 
Kronecker factors of the lumped stiffness matrix in (44) are more sparse (some are diagonal or bidiagonal instead of tridi-
agonal) than their non-lumped counterparts Aξ

s and Aη
s in (29). Hence, a suitable usage of lumping in the higher order case 

k > 1 [10] might improve the ratio (A.2), resulting in a lower threshold k above which the MO approach is more convenient 
in terms of computations, other than memory. This forms part of our current investigations. We close this section by re-
marking that the matrix-vector and matrix-matrix multiplications in MATLAB (which we use for our numerical experiments) 
are performed through BLAS routines, whose computational cost might differ from our theoretical analysis.
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