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Abstract

In this paper we study in detail some characterizations of Korovkin closures and we also introduce
he notions of onesided upper and lower Korovkin closures. We provide some complete characterizations
f these new closures which separate the roles of approximating functions in a Korovkin system. We also
resent some new characterizations of the classical Korovkin closure in spaces of integrable functions.
gain we can introduce and characterize the upper and lower Korovkin closures. Finally, we provide

ome examples which justify the interest in these new closures.
2024 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

SC: 41A65; 41A36; 41A25; 41A63

eywords: Korovkin closure; Korovkin-type theorems; Korovkin approximation of continuous functions; Korovkin
approximation of integrable functions

1. Introduction and notation

The aim of this paper is to analyze in detail some characterizations of Korovkin closures
nd to highlight the different roles of the functions involved in these characterizations.

This is an old problem in Korovkin approximation theory. Indeed, the classical Korovkin
losure was first introduced in [3] and was studied in [4,5] (see also [2, Notes and References
o Section 4.1,p. 209] and [12, Chapter 6]).

More recently, the Korovkin closure has been also studied in Banach algebras [1] and
indenstrauss spaces [11].

However, until now only necessary and sufficient conditions have been obtained which
nsure that the Korovkin closure coincides with the whole space. Here, we provide some
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characterizations which make it possible to determine exactly the subspace where the con-
vergence of a net of operators can be assured even if this subspace does not coincide with the
whole space. Examples showing the interest of these characterizations are also presented. In
Proposition 2.4 and Corollary 2.5 we shall state some applications of particular interest.

Our analysis conducts us to introduce the notion of onesided Korovkin approximation which
llows us to obtain some interesting consequences.

The introduction of onesided Korovkin approximation takes its origin from [9] where in
he context of set-valued functions it is shown the possibility of studying the convergence
f equicontinuous nets of linear monotone operators on set-valued functions having a convex
raph using only affine set-valued functions (see also [6–8,10]).

We consider different cases of interest both in spaces of continuous than in spaces of
ntegrable functions.

First, we recall the classical definition of Korovkin closure with respect to monotone
respectively, linear positive, linear contractive) operators for the identity operator.

Let X be a compact Hausdorff topological space and let H ⊂ C(X,R).
The Korovkin closure K (H ) of H with respect to monotone (respectively, linear positive,

linear contractive) operators for the identity operator is defined as follows

K (H ) := { f ∈ C(X,R) | lim
i∈I≤

L i ( f ) = f for every equicontinuous net

(L i )
≤

i∈I of monotone (respectively, linear positive,

linear contractive) operators from C(X,R) into

itself satisfying lim
i∈I≤

L i (h) = h uniformly on X

for every h ∈ H} .

Moreover H is said to be a Korovkin system with respect to monotone (respectively, linear
positive, linear contractive) operators for the identity operator if K (H ) = C(X,R).

Our analysis is inspired by a characterization of the Korovkin closure given in condition (v)
in [2, Theorem 4.1.4, p. 199] (see the Notes to Section 4.1.4 of [2] for complete references),
which states that f ∈ K (H ) if and only if
(KS) For every x0 ∈ X and ε > 0, there exist h, k ∈ H such that

h ≤ f ≤ k , k(x0) − ε < f (x0) < h(x0) + ε,

or equivalently, taking into account that X is compact,
(KS)1 For every ε > 0, there exist h1, . . . , hm, k1, . . . , km ∈ H such that

h j ≤ f ≤ k j , j = 1, . . . , m , inf
j=1,...,m

k j − ε < f < sup
j=1,...,m

h j + ε.

The concepts of upper and lower Korovkin closures introduced in the next section are
obtained by considering separately the roles of the functions h j and k j , j = 1, . . . , m, involved
in the above characterizations.

We shall consider these new closures both in spaces of continuous real functions than in
L p-spaces.

2. Onesided Korovkin approximation in spaces of continuous functions

We start with the following main definition.
2
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Definition 2.1. Let X be a compact Hausdorff topological space and let H ⊂ C(X,R).
Then, the upper Korovkin closure (respectively, the lower Korovkin closure) of H with

espect to monotone operators for the identity operator is the subset K (H )+ (respectively,
K (H )−) defined as follows

K (H )+ := { f ∈ C(X,R) | lim sup
i∈I≤

L i ( f ) ≤ f for every equicontinuous net

(L i )
≤

i∈I of monotone operators from C(X,R)
into itself satisfying lim

i∈I≤
L i (h) = h uniformly

on X for every h ∈ H} .

(respectively,

K (H )− := { f ∈ C(X,R) | f ≤ lim inf
i∈I≤

L i ( f ) for every equicontinuous net

(L i )
≤

i∈I of monotone operators from C(X,R)
into itself satisfying lim

i∈I≤
L i (h) = h uniformly

on X for every h ∈ H} .)

Moreover, H is said to be an upper Korovkin system (respectively, a lower Korovkin system)
with respect to monotone operators for the identity operator if K (H )+ = C(X,R) (respectively,
K (H )− = C(X,R)).

The above definition is justified by the equality K (H ) = K (H )+ ∩ K (H )−.
Indeed, if f ∈ K (H )+ ∩ K (H )− and if (L i )

≤

i∈I is an equicontinuous net of monotone
operators from C(X,R) into itself satisfying limi∈I≤ L i (h) = h uniformly on X for every
h ∈ H , we have

f ≤ lim inf
i∈I≤

L i ( f ) ≤ lim sup
i∈I≤

L i ( f ) ≤ f

and this ensures that the limit limi∈I≤ L i ( f ) exists and is equal to f uniformly on X . The
converse inclusion is trivial.

In general, if f is only in the upper (or lower) Korovkin closure, we may not expect that
limi∈I≤ L i ( f ) = f .

However, distinguishing between the upper and lower Korovkin closures, we have the
possibility to construct some new interesting examples of Korovkin closures, as we shall see
in the sequel.

We explicitly observe that the onesided definition is meaningful only with respect to
equicontinuous net of monotone operators. Otherwise, a net of linear operators which converges
on H ⊂ C(X,R) converges also on −H := {−h | h ∈ H} and therefore K (H )+ = K (H )−.

Since K (H )+ and K (H )− are not in general subspaces of C(X,R), it may be also useful
to introduce the following notion.

We define a subset H of C(X,R) to be upward cofinal (respectively, downward cofinal) in
(X,R) if, for every f ∈ C(X,R), there exists k ∈ H such that f ≤ k (respectively, for every

f ∈ C(X,R), there exists h ∈ H such that h ≤ f ).
At this point, we can state the following main characterization.
For the sake of brevity, we shall explicitly state only the results for the upper Korovkin

closure. With the appropriate changes, similar results can be also stated for the lower Korovkin
closure. In general, in this case, functions k ∈ H satisfying f ≤ k and k(x) − ε < f (x) at

some x ∈ X should be replaced with functions h ∈ H such that h ≤ f and f (x) < h(x) + ε.

3
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Theorem 2.2. Let X be a compact Hausdorff topological space and let H be an upward
ofinal subset of C(X,R).

If f ∈ C(X,R), the following statements are equivalent:

(a) f ∈ K (H )+;
(b) For every x0 ∈ X and ε > 0, there exists k ∈ H such that

f ≤ k , k(x0) − ε < f (x0).

(c) For every ε > 0, there exist k1, . . . , km ∈ H such that

f ≤ k j , j = 1, . . . , m , inf
j=1,...,m

k j − ε < f.

Proof. (a) ⇒ (b) Assume that condition (a) holds and by contradiction that there exist x0 ∈ X
and ε0 > 0 such that k(x0) ≥ f (x0) + ε for every k ∈ H satisfying f ≤ k. Consider the
operator L : C(X,R) → C(X,R) defined by setting, for every g ∈ C(X,R) and x ∈ X ,

L(g)(x) = inf
k∈H,g≤k

k(x) .

Since H is upward cofinal, the operator L is well-defined and it is obviously monotone.
Moreover, L(h) = h for every h ∈ H , but

L( f )(x0) = inf
k∈H, f ≤k

k(x) ≥ f (x0) + ε0 .

Hence, the net (L i )
≤

i∈I defined by L i = L for every i ∈ I cannot satisfy the condition
lim supi∈I≤ L i ( f )(x0) ≤ f (x0) and this contradicts condition (a).
(b) ⇒ (c) It follows using a straightforward argument based on the compactness of X .
(c) ⇒ (a) Let (L i )

≤

i∈I be an equicontinuous net of monotone operators from C(X,R) into itself
satisfying

lim
i∈I≤

L i (h) = h

uniformly on X for every h ∈ H .
Let ε > 0 and from (c) consider k1, . . . , km ∈ H such that

f ≤ k j , j = 1, . . . , m , inf
j=1,...,m

k j −
ε

2
< f . (2.1)

ince every L i is monotone, we have, for every i ∈ I ,

L i ( f ) ≤ L i (k j ) , j = 1, . . . , m.

oreover, the net (L i (k j ))
≤

i∈I converges to k j for every j = 1, . . . , m and therefore we can
nd α ∈ I such that, for every i ∈ I , i ≥ α, and j = 1, . . . , m,

k j ≤ L i (k j ) +
ε

2
, L i (k j ) ≤ k j +

ε

2
. (2.2)

From (2.1) and the second inequality in (2.2) we obtain, for every i ≥ α,

L i ( f ) ≤ inf
j=1,...,m

L i (k j ) ≤ inf
j=1,...,m

k j +
ε

2
< f + ε

nd consequently

sup L i ( f ) ≤ f + ε

i≥α

4
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which finally yields

inf
α∈I

sup
i≥α

L i ( f ) ≤ f + ε.

ince ε > 0 is arbitrary, we get lim supi∈I≤ L i ( f ) ≤ f . ■

Now, we give some examples of upper and lower Korovkin systems which can be obtained
rom classical well-known properties.

roposition 2.3. Let (X, σ ) be a compact metric space and, for every λ, µ ∈ R and x0 ∈ X,
onsider the functions rx0,λ,µ, sx0,λ,µ : X → R defined by setting

rx0,λ,µ(x) := λ + µσ (x, x0) , sx0,λ,µ(x) := λ + µσ (x, x0)2 , x ∈ X.

hen, the following subsets of C(X,R):

H+

1 (X ) := {rx0,λ,µ | x0 ∈ X, λ ∈ R, µ ≥ 0, }

H+

2 (X ) := {sx0,λ,µ | x0 ∈ X, λ ∈ R, µ ≥ 0, }

re upper Korovkin systems in C(X,R), while the subsets

H−

1 (X ) := {rx0,λ,µ | x0 ∈ X, λ ∈ R, µ ≤ 0, }

H−

2 (X ) := {sx0,λ,µ | x0 ∈ X, λ ∈ R, µ ≤ 0, }

are lower Korovkin systems in C(X,R).

Proof. We show the property only for H+

1 (X ) since the same arguments can be applied in all
other cases.

Let f ∈ C(X,R), x0 ∈ X and ε > 0. Let M > 0 be such that | f (x) − f (x0)| ≤ M for every
x ∈ X and let δ > 0 be such that | f (x) − f (x0)| ≤ ε/2 whenever x ∈ X satisfies σ (x, x0) ≤ δ.
Now consider the function rx0,λ,µ with λ := f (x0)+ε/2 and µ := M/δ. Then rx0,λ,µ ∈ H+

1 (X ).
We show that f ≤ rx0,λ,µ. Indeed, if x ∈ X and σ (x, x0) ≤ δ we have f (x) ≤ f (x0)+ε/2 ≤

x0,λ,µ(x). If σ (x0, x) > δ we have f (x) ≤ f (x0) + M ≤ rx0,λ,µ(x). Therefore f ≤ rx0,λ,µ(x).
Finally, we obviously have rx0,λ,µ(x0) = f (x0) + ε/2 < f (x0) + ε.
Therefore condition (b) of Theorem 2.2 is satisfied and from Theorem 2.2, (a), the proof is

omplete. ■

Observe that all the subsets H+

1 (X ), H+

2 (X ), H−

1 (X ) and H−

2 (X ) are both upward and
ownward cofinal subsets of C(X,R) since each one of them contains the constant functions.

As a particular case, we can consider X = [a, b]. In this case the functions rx0,λ,µ, sx0,λ,µ :

a, b] → R are defined by setting

rx0,λ,µ(x) := λ + µ|x − x0| , sx0,λ,µ(x) := λ + µ(x − x0)2 , x ∈ [a, b]

nd the corresponding subsets H+

1 ([a, b]) and H+

2 ([a, b]) of C([a, b],R) are upper Korovkin
ystems in C([a, b],R), while the subsets H−

1 ([a, b]) and H−

2 ([a, b]) are lower Korovkin
ystems in C([a, b],R).

Now, we can state some properties of convex and concave functions in connections with the
losure of the above subsets and the subspace of affine functions.
5
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We recall that if f : [a, b] → R is a continuous concave function, there exists c ∈ ]a, b[
uch that

f ′

+
(c) ≤

f (b) − f (a)
b − a

≤ f ′

−
(c) . (2.3)

ndeed, the function g(x) := f (x) −
f (b)− f (a)

b−a (x − a) is continuous and concave and takes the
same value at the endpoints. Hence g attains its maximum at an internal point c ∈ ]a, b[, where
g′

−
(c) · g′

+
(c) ≤ 0. The conditions(

f ′

−
(c) −

f (b) − f (a)
b − a

)
·

(
f ′

+
(c) −

f (b) − f (a)
b − a

)
≤ 0 , f ′

+
(c) ≤ f ′

−
(c)

ield (2.3).
We shall denote by A([a, b],R) the subspace of C([a, b],R) consisting of all affine functions

n [a, b], i.e.,

A([a, b],R) := {h ∈ C([a, b],R) | ∃ p, q ∈ R ∀ x ∈ [a, b] : h(x) := px + q}.

ince A([a, b],R) contains the constant functions, it is both an upward and downward cofinal
ubset of C([a, b],R).

roposition 2.4. If f ∈ C([a, b],R) is concave (respectively, convex) we have f ∈

K (A([a, b],R))+ (respectively, f ∈ K (A([a, b],R))−).

roof. Let f ∈ C([a, b],R) be a concave function and let x0 ∈ [a, b] and ε > 0.
If x0 ∈ ]a, b[, then f has finite left and right derivatives at x0 and we can consider

p ∈ [ f ′
+

(x0), f ′
−

(x0)] and the function k(x) := p(x − x0) + f (x0), x ∈ [a, b]. Then k satisfies
condition (b) in Theorem 2.2 and therefore we obtain f ∈ K (A([a, b],R))+.

Now, assume that x0 = a. If f ′(a) is finite we can consider the tangent k(x) := f ′(a)(x −

)+ f (a) to the graph of f at a and we have again that k satisfies condition (b) in Theorem 2.2
and therefore f ∈ K (A([a, b],R))+.

Finally, assume f ′(a) = +∞. Since f is continuous at a and f ′(a) = +∞ we can find
δ > 0 such that

| f (x) − f (a)| ≤ ε ,
f (x) − f (a)

x − a
≥ 0

or every x ∈ [a, a+δ]; the first inequality also yields f (x) ≤ f (a)+ε for every x ∈ [a, a+δ].
From (2.3), there exists c ∈ ]a, a + δ[ such that

f ′

+
(c) ≤

f (a + δ) − f (a)
δ

≤ f ′

−
(c)

nd, in particular, f ′
−

(c) ≥ 0. Now, consider the left tangent to the graph of f at the point
c, f (c)), i.e. the function k(x) := f (c) + f ′

−
(c)(x − c), x ∈ [a, b]. Since f is concave we have

f ≤ k. Moreover k(a) = f (c) + f ′
−

(c)(a − c) ≤ f (c) ≤ f (a) + ε and therefore also in this
ase condition (b) of Theorem 2.2 is satisfied. Consequently f ∈ K (A([a, b],R))+ and this

completes the proof.
Obviously the same reasoning can be applied to the point b.
Then f satisfies condition (b) in Theorem 2.2 and we can conclude that f ∈

K (A([a, b],R))+.

If f is convex, the reasoning is at all similar. ■

6
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At this point, we can state a further consequence of Propositions 2.3 and 2.4.
We denote by Cconv([a, b],R) (respectively, by Cconc([a, b],R)) the subset of C([a, b],R)

consisting of all continuous convex (respectively, concave) functions on [a, b] and as before by
A([a, b],R) := Cconv([a, b],R) ∩ Cconc([a, b],R) the subspace of all affine functions on [a, b].

Corollary 2.5. We have

Cconv([a, b],R) ⊂ K (A([a, b],R) ∪ H+

1 ([a, b])),

Cconv([a, b],R) ⊂ K (A([a, b],R) ∪ H+

2 ([a, b]))

and further

Cconc([a, b],R) ⊂ K (A([a, b],R) ∪ H−

1 ([a, b])),

Cconc([a, b],R) ⊂ K (A([a, b],R) ∪ H−

2 ([a, b])).

Proof. We show only the inclusion Cconv([a, b],R) ⊂ K (A([a, b],R) ∪ H+

1 ([a, b])) since all
the other ones are similar.

Let f ∈ Cconv([a, b],R) and let x0 ∈ [a, b] and ε > 0.
From Proposition 2.3, we know that H+

1 ([a, b]) is an upper Korovkin system in C([a, b],R).
Moreover, we have already observed that H+

1 ([a, b]) is an upward cofinal subset of C([a, b],R).
Hence, we can apply Theorem 2.2, (b), and obtain the existence of k ∈ H+

1 ([a, b]) ⊂

A([a, b],R) ∪ H+

1 ([a, b]) such that

f ≤ k , k(x0) − ε < f (x0).

Moreover, from Proposition 2.4, we have f ∈ K (A([a, b],R))−. Since A([a, b],R) is a
downward cofinal subset of C([a, b],R), we can apply the analogous of Theorem 2.2, (b),
for the lower closure. This yields the existence of h ∈ A([a, b],R) ⊂ A([a, b],R)∪ H+

1 ([a, b])
such that

h ≤ f , f (x0) < h(x0) + ε.

Since x0 ∈ [a, b] and ε > 0 are arbitrarily chosen, from (KS) we conclude that f ∈

K (A([a, b],R) ∪ H+

1 ([a, b])). ■

As a consequence, if an equicontinuous net (L i )
≤

i∈I of monotone operators from C([a, b],R)
into itself satisfies

lim
i∈I≤

L i (h) = h

uniformly on [a, b] for every affine function h ∈ A([a, b],R) and for every function h(x) :=

λ + µ|x − x0| (or alternatively h(x) := λ + µ(x − x0)2) with x0 ∈ [a, b], λ ∈ R and µ ≥ 0,
then it converges to f for every convex function f ∈ Cconv([a, b],R).

Analogously, if (L i )
≤

i∈I converges to h for every affine function h ∈ A([a, b],R) and for
every function h(x) := λ+µ|x − x0| (or alternatively h(x) := λ+µ(x − x0)2) with x0 ∈ [a, b],

λ ∈ R and µ ≤ 0, then it converges to f for every concave function f ∈ Cconc([a, b],R).

7
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3. Onesided Korovkin approximation in L p-spaces

Convergence properties of suitable sequences of operators in L p-spaces are often obtained
y using the same characterizations which hold in spaces of continuous functions and the
niversal Korovkin properties (see [2, Section 3.2 and Corollary 4.1.7]).

Our aim is to obtain an independent and general specific characterization of the Korovkin
losures in L p-spaces and also in this case to introduce and study upper and lower Korovkin

closures.
First, we fix some notation.
Let X be a compact Hausdorff topological space and µ be a positive Radon measure on X .
It is well-known (see, e.g., [2, Theorem 1.2.4]) that there exists a unique regular finite

orel measure ν on X such that µ( f ) =
∫

f dν for every function f : X → R. To avoid
upplementary notation, we shall denote all integrals by

∫
f dµ.

Let 1 ≤ p ≤ +∞ and consider the space L p(X, µ) endowed with the usual norm
f ∥p :=

(∫
X | f (x)|p)1/p if 1 ≤ p < +∞ and ∥ f ∥∞ := ess supx∈X | f (x)| if p = +∞.

The Korovkin closure of a subset H ⊂ L p(X, µ) with respect to equicontinuous nets of
monotone operators is defined as follows

K (H )p := { f ∈ L p(X, µ) | lim
i∈I≤

∥L i ( f ) − f ∥p = 0 for every equicontinuous net

(L i )
≤

i∈I of monotone operators from L p(X, µ)

into itself satisfying lim
i∈I≤

∥L i (h) − h∥p = 0

for every h ∈ H} .

In this general context it may be interesting to consider also nets of positive linear operators
respectively, of contractive positive linear operators). However, for the sake of brevity, we shall
mit the discussion of the Korovkin closures corresponding to these nets of operators.

In L p-spaces, a subset H of L p(X, µ) is said to be cofinal in L p(X, µ) if, for every
f ∈ L p(X, µ), there exist h, k ∈ H such that k ≤ f ≤ h almost everywhere in X .

At this point, we can state the following characterization of K (H )p.

heorem 3.1. Let X be a compact Hausdorff topological space, µ be a positive Radon
easure on X and 1 ≤ p ≤ +∞.
Let H be a cofinal subset of L p(X, µ).
If f ∈ L p(X, µ), the following statements are equivalent:

(a) f ∈ K (H )p.
(b) For almost all x0 ∈ X and for every ε > 0, there exist h, k ∈ H and a neighborhood U

of x0 such that h ≤ f ≤ k a.e. and, if 1 ≤ p < ∞,(∫
K

|k(x) − f (x)|p dµ(x)
)1/p

≤
µ(K )
µ(X )

ε,(∫
K

| f (x) − h(x)|p dµ(x)
)1/p

≤
µ(K )
µ(X )

ε

whenever K is a measurable subset of U, while, if p = ∞,

ess sup |k(x) − f (x)| ≤ ε , ess sup | f (x) − h(x)| ≤ ε.

x∈U x∈U

8
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(c) For almost all x0 ∈ X and for every ε > 0, there exist h, k ∈ H and a neighborhood U
of x0 such that h ≤ f ≤ k a.e. and, if 1 ≤ p < ∞,(∫

K
|k(x) − h(x)|p dµ(x)

)1/p

≤
µ(K )
µ(X )

ε

whenever K is a measurable subset of U, while, if p = ∞,

ess sup
x∈U

|k(x) − h(x)| ≤ ε.

(d) For every ε > 0, there exist h1, . . . , hm, k1, . . . , km ∈ H such that

h j ≤ f ≤ k j a.e. , j = 1, . . . , m,

and  inf
j=1,...,m

k j − sup
j=1,...,m

h j


p

≤ ε.

roof. (a) ⇒ (b) Let f ∈ K (H )p. We show only the existence of the function k ∈ H in (b),
ince the proof of the existence of the function h is at all similar.

By contradiction, assume that there exists a measurable subset S ⊂ X such that µ(S) :=

> 0 and ε0 > 0 such that, for every x0 ∈ S, for every k ∈ H such that f ≤ k a.e. and for
every neighborhood U of x0, we have, for some measurable subset K of U ,(∫

K
|k(x) − f (x)|p dµ(x)

)1/p

≥
µ(K )
µ(X )

ε0

f 1 ≤ p < ∞ or

ess sup
x∈K

|k(x) − f (x)| ≥
µ(K )
µ(X )

ε0

if p = ∞.
Consider the operator L : L p(X, µ) → L p(X, µ) defined by setting, for every g ∈ L p(X, µ)

and x ∈ X ,

L(g)(x) := g(x) + inf
U neighborhood of x

k∈H,g≤k a.e.

sup
K⊂U,

µ(K )>0

µ(X )
µ(K )

(∫
K

|k(t) − g(t)|p dµ(t)
)1/p

f 1 ≤ p < ∞ or

L(g)(x) := g(x) + inf
U neighborhood of x

k∈H,g≤k a.e.

ess sup
t∈U

|k(t) − g(t)|

f p = ∞.
Since H is cofinal, L is well-defined and it is obviously monotone. Moreover, for every

h ∈ H , we have L(h) = h but

∥L( f ) − f ∥p ≥

(∫
S
|L( f )(t) − f (t)|p dµ(t)

)1/p

≥ ε0 s1/p

f 1 ≤ p < ∞ or

∥L( f ) − f ∥p ≥ ess sup |L( f )(x0) − f (x0)| ≥ ε0

x0∈S

9
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(

i

i
(
a
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s

i

U
a
t

if p = ∞.
Hence a net (L i )

≤

i∈I defined by L i := L for every i ∈ I converges to h for every h ∈ H but
L i ( f ))≤i∈I does not converge to f in L p(X, µ) and this contradicts condition (a).
b) ⇒ (c) It is obvious since(∫

K
|k(t) − h(t)|p dµ(t)

)1/p

≤

(∫
K

|k(t) − f (t)|p dµ(t)
)1/p

+

(∫
K

| f (t) − h(t)|p dµ(t)
)1/p

f 1 ≤ p < ∞ or

ess sup
t∈U

|k(t) − h(t)| ≤ ess sup
t∈U

|k(t) − f (t)| + ess sup
t∈U

| f (t) − h(t)|

f p = ∞.
c) ⇒ (d) Let ε > 0. Since H is cofinal, we can consider h0, k0 ∈ H such that h0 ≤ f ≤ k0
lmost everywhere. Let N be the subset of X consisting of all x0 ∈ X such that condition (c)
oes not hold at x0. Hence µ(N ) = 0 and since µ is regular there exists an open measurable
ubset S of X such that N ⊂ S and∫

S
|k0(x) − h0(x)|p dµ(x) ≤

1
2
ε p

if 1 ≤ p < ∞ or

ess sup
x∈S

|k0(x) − h0(x)| ≤ ε

f p = ∞.
For every x0 ∈ X \ S, we can consider h, k ∈ H and an open measurable neighborhood

(x0) of x0 as provided in condition (c). The subset X \ S is compact and hence we can extract
finite covering (U j ) j=1...,m of X \ S. Moreover, from condition (c), for every j = 1, . . . , m,

here exist h j , k j ∈ H such that h j ≤ f ≤ k j a.e. and, for every measurable subset K of U j ,∫
K

|k j (x) − h j (x)|p dµ(x) ≤
µ(K )
2µ(X )

ε p

if 1 ≤ p < ∞ or

ess sup
x∈K

|k j (x) − h j (x)| ≤ ε

if p = ∞.
Setting U0 := S, we obtain a finite covering (U j ) j=0,1,...,m of X .
Now, set K0 := S and, for every j = 1, . . . , m, K j := U j \ (U0 ∪ · · · ∪ U j−1).
Then (K j ) j=0,...,m is a finite covering of pairwise disjoint measurable subsets of X and

obviously inf
j=0,...,m

k j − sup
j=1,...,m

h j


p

p

=

∫
S
| inf

j=0,1,...,m
k j (x) − sup

j=1,...,m
h j (x)|p dµ(x)

+

m∑
j=1

∫
K j

| inf
i=0,1,...,m

ki (x) − sup
i=1,...,m

hi (x)|p dµ(x)

≤

∫
|k0(x) − h0(x)|p dµ(x)
S

10
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i

p
(
i
l

H

+

m∑
j=1

∫
K j

|k j (x) − h j (x)|p dµ(x)

≤
1
2

ε p
+

ε p

2µ(X )

m∑
j=1

µ(K j ) ≤ ε p

if 1 ≤ p < ∞ or inf
j=0,...,m

k j − sup
j=1,...,m

h j


∞

= max
j=0,1,...,m

ess sup
x∈K j

| inf
i=0,1,...,m

ki (x) − sup
i=1,...,m

hi (x)|

≤ max
j=0,1,...,m

ess sup
x∈K j

|k j (x) − h j (x)| ≤ ε

f p = ∞.
In any case, we have obtained

inf j=0,...,m k j − sup j=1,...,m h j


p
≤ ε and this completes the

roof of d).
d) ⇒ (a) Let (L i )

≤

i∈I be an equicontinuous net of monotone operators from L p(X, µ)
nto itself satisfying limi∈I≤ ∥L i (h) − h∥p = 0 for every h ∈ H . In order to show that
imi∈I≤ ∥L i ( f ) − f ∥p = 0 we fix ε > 0 and consider h1, . . . , hm, k1, . . . , km ∈ H such that

h j ≤ f ≤ k j a.e. , j = 1, . . . , m , ∥ inf
j=1,...,m

k j − sup
j=1,...,m

h j∥p ≤
ε

2
.

It follows also

sup
j=1,...,m

h j ≤ f ≤ inf
j=1,...,m

k j a.e.

and since every L i , i ∈ I , is monotone, we have also, for every i ∈ I ,

L i (h j ) ≤ L i ( f ) ≤ L i (k j ) a.e.

Moreover, since the nets (L i (h j ))
≤

i∈I and (L i (k j ))
≤

i∈I converge to h j and respectively k j for
every j = 1, . . . , m, we can find α ∈ I such that, for every i ≥ α and j = 1, . . . , m,

∥L i (h j ) − h j∥p ≤
ε

4m
, ∥L i (k j ) − k j∥p ≤

ε

4m
.

Fix i ≥ α and consider the sets

X+

i := {x ∈ X | L i ( f )(x) − f (x) ≥ 0} , X−

i := {x ∈ X | L i ( f )(x) − f (x) ≤ 0}.

For every j = 1, . . . , m and almost all x ∈ X+

i , we have

0 ≤ L i ( f )(x) − f (x) ≤ L i (k j )(x) − h j (x)
= L i (k j )(x) − k j (x) + k j (x) − h j (x)
≤ |L i (h j )(x) − h j (x)| + |L i (k j )(x) − k j (x)| + (k j (x) − h j (x))

and analogously, for almost all x ∈ X−

i ,

0 ≤ −L i ( f )(x) + f (x) ≤ −L i (h j )(x) + k j (x)
= −L i (h j )(x) + h j (x) + k j (x) − h j (x)
≤ |L i (h j )(x) − h j (x)| + |L i (k j )(x) − k j (x)| + (k j (x) − h j (x)) .

ence, for almost all x ∈ X ,
|L i ( f )(x) − f (x)| ≤|L i (h j )(x) − h j (x)| + |L i (k j )(x) − k j (x)| + (k j (x) − h j (x))

11
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w

≤

m∑
s=1

|L i (hs)(x) − hs(x)| +

m∑
s=1

|L i (ks)(x) − ks(x)|

+ (k j (x) − h j (x)) .

The preceding inequality holds for every j = 1, . . . , m and therefore we have also

|L i ( f )(x) − f (x)| ≤

m∑
s=1

|L i (hs)(x) − hs(x)| +

m∑
s=1

|L i (ks)(x) − ks(x)|

+ inf
j=1,...,m

k j (x) − sup
j=1,...,m

h j (x) .

Finally, we have

∥L i ( f ) − f ∥p ≤

m∑
j=1

∥L i (h j ) − h j∥p +

m∑
j=1

∥L i (k j ) − k j∥p

+

 inf
j=1,...,m

k j − sup
j=1,...,m

h j


p

≤

m∑
j=1

ε

4m
+

m∑
j=1

ε

4m
+

ε

2
= ε

nd this completes the proof. ■

Condition (b) of Theorem 3.1 suggests to distinguish also in the L p-setting between the
pper and lower Korovkin closures.

We start with the following main definition.

efinition 3.2. Let 1 ≤ p ≤ ∞ and let H ⊂ L p(X, µ).
The upper Korovkin closure (respectively, the lower Korovkin closure) of H in L p(X, µ)

ith respect to monotone operators for the identity operator is the subset K (H )+p (respectively,
K (H )−p ) defined as follows

K (H )+p := { f ∈ L p(X, µ) | lim
i∈I≤

∥(L i ( f ) − f )+∥p = 0 for every equicontinuous

net (L i )
≤

i∈I of monotone operators from L p(X, µ)

into itself satisfying lim
i∈I≤

∥L i (h) − h∥p = 0 for

every h ∈ H} .

(respectively,

K (H )−p := { f ∈ L p(X, µ) | lim
i∈I≤

∥(L i ( f ) − f )−∥p = 0 for every equicontinuous

net (L i )
≤

i∈I of monotone operators from L p(X, µ)

into itself satisfying lim
i∈I≤

∥L i (h) − h∥p = 0 for

every h ∈ H} .)

As usual, we have denoted by f +
:= max{ f, 0} (respectively, by f −

:= max{− f, 0}) the

positive (respectively, negative) part of f .

12
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s

(
e
n

F

Moreover, H is said to be an upper Korovkin system (respectively, a lower Korovkin
ystem) with respect to monotone operators for the identity operator if K (H )+p = L p(X, µ)

(respectively, K (H )−p = L p(X, µ)).

Also in this case, it may be useful to distinguish the upward and downward cofinal property.
Namely, a subset H of L p(X, µ) is said to be upward cofinal (respectively, downward

cofinal) in L p(X, µ) if, for every f ∈ L p(X, µ), there exists h ∈ H such that f ≤ h almost
everywhere (respectively, for every f ∈ L p(X, µ), there exists k ∈ H such that k ≤ f almost
everywhere).

In the following result we state a characterization of the upper Korovkin closure. The
corresponding characterization of the lower Korovkin closure can be obtained in a similar way
and it is omitted for the sake of brevity.

Theorem 3.3. Let X be a compact Hausdorff topological space, µ be a positive Radon
measure on X and 1 ≤ p ≤ +∞.

Let H be an upward cofinal subset of L p(X, µ).
If f ∈ L p(X, µ), the following statements are equivalent:

(a) f ∈ K (H )+p .
(b) For almost all x0 ∈ X and for every ε > 0, there exist k ∈ H and a neighborhood U of

x0 such that f ≤ k a.e. and, if 1 ≤ p < ∞,(∫
K

|k(x) − f (x)|p dµ(x)
)1/p

≤
µ(K )
µ(X )

ε,

whenever K is a measurable subset of U, while, if p = ∞,

ess sup
x∈U

|k(x) − f (x)| ≤ ε

(c) For every ε > 0, there exist k1, . . . , km ∈ H such that

f ≤ k j a.e. , j = 1, . . . , m,

and  inf
j=1,...,m

k j − f


p
≤ ε.

Proof. (a) ⇒ (b) The proof is at all similar to that of (a) ⇒ (b) in Theorem 3.1, taking into
account that the operator L considered there satisfies (L( f ) − f )+ = L( f ) − f a.e.
b) ⇒ (c) Let ε > 0. Since H is upward cofinal, there exists k0 ∈ H such that f ≤ k0 almost
verywhere. Let N be the subset of X consisting of all x0 ∈ X such that condition (b) does
ot hold at x0. Hence µ(N ) = 0 and since µ is regular there exists an open measurable subset

S of X such that N ⊂ S and∫
S
|k0(x) − h0(x)|p dµ(x) ≤

1
2
ε p

if 1 ≤ p < ∞ or

ess sup
x∈S

|k0(x) − h0(x)| ≤ ε.

or every x0 ∈ X \ S, we can consider h, k ∈ H and an open measurable neighborhood U (x0)
of x as provided in condition (b). The subset X \ S is compact and hence we can extract a
0

13
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i

i

i

(
(
i
l

I

M
ε

finite covering (U j ) j=1...,m of X \ S. Moreover, from condition (b), for every j = 1, . . . , m,
there exists k j ∈ H such that f ≤ k j a.e. and, for every measurable subset K of U j ,∫

K
|k j (x) − f (x)|p dµ(x) ≤

µ(K )
2µ(X )

ε p

if 1 ≤ p < ∞ or

ess sup
x∈K

|k j (x) − f (x)| ≤ ε

f p = ∞.
Setting U0 := S, we obtain a finite covering (U j ) j=0,1,...,m of X .
Now, set K0 := S and, for every j = 1, . . . , m, K j := U j \ (U0 ∪ · · · ∪ U j−1).
Then (K j ) j=0,...,m is a finite covering of pairwise disjoint measurable subsets of X and

obviously inf
j=0,...,m

k j − f
p

p
=

∫
S
| inf

j=0,1,...,m
k j (x) − f (x)|p dµ(x)

+

m∑
j=1

∫
K j

| inf
i=0,1,...,m

ki (x) − f (x)|p dµ(x)

≤

∫
S
|k0(x) − f (x)|p dµ(x) +

m∑
j=1

∫
K j

|k j (x) − f (x)|p dµ(x)

≤
1
2

ε p
+

ε p

2µ(X )

m∑
j=1

µ(K j ) ≤ ε p

f 1 ≤ p < ∞ or inf
j=0,...,m

k j − f


∞

= max
j=0,1,...,m

ess sup
x∈K j

| inf
i=0,1,...,m

ki (x) − f (x)|

≤ max
j=0,1,...,m

ess sup
x∈K j

|k j (x) − f (x)| ≤ ε

f p = ∞.
In any case, we have obtained

inf j=0,...,m k j − f


p ≤ ε and this completes the proof of
c).
c) ⇒ (a) Let (L i )

≤

i∈I be an equicontinuous net of monotone operators from L p(X, µ)
nto itself satisfying limi∈I≤ ∥L i (h) − h∥p = 0 for every h ∈ H . In order to show that
imi∈I≤ ∥(L i ( f ) − f )+∥p = 0 we fix ε > 0 and consider k1, . . . , km ∈ H such that

f ≤ k j a.e. , j = 1, . . . , m , ∥ inf
j=1,...,m

k j − f ∥p ≤
ε

2
.

t follows also, for every j = 1, . . . , m and i ∈ I ,

L i ( f ) ≤ L i (k j ) a.e.

oreover, there exists α ∈ I such that, for every i ≥ α and j = 1, . . . , m, ∥L i (k j ) − k j∥p ≤

/(2m).
For every i ≥ α, let X+

i := {x ∈ X | L i ( f )(x) − f (x) ≥ 0}; hence, for almost all x ∈ X+

i ,

0 ≤L ( f )(x) − f (x) ≤ L (k )(x) − f (x)
i i j

14
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F
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w

K
p

P
m

a

P

a
C
T

M

=L i (k j )(x) − k j (x) + k j (x) − f (x)
≤|L i (k j )(x) − k j (x)| + (k j (x) − f (x))

≤

m∑
s=1

|L i (ks)(x) − ks(x)| + (k j (x) − f (x))

and, since j = 1, . . . , m is arbitrary, we have also

0 ≤ L i ( f )(x) − f (x) ≤

m∑
j=1

|L i (k j )(x) − k j (x)| +

(
inf

j=1,...,m
k j (x) − f (x)

)
.

inally, it follows

∥(L i ( f ) − f (x))+∥p ≤

m∑
j=1

∥L i (k j ) − k j∥p +

(
inf

j=1,...,m
k j (x) − f (x)

)
≤ ε

nd this completes the proof. ■

Of course, we have K (H )p = K (H )+p ∩ K (H )−p and in general K (H )p does not coincide
ith K (H )+p nor with K (H )−p .
However, if we limit ourselves to consider equilipschitzian nets of monotone operators, the

orovkin closure and the upper and lower Korovkin closures coincide, as stated in the following
roposition.

roposition 3.4. Let X be a compact Hausdorff topological space, µ be a positive Radon
easure on X and 1 ≤ p ≤ +∞.
Let H be a cofinal subset of L p(X, µ).
If f ∈ K (H )+p or f ∈ K (H )−p and if (L i )

≤

i∈I is an equilipschitzian net of monotone operators
from L p(X, µ) into itself satisfying limi∈I≤ ∥L i (h) − h∥p = 0 for every h ∈ H, then we have

lso

lim
i∈I≤

∥L i ( f ) − f ∥p = 0.

roof. We consider the case where f ∈ K (H )+p . Let (L i )
≤

i∈I be an equilipschitzian net of
monotone operators from L p(X, µ) into itself satisfying limi∈I≤ ∥L i (h) − h∥p = 0 for every
h ∈ H and let M > 0 such that ∥L i (g1) − L i (g2)∥p ≤ M∥g1 − g2∥p for every i ∈ I and
g1, g2 ∈ L p(X, µ).

Let ε > 0; with the same reasoning as in the proof of (c) ⇒ (a) in Theorem 3.3, we can
consider k1, . . . , km ∈ H such that

f ≤ k j a.e. , j = 1, . . . , m , ∥ inf
j=1,...,m

k j − f ∥p ≤
ε

2
nd we can obtain α ∈ I such that, for every i ≥ α and j = 1, . . . , m, ∥L i (k j )−k j∥p ≤ ε/(2m).
onsequently, for every i ≥ α and almost all x ∈ X+

i (see the proof of (c) ⇒ (a) in
heorem 3.3),

0 ≤ L i ( f )(x) − f (x) ≤

m∑
j=1

|L i (k j )(x) − k j (x)| +

(
inf

j=1,...,m
k j (x) − f (x)

)
.

oreover, for almost all x ∈ X such that L i ( f )(x)− f (x) ≤ 0 we have, for every j = 1, . . . , m,

0 ≤ f (x) − L ( f )(x) ≤ k (x) − L (k )(x) + L (k )(x) − L ( f )(x)
i j i j i j i

15
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and hence

|(L i ( f ) − f )−(x)| ≤

m∑
j=1

|k j (x) − L i (k j )(x)| +

m∑
j=1

|L i (k j )(x) − L i ( f )(x)| .

Finally, taking into account the equilipschitzian property,

∥(L i ( f ) − f )−∥p ≤

m∑
j=1

∥L i (k j ) − k j∥p +

m∑
j=1

∥L i (k j ) − L i ( f )∥p

≤

m∑
j=1

∥L i (k j ) − k j∥p + M
m∑

j=1

∥k j − f ∥p .

utting together the above inequalities, we obtain

∥L i ( f ) − f (x)∥p ≤

m∑
j=1

∥L i (k j ) − k j∥p + (M + 1)
(

inf
j=1,...,m

k j (x) − f (x)
)

≤ ε +
M
2

ε

nd this shows that limi∈I≤ ∥L i ( f ) − f ∥p = 0. ■
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