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A B S T R A C T

Parkinson’s disease (PD), to date, is widespread. It is a neurodegenerative disease that impairs the quality of life 
of the affected, as it is a slowly but progressively evolving disease. This paper presents a smart glove for eval
uating PD patients by monitoring hand tremors and evaluating specific exercises involved by the MDS-UPDRS 
(Movement Disorder Society - Unified Parkinson Disease Rating Scale), enabling disease evolution assessment. 
The smart glove consists of a TPU flexible support, integrating two flexible MEMS piezoelectric sensors based on 
Aluminum Nitride and an inertial sensor to detect finger and arm movements. The smart glove integrates an 
electronic conditioning section for piezoelectric signals to make them suitable for the following acquisition by a 
microcontroller section based on nRF52840 SoC, which jointly processes the piezoelectric and inertial signals 
related to standard patient’s hand and arm exercises (i.e., finger tapping, fist opening/closing of the hand, resting 
hand tremor), assigning them scores according to the MDS-UPDRS. Three embedded Machine Learning (ML) 
algorithms based on Neural Networks (NN) were deployed to classify piezoelectric and inertial signals. Seven 
individuals, six of them with diagnosed PD, were involved in developing ML models. Datasets were gathered to 
train and test the ML algorithms, constituted by signal samples related to three tests involved in the UPDRS scale 
according to PD severity. The tests demonstrated the proper operation of the proposed smart glove in tracking the 
movement changes induced by PD; also, the developed embedded ML algorithms showed performance in clas
sifying hand/arm movements, reaching 95.12 %, 98.39 %, and 96.62 % for finger-tapping, hand-fist closure, and 
resting tremor, respectively.

1. Introduction

Parkinson’s Disease (PD) was first described in 1817 by the British 
physician James Parkinson. Motor function disorders, such as bradyki
nesia (i.e., slowness of movement), akinesia (i.e., impaired voluntary 
movement), rigidity, and tremor, are induced by the degeneration of 
these neurons [1]. Unfortunately, there is no known cure for PD, and the 
drugs available can help but only allow a reduction of symptoms; 
therefore, to manage the pathology, it is important to monitor the pa
tient’s motor disorder and his neurophysiological signals accurately. 
Remote monitoring systems, continuous over time and easy to use, could 
positively impact the health of the people involved and the management 
of clinical trials. Through wearable devices, the specialist doctor could 
better understand the disease and all its nuances more effectively than 

the sporadic controls and self-assessment [2,3]. Multiple methods for 
diagnosing and monitoring PD have been described in the scientific 
literature using accelerometers, gyroscopes, or EMG sensors to evaluate 
the kinetic properties or muscle activity of various body areas [4–6]; 
also, triboelectric nanogenerators (TENGs) provide an additional option 
for continuous PD monitoring because they are comfortable and 
stretchable. A. Vera et al., in Ref. [7], reported a triboelectric nano
generator to monitor PD based on Ecoflex™ and PEDOT: PSS. The sensor 
is placed on the forearm to detect hand movements (e.g., tremors, finger 
tapping, rigidity). It was included in a wearable sensor to evaluate PD 
problems and moderate slowing problems [8]. Also, N. Kim et al. 
developed a stretchable TENG to monitor PD using catechol, chitosan, 
and diatom from the ocean [9]. The Catechol-Chitosan-Diatom Hydrogel 
(CCDHG)-TENG was deposited on M-shaped Kapton support. The 
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resulting sensor is applied to the patient’s wrist, processing the voltage 
signal by an ML algorithm to determine the state of the PD patient. Also, 
inertial sensors can be used to evaluate PD patients’ condition. M. 
Heijmans et al. in Ref. [10] used three inertial sensors, each containing 
an accelerometer and a gyroscope, placed around the wrists and on the 
chest. These sensors gathered tremor data and compared it with those 
provided by the ESM (Experience Sampling Method) questionnaires 
provided to the PD patient during the day to verify the reliability and 
smooth operation of the sensors. In addition, S. Sajal et al. combined rest 
tremor and voice degradation by collecting data remotely utilizing 
smartphones and employing a cloud-based machine learning system for 
telemonitoring PD patients [11]. Also, M. Yousef et al. proposed a 
wearable device for tremor detection using three different storage and 
monitoring modalities, i.e., offline, online, and live monitoring [12].

Piezoelectric and piezoresistive transducers can detect hand and 
finger movements. A. Batra et al. presented a low-cost, lightweight metal 
ring with a PVDF piezoelectric transducer [13]. Intentional rhythmic 
and random tremors were used to test the performance of their proto
type piezo-ring. Amplitude and frequency are easily extracted from the 
waveform seen on the oscilloscope. Furthermore, amplitude and signal 
energy may be extracted from frequency spectra and used as a tremor 
severity metric. Finally, a multimodal smart glove for PD assessment was 
presented in Ref. [14]. The glove comprises bending and pressure sen
sors, as well as an IMU (Inertial Measurement Unit). Sensor’s data were 
classified through K-Means and Back Propagation Neural Networks to 
classify muscle strength and tremor, achieving 95.38 % accuracy. In 
addition, in Ref. [15], the authors developed a smart glove including 
piezoresistive and inertial sensors to remotely assess the motor symp
toms of PD. Indeed, the device includes three flexure sensors and an IMU 
to detect finger and arm movements during the execution of six standard 
exercises associated with the MDS-UPDRS-III. The data acquired by the 
glove are shared by MQTT with a local gateway, where data are pro
cessed to extract useful features for quantifying the disease severity.

This paper presents a compact and non-invasive smart glove based 
on advanced and commercial sensors to evaluate PD severity. The device 
consists of flexible support to be applied to the hand equipped with 

piezoelectric and inertial sensors to acquire and process on board the 
data related to the hand tremor using sensors, providing direct indexes 
indicating the patient’s condition (Fig. 1). In detail, the device relies on 
highly flexible and thin piezoelectric sensors based on Aluminum 
Nitride (AlN), whose manufacturing process is patented by the Italian 
Institute of Technology (IIT), featured by high sensitivity in detecting 
body movements [16,17]. Two piezoelectric sensors are integrated into 
the flexible support: one near the junction between the thumb and index 
finger, the other near the index finger. Neurologists diagnose and 
evaluate PD based on the patient’s medical records, a visual inspection 
of their movements, and additional evaluation using the Unified Par
kinson’s Disease Rating Scale (UPDRS). C. Goetz et al., in Ref. [18], 
introduced the MDS-UPDRS method, describing its function and struc
ture; this scale has four parts: Part I deals with “non-motor experiences 
of daily living”, Part II concerns “motor experiences of daily living”, Part 
III regards “motor examination”, and Part IV the “motor complications”. 
Concerning hand movement disorders, the clinic assessment involves 
some physical tests, examined based on visual analysis, to which a score 
is assigned. Our system considers three standard tests associated with 
the MDS-UPDRS-III to evaluate PD patients: finger tapping, hand fist 
closure, and resting tremor. The piezoelectric and inertial signals are 
acquired and processed by glove and classified using embedded Machine 
Learning (ML) algorithms for scoring the PD patient. Test results are 
sent, processed, and stored in a digital record on a cloud platform, 
allowing neurologists to monitor the patient’s course easily. The device 
allows the PD patient to perform the tests alone at home, enabling the 
neurologist to access it remotely also making the assessment more 
objective and effective than a visual one.

2. Material and methods

2.1. Architecture of the proposed smart glove

The proposed wearable device relies on a flexible glove wrapped 
around the hand back, palm, and index finger-thumb junction, that in
cludes two AlN-based piezoelectric sensors [16,17]. One 

Fig. 1. Graphical representation of the monitoring system for Parkinson’s patients based on the proposed smart glove.
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half-moon-shaped sensor is placed between the thumb and index finger, 
while the second rectangular-shaped sensor is placed on the back close 
to the index finger. The two piezoelectric sensors made by a 
manufacturing process patented from IIT are characterized by the 
following specifications: 0.012 V Pa-1m-2 and 0.017 V Pa-1m-2 sensi
tivity, 3.6 10− 9 V2 and 3.9 10− 9 V2 noise level, 20 mm × 10 mm × 26 μm 
and 32 mm × 10 mm × 26 μm dimensions, for the rectangular- and 
half-moon-shaped sensors, respectively [16,19]. Also, they are highly 
resilient and stable in performance, making them suitable for this 
application. The PD’s hand tremor is usually defined as a “Pill-Rolling” 
tremor, where the thumb and forefinger appear to roll something, like a 
small pill, between them [20]. Thus, the position of the two piezoelectric 
sensors was selected based on the study of areas mainly involved in this 
characteristic tremor to maximize the applied solicitation and, thus, 
their response; also, their shape has been carefully evaluated to better 
adapt to the anatomical area and, therefore, improve mechanical 
coupling. The sensors were installed into the glove in fixed positions, 
becoming integral with it and realizing inserts through which the U-FL 
(Ultra Miniature Coaxial) connectors can pass. Therefore, by wearing 
the device, the positions of the sensors will remain almost fixed on the 
patient’s hand, ensuring high repeatability of the generated signals. 
Both sensors can capture hand and finger tremors, generating an output 
signal that may be analyzed to acquire information about the health 
status of a patient with PD. The raw signals from the two sensors are 
input to a low-power conditioning block, which provides the condi
tioned signals acquired by the nRF52840 SoC (System on Chip) (man
ufactured by Nordic Semiconductor Inc.) integrated on a Seeeduino 
XIAO BLE board. Also, the nRF52840 SoC is interfaced with the 
LSM6DS3 6-axis IMU (manufactured by STMicroelectronics Inc.), 
enabling acquiring data related to hand movements and tremors. The 
IMU features 16-bit resolution, configurable full-scale for accelerometer 
(±2/± 4/± 8/± 16 g) and gyroscope (±125/± 250/± 500/± 1000/±
2000 dps-degrees per second), 3.3 V supply voltage (typical value), 
compact footprint (2.5 mm × 3 mm × 0.83 mm), and compatibility with 
SPI and I2C serial interfaces. The inertial sensor is placed on the hand on 
the back of the hand to detect hand and arm movements.

The nRF52840 microcontroller acquires data from the interfaced 
sensors and pre-processes them (i.e., de-trending, digital filtering, en
velope extraction, etc.) and elaborates them to evaluate the progress of 
Parkinson’s disease. In particular, based on the evaluation of acquired 
data, UPDRS scores (from 0 to 4) are provided as an output to the sys
tem, which allows for quantifying the degree of severity and progress of 
the disease. In particular, evaluating the patient involves executing 
predefined exercises and monitoring limb movements over a given time 
window, according to the modalities defined by the MDS-UPDRS scale. 
The scores are a function of the intensity, constancy over time, and 
frequency of the tremor acquired from the piezoelectric and inertial 
sensors [21]. The acquired data related to hand and finger movements 
are processed through embedded ML algorithms based on NN, as 
detailed in Section 5. Three tests were performed by the smart glove: 
finger-tapping, fist opening/closing, and resting hand tremor). The de
vice also comprises an MAX30102 PPG (Photoplethysmographic) sensor 
integrated into the wrist to measure heart rate (HR) and blood 
oxygenation (SpO2). These parameters provide useful information about 
the condition of the cardio-respiratory system; HR monitoring is 
important for PD patients since the disease damages the automatic 
nervous system, inducing bradycardia, namely a slowing of the heart
beat compared to the normal heart rate [22]. Also, heart rate variability 
(HRV) can be estimated from the PPG signal, also providing information 
on the status of the automatic nervous system; in PD patients, a reduc
tion of HRV occurs with the disease advancement due to impaired 
parasympathetic regulation [23].

Data are periodically transmitted via Bluetooth by the nRF52840 
built-in transceiver to a PC or smartphone, which acts as a gateway 
(Fig. 2). It collects data, arranges it into packets containing a patient ID, 
its UPDRS scores, and a timestamp, and forwards it toward the cloud 
platform via the MQTT (Message Queue Telemetry Transport), where 
data is displayed on a dashboard, stored and classified according to the 
patient’s ID. The data is sorted into different files according to the pa
tient’s ID; each patient will have their medical record. A 370 mAh 
lithium battery feeds the entire electronic section; the BQ25101 battery 
management chip (manufactured by Texas Instruments Inc.), integrated 

Fig. 2. Block diagram of the smart glove with highlighted main components and functionalities: a dual-channel system with conditioning block, interfacing the 
piezoelectric sensors with Seeeduino XIAO microcontroller board.
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into the Seeeduino board, enables its recharging through the USB cable. 
Furthermore, the XC6206P332 MR (manufactured by Torex Sem. Inc.) 
voltage regulator derives +3.3V from the battery to supply the different 
system components.

2.2. Conditioning section for AlN-based piezoelectric sensors

As mentioned above, two piezoelectric sensors are integrated into 
the flexible support, each of which converts the mechanical deformation 
induced by finger and hand movements into a voltage signal; therefore, 
a dual-channel electronic board was deployed for signal and condi
tioning, featured by low-power and small dimensions (so it can be easily 
integrated into the wearable device without creating discomfort). The 
analog front-end of this electronic board comprises two analog channels, 
each consisting of two amplifier stages: the first is the charge amplifier, 
which converts the charge generated by the piezoelectric sensor into the 
corresponding output voltage signal; the second stage is composed of an 
amplifier and level shifter which amplifies the difference between the 
signal applied to the input, that is the signal coming from the first stage 
and that coming from a voltage reference. A block representation of the 
analog front end is shown in Fig. 3.

The charge amplifiers integrated into the conditioning board are AC- 
coupled by a 1 μF blocking capacitor to remove the DC component in the 
input signal, which could saturate the input stage. An input resistance RI 
between the piezoelectric sensor and the inverting input is placed to 
protect the operational amplifier by limiting the current generated by 
any voltage applied. The charge amplifiers in both channels have a 
band-pass behavior between 1.4 Hz and 11 kHz with a gain of 5 mV/pC 
(for the first channel) and 1 mV/pC (for the second). The cut-off fre
quencies are set by properly sizing the feedback (Rf) and input (Ri) re
sistors, as well as the feedback capacitance (Cf). The operational 
amplifier’s output values are limited by supply voltages and, to maxi
mize the output variation range, the polarization has been set at the 
middle of the nominal output range, namely at half the supply voltage. A 
pair of resistors is used to pick up the supply voltage straightforwardly 
and cost-effectively; this polarization stage is tasked with providing a 
fixed reference voltage Vref by means of a voltage buffer (Fig. 3d). The 
latter stages in Fig. 3b–c are four-resistors difference amplifiers, ampli
fying the difference between the signals applied to the input terminals. 

These stages introduce a band-pass gain equal to 10 V/V; thus, the gain 
of the two channels of the designed front-end is set to 50 mV/pC (first 
channel) and 10 mV/pC (second channel), respectively. The half-moon- 
shaped sensor is connected to the first channel of the conditioning 
board, while the rectangular-shaped one is connected to the second 
channel. Both sensors are connected to the conditioning board by a 
miniature RF coaxial cable with U-FL female connectors integrated into 
the glove’s scaffold. The different gains set for the two channels are due 
to the different operating modes; the rectangular-shaped sensor placed 
on the index finger is mainly subject to out-of-plane solicitations during 
hand movements, whereas the half-moon-shaped sensor is subject to in- 
plane solicitations that determine a lower sensitivity (0.005 V Pa-1 m-2) 
compared to that obtained for out-of-plane solicitations 
(0.017 V Pa-1 m-2 ). To take into account this difference, a higher gain 
(50 mV/pC) was set for the half-moon-shaped sensor featured by a lower 
sensitivity.

2.3. Prototype assembly of developed wearable device

The smart glove prototype was realized using 3D-printed support 
from Thermoplastic Polyurethane (TPU) filament. The glove has an 
aperture at the thumb, covers the palm and back of the hand, and ex
tends along the wrist (Fig. 4a). The top edge has three openings for 
inserting elastic bands (attached to the bottom edge), which can be 
closed by adhesive Velcro; this allows it to be pulled out and inserted 
easily. For integrating one of the two sensors at the junction between the 
index finger and thumb, an “H”-shaped TPU strip was made; a vertical 
wing is fixed to the glove’s inner part; the other one wraps the thumb 
(Fig. 4a). A 6 mm × 6 mm opening was realized on the strip at the 
junction, through which the sensor board applied underneath was to be 
pulled out. Also, a “T”-shaped TPU strip was made to integrate the 
second sensor on the index finger, making it adjustable to adapt to the 
size of the index finger. Afterward, the functional blocks constituting the 
electronic section of the smart glove (i.e., Seeeduino XIAO BLE and dual- 
channel acquisition and filtering board) were assembled; the functional 
blocks were assembled on a PCB (Printed Circuit Board) with dimensions 
75 mm × 44 mm. The assembled electronic board is equipped with 
connectors for the conditioning section, PPG sensors, and the battery. To 
contain the electronic section, a plastic case was made of 3D printing; it 

Fig. 3. Block diagram of the dual-channel conditioning board for the piezoelectric sensors integrated into the smart glove (a). Schematic of the dual-channel 
conditioning board for the piezoelectric sensors integrated into the glove: channel 1 (b), channel 2 (c), and voltage reference (d) sections.
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features a curved profile in the underlying part to fit best with the back 
arching of the hand. Employing Velcro tape, the plastic case was fixed to 
the flexible support, enabling it to be easily attached/detached. A TPU 
cover was made using 3D printing to integrate the PPG sensor. This 
stand consists of the upper part where the sensor is embedded and the 
lower part with which the cable is covered (Fig. 4b). The realized sup
port lets out the optical section of the PPG sensor, including the red and 
infrared LEDs and the photodetectors (Fig. 4a). This part was placed on 
the inside of the glove in contact with the wrist; the cable passes through 
one of the apertures in the glove and, passing through the corresponding 
hole on the case, is connected to its connector. The placement of the PPG 
sensor is shown in Fig. 4c. Fig. 5 shows an example of the signals ac
quired by the piezoelectric and inertial sensors integrated into the smart 
glove.

2.4. Description of the involved participants

Seven individuals (4 male and 3 female) were involved in testing the 
proposed smart glove and developing the ML algorithms to score the PD 
severity based on evaluating three MDS-UPDRS exercises. The involved 
subjects are aged between 45 and 76, six of them with PD diagnosed 
between 5 months and six years ago, assessed according to MDS-UPDRS. 
In detail, the evaluation distribution for involved subjects is: 1 with 
Score 1, 2 with Score 2, 1 with Score 3, and 2 with Score 4. Individuals 
were asked to perform three typical tests associated with the MDS- 
UPDRS-III (finger tapping, hand-fist closure, and resting tremor) to 
collect the datasets to train and test the ML models described in Section 
3.

3. Results

Three embedded ML algorithms were designed, trained, and tested to 
support the operation of the developed smart glove, classifying the 
piezoelectric and inertial signals associated with tests involved in the 
MDS-UPDRS: finger tapping, hand-fist closure, and resting tremor. The 
Edge Impulse cloud platform was employed to develop the ML algo
rithms, enabling data acquisition, feature extraction, classifier training 
and testing, and model deployment to be run on a microcontroller. The 
models above were trained to classify data from the piezoelectric sensor 
placed between the thumb and forefinger and inertial data (linear ac
celerations and angular velocities). In this phase, we want to develop the 
ML models by considering a single piezoelectric signal and 6-axis inertial 
signals to reduce the resulting models’ memory requirements. Further 
investigations considering both piezoelectric sensors will be needed in 
future investigations. The data acquisition was performed using the 
smart glove, wirelessly transmitting the acquired data to a PC through 
BLE, which in turn shares it with the Edge Impulse platform.

3.1. NN-based algorithm for evaluating finger-tapping exercise

In the finger-tapping exercise, the patient is seated with the elbow 
resting on a plane; the patient should tap the index finger and thumb ten 
times as fast and wide as possible (Fig. 6a); based on the speed of 
execution, the amplitude of the movement, and possible stops and 
hesitations, a score is associated, indicating the disease severity: 0) 
smooth movement, 1) 1-2 stops or movement slight slowed or amplitude 
reduction from 8th touch, 2) 3-5 stops or movement moderately slowed, 
or amplitude reduction form 5th touch, 3) > 5 stops or movement very 
slowed, or amplitude reduction form 3rd touch, 4) failure to complete 
the exercise. A dataset including forty samples of inertial signals and 
piezoelectric signals with a duration ranging from 14 to 22 s was 
collected during the finger-tapping tests for each class (i.e., Score 0, Score 
1, Score 2, Score 3, and Score 4), adding Idle samples corresponding to the 
condition in which the arm and hand are steady. Scores were assigned to 
the dataset samples based on the analysis of the amplitude and temporal 
characteristics of the signal coming from the piezoelectric sensor, as it is 
less influenced by extraneous body movements and limb trembling. In 
particular, if the peak amplitude of the signal is less than 1/8 compared 
to the amplitude of the first tapping, the movement is considered 
interrupted; also, a reduction in the amplitude of the signal is less than 
30 % of the amplitude of the signal is viewed as a weakening of the 
movement. Similarly, an increase in the duration of tapping of 20 %, 40 
%, and 60 % compared to the initial one for more than three times, the 
exercise is considered slight, moderate, and very slow, respectively.

Then, the dataset was split into training and test sets (80 %/20 % 
ratio). A 5-fold cross-validation was used to determine the models’ 
performance before testing. The samples were pre-processed by framing 
them with 13s time windows and 1s shift to expand the dataset and 
applying a 6th order low-pass filter with 10 Hz cut-off frequency (Fig. 7); 
then, spectral features were extracted from the 256-point FFT of sample 
signals, including statistical features (i.e., RMS-Root Mean Square, 
skewness, kurtosis), and spectral features (e.g., maximum value). The 
inference section of the classification chain is a NN constituted by an 
input layer with 84 features, 3 dense layers of 30, 20, and 10 neurons, 
respectively, and an output layer with 6 classes (Score 0, Score 1, Score 2, 
Score 3, Score 4, Idle), was chosen.

3.2. NN-based algorithm for evaluating the hand gesture exercise

In the hand gesture exercise, the patient has the elbow resting on a 
plane, and the hand is wide open; the exercise consists of opening and 
closing the hand into a fist 10 times as fast and wide as possible (Fig. 6b). 
Based on the speed of execution, the amplitude of the movement, and 
possible stops and hesitations, a score was associated, indicating the 
disease severity: 0) smooth movements, 1) 1-2 stops or movements 
slightly slowed, or amplitude reduction from 8th touch, 2) 3-5 stops or 
movements moderately slowed, or amplitude reduction form 5th touch, 
3) > 5 stops or movements very slowed, or amplitude reduction form 3rd 

Fig. 4. Fully assembled smart glove: side view (a), TPU cover for PPG optical sensor (b), and inner view (c).
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touch, 4) failure to complete the exercise.
The criteria to assign a score to the raw data are the same as 

considered for the finger-tapping exercise and following the definition of 
the scores reported above. At first, the dataset used for training and 
testing the ML model was gathered, consisting of forty samples of 
piezoelectric and inertial signals for each class with a duration in the 

range of 14–22s, including an Idle class, in which the arm and hand are 
stationary. Similarly to the previous model, the dataset was split into 
training and test sets according to an 80 %/20 % ratio.

The employed processing chain is similar to the previous one (Fig. 7); 
a 13 s window size and 1 s shift were set to split the sample signals in 
frames. These lasts were filtered by an 8th-order low-pass filter with an 

Fig. 5. Piezoelectric and inertial signals acquired by the smart glove during the tests for evaluating PD: Finger-Tapping (Score 1) (a), Hand-fist closure (Score 1) (b), 
Tremor Detection (Score 1) (c).
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8 Hz cut-off frequency before extracting the spectral features from 256- 
point FFT to train and test the following classifier. The inferring section 
consists of an NN including an input layer with 112 neurons, three dense 
layers with 60, 35, and 20 neurons, and an output layer with 6 classes 
(Score 0, Score 1, Score 2, Score 3, Score 4, Idle), respectively.

3.3. NN-based algorithm for evaluating the hand-resting tremor

The third model asses the resting hand tremor. For proper evalua
tion, the patient should have his arm stretched out in front of his body, 
palm facing downward, and fingers well apart (Fig. 6c). Tremor is scored 
according to the modality defined by MDS-UDPRS, which takes into 
account its amplitude and constancy over a 10 s window: 0) no tremor, 
1) the amplitude <1 cm for 25 % of 10 s window, 2) the amplitude 
between 1 and 3 cm for 50 % of 10 s window, 3) the amplitude between 
3 and 10 cm for 50%–75 % of 10 s window, 4) the amplitude > than 10 
cm for more than 75 % of 10 s window. Regarding the resting tremor, the 
modulus of the peak value of the x-component of the angular velocity 
(
⃒
⃒rx,peak

⃒
⃒) is considered to assign scores to the samples since it takes into 

account the amplitude and intensity of the tremor; in detail, if the 
⃒
⃒rx,peak

⃒
⃒ is lower than 10 dps over the whole exercise, the Score 0 is 

assigned; if 
⃒
⃒rx,peak

⃒
⃒ is between 10 and 50 dps, Score 1 is assigned; if 

⃒
⃒rx,peak

⃒
⃒ is between 50 and 100 dps, the Score 2 is assigned, whereas if it is 

between 100 and 200 dps, a Score 3 is assigned; finally, if Score 4 is 
higher than 200 dps, a Score 4 is assigned.

The tremor classification algorithm operates by dividing the 10s 
observation window into 4 windows of 2.5s each. An ML algorithm was 
developed to evaluate tremors on each window and assign a weight (wi) 
based on intensity and persistence. Based on the weights of each win
dow, the overall assessment is extracted, as described below. The dataset 
was constituted by collecting piezoelectric and inertial data tremors 
from patients with different scores; in detail, forty samples were 
collected for each class with a duration between 4 and 10s. After col
lecting and labeling the different movement samples, the dataset was 
split according to the 80 %/20 % ratio used to train and test a classifi
cation algorithm to score tremors on 2.5 s windows. This algorithm was 
deployed according to a processing chain reported in Fig. 7. In detail, 
2.5 s time windows, with a 500 ms overlap, were employed to split the 
sample signals in frames. The processing chain involves extracting the 
spectral features of input signals; also, an 8th-order low-pass filter with 
an 8 Hz cut-off frequency was applied to remove unuseful components. 
Then, a NN with an input layer of 105 neurons, 3 dense layers of 70, 50, 
and 30 neurons, respectively, and an output layer of 5 classes (Score 0, 
Score 1, Score 2, Score 3, Score 4) was trained. Based on the tremor’s 
amplitude, a score and a corresponding weight (wi) were assigned to 
each window: 0 to Score 0, 1 to Score 1, 2 to Score 2, 3 to Score 3, and 4 to 
Score 4 (Fig. 8a). The weights assigned in this way directly result from 
evaluating the tremor on the 2.5 s window; accumulating the weights 
enables evaluating the tremor persistence. Indeed, to assess the tremor’s 
persistence and assign a final score over the entire 10 s window, the four 
scores obtained on 2.5 s windows (wi) are added: 

index=
∑4

i=1
wi (1) 

Afterward, threshold values were applied to the cumulative index, 
which are a direct consequence of the previous scores’ definition. For 
example, if a score of 2 is obtained on two windows (5 s) and a score of 
0 on the remaining ones, the cumulative index will be 4, falling in the 
Score 2 case. Thus, cumulative index values equal to 0, 1, 4, 9, and 16 
can be derived for the five classes, consequently setting the threshold 
values according to the scores’ definition. Based on the constancy re
quirements, a score from 0 to 4 is assigned according to the cumulative 
index on the 4 windows. If the inferring score assigned on the 2.5 s 
window does not exceed 0.5, a weight 999 (error code) is assigned, the 
test is stopped, and the patient is asked to redo the exercise (Fig. 8a). It 
was also necessary to assign a score to the intermediate indices: if the 
index is between 1 and 2, Score 1 is assigned; if the index is between 3 
and 6, Score 2 is assigned; if the index is between 7 and 12, Score 3 is 
assigned; from index 13 onward, Score 4 is assigned (Fig. 8b).

Fig. 6. Execution of the UPDRS tests: (a)finger-tapping, (b) hand fist closure, 
and (c) resting tremor tests.

Fig. 7. Block diagram of the ML algorithm for Parkinson’s disease evaluation.
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Fig. 8. Flowcharts of the methods to assign a weight to the scores assigned by the classification algorithm (a) and the score on the 10 s windows based on the 
cumulative index (b).

Fig. 9. Confusion matrices of (a) finger-tapping model, (b) hand-fist closure model, and (c) tremor detection algorithm.
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3.4. Performance of the developed models

This section reports the performance of the previously described ML 
algorithms for scoring the MDS-UPDRS-III exercises. In detail, Fig. 9
reports the confusion matrices related to the three ML algorithms 
described above obtained on the test set, comparing the predicted 
(columns) and actual classifications (rows), expressed as percentages of 
the test set support; it enables understanding where the model is making 
mistakes. The uncertain class is included in the predicted ones, indi
cating the condition in which the classifier cannot assign the samples to 
any class.

Several evaluation metrics are extracted from the confusion matrix to 
evaluate the models’ performance, like accuracy, precision, recall, and 
F1-score. For each output class, TP (True Positive) indicates the positive 
samples correctly predicted, FN (False Negative) the samples actual 
positives that were incorrectly predicted as negative, and FP (False 
Positive) sample actual negatives that were incorrectly predicted as 
positive, and TN (True Negative) the samples correctly predicted as 
negative.

Thus, the metrics above are defined as: 

Accuracy=
TP + TN

TP + TN + FP + FN
(2) 

Precision=
TP

TP + FP
(3) 

Recall=
TP

TP + FN
(4) 

F1=2 •
Precision • Recall
Precision + Recall

(5) 

For multi-class classification, the support-weighted average metrics 
were calculated by weighing the performance metrics for each class 
based on the support for that class in the test set. Also, ROC (Receiver 
Operating Characteristic) is a plot of the true positive rate (Recall) 
against the false positive rate (1 - Specificity) at various threshold levels. 
The AUC (Area Under the Curve) measures the classifier’s performance; 
the closer it is to 1, the better the model distinguishes between positive 
and negative classes. Table 1 summarizes the performance of developed 
models in terms of accuracy, precision, recall, F1-score, and AUC 
calculated according to the support-weighted averaged definition.

4. Developed smart glove’s firmware

The smart glove’s firmware to asses Parkinson’s stage is modular, i. 
e., the main code comprises three classification methods based on the 
ML models described above, called “Hand Movement”, “Finger Tapping”, 
and “Tremor Detection”, respectively (Fig. 10). To start the evaluation, 
the patient must send a command related to the exercise to be carried 
out on the serial interface through Bluetooth. Once an admissible letter 
is received, the microcontroller launches the corresponding classifica
tion method. Also, heart rate and blood oxygenation readings were 
included in the code.

Once the assessment of the patient’s condition is completed by 
means of the three tests for the movements evaluation and the 

acquisition of cardio-respiratory parameters (i.e., HR and SpO2), the 
data are collected from the PC or smartphone in a JSON (Javascript 
Object Notification) package together with the timestamps related to the 
individual tests and forwarded to the cloud platform through the MQTT 
protocol. Medical consultations suggested that it was unnecessary for 
the acquisition of cardio-respiratory parameters to be synchronized with 
the evaluation tests of movements, given the objectives of the developed 
system.

Regarding the device’s autonomy, experimental tests have been 
performed, demonstrating that during the executions of the different 
classification models, the average currents absorbed by the device are 
reported in Table 2. The measurements were carried out by a bench 
multimeter (model EDU34450A, manufactured by Keysight Technolo
gies) placed in series to the power supply line, averaging the acquired 
current values over the measurement period.

The smart glove draws approximately 11.2 mA while acquiring and 
processing data from the MAX30102 sensor to measure HR and SpO2. 
Furthermore, in idle conditions, the device is not engaged in any pro
cessing and consumes an average current of 10.1 mA. To optimize the 

Table 1 
Performance of the deployed ML algorithms.

Model Accuracy 
[%]

Precision 
[%]

Recall 
[%]

F1-score 
[%]

AUC

Finger- 
Tapping

95.12 96.41 95.12 95.35 0.96

Hand-fist 
closure

98.39 98.59 98.39 98.59 0.98

Resting 
Tremor

96.62 96.69 97.08 96.57 0.98

Fig. 10. Flowchart of the smart glove firmware to assess the PD severity.

Table 2 
Mean current absorbed by the smart glove during the execution of the 
developed classification models.

Classification Model Mean Absorbed Current [mA]

Finger-Tapping 32.2
Hand Movement 34.4
Resting Tremor 32.5
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power consumption of the device when it is not involved in any pro
cessing, the System ON Low Power mode of the nRF52840 SoC was 
exploited, which allows to reduce the consumption of the device because 
the CPU is disabled, but the system remains partially active, allowing 
peripherals to continue working and wake up the CPU when it is 
necessary to start a new analysis. Consequently, the device’s idle power 
consumption is reduced to 4.5 mA, extending its battery life 
significantly.

5. Discussions

From the results reported in the previous section, it is clear that the 
NN-based models perform excellently in evaluating the execution of the 
three exercises according to the MDS-UPDRS. Specifically, the model 
developed for finger-tapping evaluation achieves 95.12 % accuracy, 
96.41 % precision, 95.12 % Recall, 95.35 % F1-score, and 0.96 AUC. 
Comparing the finger-tapping classification model reported in Ref. [24], 
which relies on inertial data and logistic regression, with the proposed 
ones, this last obtains a higher accuracy (95.12 % vs. 92.23 %). Also, in 
Ref. [25], different ML models were developed for evaluating 
finger-tapping based on 6-axis inertial data gathered by an electro
magnetic tracking system (EMTS). The reported performance demon
strated that an SVM (Support Vector Machine) obtained 96 % accuracy, 
close to the performance of the classification models proposed in this 
paper (95.12 %). However, the results reported in Ref. [25] were ob
tained by offline processing and a pervasive acquisition system, hin
dering the patient’s movements. Furthermore, the hand-fist closure 
model achieves excellent results, reaching 98.39 % accuracy, 98.59 % 
precision, 98.39 % recall, 98.59 % F1-score, and 0.98 AUC. The devel
oped models for assessing resting tremors demonstrated optimal per
formance; indeed, the classification algorithm for evaluating the resting 
tremors over 2.5s windows reached 96.62 % accuracy, 96.69 % preci
sion, 97.08 % recall, and 96.57 % F1-score over the test set; also, the 
detection over four consecutive windows enables evaluating the con
stancy of the tremor. Comparing its performance with similar algorithms 
reported in the literature, our system outperforms the multi-class clas
sifier (XGBoost) reported in Ref. [26], which provides 70 % accuracy. 

Also, the reported classification algorithm performs better than that 
proposed in Ref. [27], which relies on an artificial neural network based 
on multilayer perceptron (ANN-MLP), obtaining 95.04 % accuracy.

The proposed smart glove is similar to other systems presented in the 
scientific literature; compared to them, the prototype glove integrates 
both piezoelectric and inertial sensors and thus combines data, 
providing a more detailed and comprehensive assessment of the Par
kinson’s disease severity; in contrast, the systems in Refs. [11,13] 
employ only one type of sensor to track the hand movements. Also, the 
proposed solution is discrete, non-invasive, and ready-to-use, not 
involving external acquisition and processing sections, unlike the works 
proposed [12]. In this context, the real strength of the proposed device is 
its ability to process, analyze, and classify data on-board the device itself 
without the need for an external elaboration section, unlike in systems in 
Refs. [11,13], providing the evaluation of the patient’s condition 
directly. Compared with the smart glove presented in Ref. [15], our 
wearable device relies on custom piezoelectric sensors, which are less 
problematic (e.g., active sensor, higher sensitivity, fast response time) 
and more conformable than the piezoresistive ones. Furthermore, the 
proposed device includes fewer sensors than [15], collecting the infor
mation needed for staging the pathology severity. Also, our smart glove 
is based on embedded ML algorithms to classify the piezoelectric and 
inertial signals for evaluating the PD severity, not entrusting the pro
cessing local gateway as in Ref. [15]. Table 3 compares similar systems 
reported in the literature with the proposed one from the point of view of 
used sensor typology and number, application area, acquisition fre
quency and device, and available wireless connectivity.

6. Conclusions

The paper reports the development of a compact and ready-to-use 
smart glove to quantitatively monitor PD patients, combining 
advanced and commercial sensors as well as embedded ML algorithms. 
The device comprises highly flexible AlN-based piezoelectric trans
ducers and an inertial sensor for detecting hand and arm movements 
during MDS-UPDRS-III tests. The glove comprises a low-power condi
tioning and processing section to elaborate and classify the acquired 

Table 3 
Comparison of similar systems reported in the literature for PD evaluation with the proposed one (N.A.: Not Available).

Work Type of sensor Sensor 
number

Application area Evaluation 
method

Evaluation 
Scale

Acquisition 
frequency

Acquisition device Wireless 
Connectivity

A. Vera et al. 
[7]

Triboelectric 
nanogenerator

1 Forearm Finger-Tapping MDS-UPDRS N.A. NRF5832 Bluetooth
Hand-Opening- 
Closing
Wrist Extension

J.-N. Kim et al. 
[9]

Biocompatible 
triboelectric 
nanogenerator

1 Wrist Resting Tremor Normal, Minor 
Tremor

2 Hz–10 Hz N.A. N.A.

Sever Tremor
M. Heijmans 

et al. [10]
Inertial 
(accelerometer and 
gyroscope)

3 Wrist and chest Resting Tremor ESM score 200 Hz N.A. No

S. R. Sajal et al. 
[11]

Tri-axial 
accelerometer, voice 
recorder

1 In hand Resting Tremor UPDRS 100 Hz Smartphone Wi-Fi
Voice 
modification

A. Batra et al. 
[13]

Metal ring with PVDF 
piezo transducer

1 Middle finger of the 
hand

Resting Tremor N.A. N.A. Oscilloscope No

M. Szumilas 
et al. [28]

Piezoelectric 2 Forearm Resting Tremor Average 
Pearson’s 
distance

500 Hz 8-bit megaAVR 
microcontroller

No

M. Yousef 
et al. [12]

MEMS inertial 1 Wrist Resting Tremor N.A. N.A. Arduino Nano Wi-Fi

S. Hosseini 
et al. [29]

Piezoelectric 2 Forearm Resting Tremor N.A. N.A. N.A. N.A.

E. Khan et al. 
[30]

Piezoelectric 
pressure, inertial 
(MPU-6050)

N.A. Hand PD’s unwanted 
hand movement

N.A. N.A. MSP430 N.A.

Developed 
smart glove

AlN flexible 
piezoelectric, PPG, 
inertial

2 At the index-thumb 
junction and on the 
index finger top

Finger-Tapping MDS-UPDRS 45 Hz–51 Hz nRF52840 BLE
Hand-Movements 
Resting Tremor
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signals. Also, three embedded ML algorithms based on NN were devel
oped to classify the acquired piezoelectric and inertial data, each cor
responding to standard tests, i.e., finger-tapping, hand gesture, and 
resting tremor. Datasets were collected from seven volunteers, six 
diagnosed with PD, and used to train and test the ML models. The test 
results indicated that developed embedded models obtained optimal 
performance, witnessed by the high obtained accuracy: 95.12 %, 98.39 
%, and 96.62 % for finger-tapping, hand-fist closure, and resting tremor, 
respectively. The comparative analysis demonstrated that the proposed 
smart glove overcomes similar solutions in terms of performance and 
completeness.
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