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Abstract: The prevalence of neck pain, a chronic musculoskeletal disease, has significantly increased
due to the uncontrollable use of social media (SM) devices. The use of SM devices by younger
generations increased enormously during the COVID-19 pandemic, being—in some cases—the only
possibility for maintaining interpersonal, social, and friendship relationships. This study aimed to
predict the occurrence of neck pain and its correlation with the intensive use of SM devices. It is based
on nine quantitative parameters extracted from the retrospective X-ray images. The three parameters
related to angle_1 (i.e., the angle between the global horizontal and the vector pointing from C7
vertebra to the occipito-cervical joint), angle_2 (i.e., the angle between the global horizontal and the
vector pointing from C1 vertebra to the occipito-cervical joint), and the area between them were
measured from the shape of the neck vertebrae, while the rest of the parameters were extracted from
the images using the gray-level co-occurrence matrix (GLCM). In addition, the users’ ages and the
duration of the SM usage (H.mean) were also considered. The decision tree (DT) machine-learning
algorithm was employed to predict the abnormal cases (painful subjects) against the normal ones
(no pain). The results showed that angle_1, area, and the image contrast significantly increased
statistically with the time of SM-device usage, precisely in the range of 2 to 9 h. The DT showed a
promising result demonstrated by classification accuracy and F1-scores of 94% and 0.95, respectively.
Our findings confirmed that the objectively detected parameters, which elucidate the negative impacts
of SM-device usage on neck pain, can be predicted by DT machine learning.

Keywords: social media usage; smartphones; neck pain; GLCM; decision tree algorithm

1. Introduction

Many social media (SM) users enjoy using many smartphone applications in everyday
life and are linked in for a long time to social media such as Facebook, Twitter, LinkedIn,
Instagram, Snapchat, Tik Tok, Pinterest, Reddit, YouTube, and WhatsApp. During the
browsing routine, users tend to lower their heads and place the smartphone device close to
their waist or lap while travelling, such as in a car, bus, or subway train. Using a smartphone
for a long time in such a posture will cause a strained spine, neck, and eye fatigue.

Daily, worldwide social media usage in the years 2012–2020 has already been pub-
lished by the Statista Research Department [1] and the World Health Organization (WHO) [2].
Considering the years 2019 and 2020, the average, daily, worldwide social media usage by
smartphones and internet users was 145 min per day in 2020, which was up from 142 min
in the previous year. Currently, the country with the most time spent daily on social media
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is the Philippines, with online smartphone users spending an average of three hours and
fifty-three minutes daily on social media. For comparison, the daily time spent on social
media in the United States (US) was just two hours and three minutes.

Currently, the global social network penetration rate is nearly 54%. Western Europe
has the highest social media penetration rate at 79%, topping the global social media
usage by region; Eastern and middle Africa close the ranking with 10% and 8% usage,
respectively [3]. People access social media for a variety of reasons. Users like to find funny
or entertaining content and enjoy sharing photos and videos with friends, but they mainly
use social media to stay in touch with current events and friends.

Social media profoundly affects smartphone use, interpersonal relationships, and
everyday life. According to an online survey conducted in February 2019, social media has
improved access to information, ease of communication, and freedom of expression. On the
other hand, some respondents also reported that social media had negatively affected their
privacy, increased their political polarization, and heightened daily distractions [4]. Social
media has such a large global impact on daily life that many internet and smartphone users
believe that social media platforms have strongly affected certain aspects of daily life. In
this survey, 44% of respondents stated that social media platforms have led to increased
political polarization [5,6].

The COVID-19 pandemic has involved the entire world population, putting a strain
on national health systems and profoundly changing our lifestyles. Specifically, technology
made it possible to carry out essential services required by the population (teaching, com-
munications, public administration, etc.) and support health systems during the pandemic.
In this context, wearable devices represent powerful tools for gathering information related
to the user’s condition directly from home. These tools were widely employed during the
COVID-19 pandemic to avoid the overload of health systems [7,8].

Few studies show a statistical analysis, a model or index relating to the use of SM, the
ages and real usage times of users, and how these factors are linked to the onset of pain or
pathologies in the neck. Most studies linking neck pain to social media use are statistical
questionnaires based on many questions that are addressed to social media users and
cross-sectional surveys. A significant study that related SM usage, users’ ages, and neck
pain to a certain index or model was presented by H. Yang et al. [9]. This study explored
the researcher’s predictive relationship of social media on smartphone use to body esteem
in female adolescents and the mechanism underlying these relations. A cognitive–affective
framework was investigated, and the relationship between the SM and smartphone use
and body esteem was determined by the cognitive internalization of an ideal body image,
own aspect comparisons, and social-appearance anxiety. A sample of (N = 100) female
adolescents aged 13 to 18 was studied. The results were as follows: repetitive SM use
tended to cause unhealthy body esteem via intensified cognitive internalization, which
triggers appearance comparisons and anxiety regarding negative appearance evaluation.
In addition, the time spent in front of the smartphone screen negatively affected the body
estimate. This study underestimated the multifactor mechanism that explains the negative
impacts of social media and smartphone activities on body esteem in female adolescents
who will have low body esteem in the future [10].

An example of neck-pain distribution caused by different factors, including worldwide
SM usage, is provided below. A total of 15% of the adult population in Brazil, 4% in China,
20% in the European Union, 5% in Japan, 12% in Russia, and 24% in the US had been
diagnosed with a neck pain condition. Moreover, neck pain has an annual prevalence
rate exceeding 30% among adults in the US; nearly 50% of individuals will continue
to experience chronic neck pain or frequent occurrences. Among adults, between 20%
and 70% will experience neck pain that interferes with their daily activities during their
lifetime [11,12]. In 1995, the US Department of Defense issued a guideline on the use of
computers and tablets in military settings. They recommended that hand-held equipment
should not weigh more than 2.3 kg; should be small enough to be held and operated with
one hand; and should be no larger than 100 mm high, 255 mm long, and 125 mm wide [13].
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Many questions may arise as a result of the reported studies. One of these questions
is: Is there any quantitative approach among the subjective-basis approaches to predict
muscles’ neck pain associated with SM technology usage? Second, what qualitative basis
(criteria) or measurable parameters may enable us to build a new formula or rule to
describe or predict the neck pain that may occur? Holding a smartphone device to browse
applications and SM at a close distance will cause headaches and eye strain problems. To
avoid these health risks and consequences, SM users must use the smartphone device at
eye level, change their posture continually, keep an appropriate viewing distance, and
reduce the use time of the smartphone device. Some smartphone users do not pay enough
attention to their posture while using a smart device.

This research therefore attempts to find an approach or a quantitative method for
studying the effect of using SM (i.e., with mini displays) on neck pain and avoiding muscle
fatigue with future use. The proposed method uses:

1. The extracted features from X-ray retrospective images using the gray level co-
occurrence matrix (GLCM);

2. The two angles measured, and the related area controlled by these angles according
to the inclination of the neck vertebrae for normal and abnormal cases (i.e., patients
with perceived neck pain);

3. Information about the SM-usage period in hours correlated with the users’ ages.
Nine inputs or information were provided to the decision tree (DT) to predict the
conditions that may lead to muscle fatigue or produce neck pain;

4. The DT classifier (provided by the Weka package, University of Waikato, New
Zealand) can reduce the bias (noise) produced by unbalanced samples. The final
phase of this framework is a new, predictive mathematical model utilizing a gene-
expression programming (GEP) tool to define the class (normal or abnormal) to which
each patient belongs using a MATLAB-based, graphical user interface to support the
orthopedic doctor.

Related Works

The impact of SM usage on neck pain prevalence during the spread of COVID-19
pandemic has been reported in many survey-based studies [14–18].

Access to working at home and distance learning were the most significant factors
that imposed neck and shoulder pain. For example, the study reported in Ref. [14] on a
sample of 26126 students confirmed neck pain occurrence. In particular, this study aimed to
demonstrate the prevalence of neck pain, mainly in medical students, that could be ascribed
to electronic device usage during the COVID-19 pandemic. Most students reported a rise in
neck aches; the majority noted an increase in neck aches (n = 1002—72.3%), whereas n = 384
(equal to 26.7%) students indicated the same pain before and during the pandemic. Another
work (Ref. [15]) focused on the study of the home use of smartphones in 1045 participants
in whom neck-pain symptoms appeared. Demographic and descriptive analyses, a Pearson
correlation analysis, reliability tests, and a linear regression analysis were used to process
the questionnaire data. The obtained results revealed no correlation between the selected
variables; namely, e-learning, online classes, physical fitness, and body pain; and the time
spent with smartphones. However, the collected data were affected by personal perception.

In a survey of 2044 Italian students conducted before and after the COVID pandemic,
43.5% of students reported neck pain and 33.5% had lower-back disease [16]. The obtained
results demonstrated that musculoskeletal pain in young students could be ascribed to the
reduction in physical activity during the COVID-19 lockdown. In a questionnaire study,
129 computer users were asked about functional disability [17]. It was found that 42.9%
had neck and upper back pain. In addition, some participants had mild, moderate, and
severe functional limitations due to neck and back pain occurrences. This study increased
the awareness of having a correct, ergonomic work space. Similarly, in [19], the authors
investigated a possible correlation between back pain and COVID-19 infection by analyzing
different scientific works presented in the literature. They identified neurological damages
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induced by disease as a factor of post-COVID-19 chronic pain syndrome. Particularly,
the same receptors mediating the access of SARS-CoV-2 into the respiratory systems
were present in the neural tissues, thus attributing post-COVID joint pain to neurologic
implications due to infection [20].

The alterations to the neurologic system caused by COVID-19 infection are not well
understood. However, their effects are evident, such as chronic aches and altered pain
sensibilities. Additionally, the extended lockdown periods—actuated to limit the pandemic
spread—have exposed the population to risk factors that lead to neck pain mainly due
to the prolonged use of electronic devices such as smartphones and tablets [21]. Indeed,
the limited display size induces head and neck flexion, causing a postural alteration and
resulting in the dysfunction of muscular activity and increasing the cervical load. Several
studies have demonstrated a direct correlation between musculoskeletal pain, the number
of hours of electronic device usage, and the positive impact of physical exercise on the
user’s condition. In particular, the prevalence of neck pain was significantly related to age,
sex, health status, job satisfaction, and length of employment. In addition, an increased
sedentary lifestyle and incorrect posture appear to promote the onset of musculoskeletal
disorders [22]. The main prevention strategies for avoiding these consequences are: reduc-
ing smartphone usage time, maintaining correct posture, performing exercise regularly,
and teaching healthy habits. In addition to the posture issues, psychological stress is also a
cause of neck pain, especially for students and teachers [23,24]. In Ref. [25], the authors
investigated the lockdown effect on psychological stress and neck pain (NP). They studied
a population of 265 college students by submitting to them a questionnaire related to
sociodemographic features, the neck disability index (NDI), self-perceived stress, the visual
analogue scale (VAS), and neck pain (NP) frequency. The results demonstrated that 35.6%
of students suffered from mild NP impairment during the lockdown, a higher occurrence
than before. Students expressed moderate self-perceived stress, whereas 59.3% reported
study-related stress. Higher rates of self-perceived, study-related stress, sitting for more
than 3 h per day, and a higher VAS score were linked to an increased risk of an NDI ≥ 15
(Nagelkerke’s R2 = 0.513, p < 0.001).

Similarly, M. Houle et al. analyzed the factors affecting headache and neck pain as well
as the effect of wearing a headset on headache and neck-pain intensity in telecommuters
over five days [26]. Sixty-two participants were involved, gathering data related to the NBQ
(Neck Bournemouth Questionnaire), headache and neck frequency, and wearing a headset
(i.e., typology and number of hours). Using a multivariate regression model, the study
revealed that only the headache-related disability score was an associated factor of headache
occurrence, and only neck-pain-related disability was an associated component of neck-
pain occurrence. Headset usage was not linked to increased neck discomfort or headache
intensity. In addition, therapists in the United States (US), United Kingdom (UK), and
Canada have reported that continuous repetitive and regular usage of a smartphone device
for browsing applications and SM may lead to cumulative damage for musculoskeletal and
eye users [27]. The studies warned that many static postures of the shoulders, upper spine,
and neck could cause physical disorders and diseases later in life. Many optometry and
vision-science studies have also shown the same results [20].

Many researchers and scientists suggest some systems and methods that measure
the postures of a person and their effects on the neck, shoulder, spine, and eye while
using SM on smartphones. For example, S. Arteaga et al. suggested a posture-monitoring
system using an accelerometer for stroke survivors [27]. The proposed system consists
of a three-axis accelerometer, beeper, light emitting diode (LED), and vibrator and uses
many monitoring devices above body parts such as the knees, necks, shoulders, and wrists
of subjects. The proposed system warns SM users and stores data when the appropriate
posture is detected. In the next study, Farra et al. [13,28] developed a novel system to
monitor spine-normal and abnormal positions by measuring the inclination of the SM users’
upper backs and the subsequent stress effect on the spines. Many different sensors have
been used to measure this effect, such as an inclinometer and load cells placed around the
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neck and on the foot of the SM user, identifying a static setting that leads to the lower back
pain of the user. Although this model was appropriate for indoor situations such as offices,
it could not be applied to the case of SM smartphone users. Another close system of SM
monitoring was developed by Baek et al. [29]. They used a two-axis accelerometer to study
postures while sitting, standing, and walking. The suggested method divides postures into
three groups as a function of the tilt angle between the device and Earth surface.

Some of the researchers in the ergonomics literature studied the effects of different
display screens on neck and shoulder pain when compared to a single display. These
studies investigated the smartphone screen’s height, viewing angle, and distance from the
face [30–34]. Many studies have suggested that a smartphone screen with a lower height
and a gaze angle of about 15 degrees is suitable for visual comfort [30,32,33]. However, the
most accepted recommendation nowadays is to position the smartphone screen at eye level.
In other published studies, positioning the display screen of a personal computer (PC) or
a smartphone in a central position was compared with placing the screen at a position
angled to the left and to the right [31]. It was found that the angled position was associated
with a significant increase in neck and shoulder muscle activity and head movements.
Finally, Straker et al. studied the flexion angle differences between adolescent computer
users and non-computer users while using social media. They found that computer users
demonstrated increased neck flexion and pelvic tilt [35]. They also showed that more time
spent on the computer while using social media was associated with an increased bending
of the head and neck, especially in boys, and of the lower back in girls (leading to lumbar
lordosis) [36].

This manuscript is organized as follows: Section 1 contains the introduction to SM
usage. Section 2 presents the method and materials, including the results of the decision-
tree classifier and statistical analysis. In Section 4, the discussion of the obtained results is
conducted. The final section is the conclusion.

2. Materials and Methods
2.1. Data Collection and Study Design

Based on retrospective X-ray neck images, a cross-sectional study was conducted on
46 patients with neck-pain occurrences in the Arab Medical Centre (Amman, Jordan). The
data collection took place between 15 February 2020, and 18 April 2020, during which
46 X-ray neck images were captured using an X-ray imaging machine (i.e., the Definium
TempoTM fixed X-ray system (GE HealthCare, Chicago, IL, USA)), with a matrix size of
2000 × 2500. For a 35 cm × 43 cm cassette, this digital matrix corresponds to a pixel size
of 175 µm and a limiting resolution of three line pairs per millimeter (namely, a spatial
resolution of 0.1 mm). First, participants completed a short survey before undergoing the
orthopedic examination.

Table 1 briefly illustrates the survey content provided to the patients; the age, gender,
duration of time spent using SM devices (in hours), presence of chronic pathologies such
as diabetes or high blood pressure, and the pain type for which the orthopedic visit was
necessary were the information requested from the participants.

X-ray neck images were acquired under the supervision of an orthopedic doctor, with
patients seated on chairs in front of the X-ray machine. Patients with many healthcare
problems, such as blood pressure and diabetes, were also considered in the research study.
The orthopedic doctor questioned all patients about the time duration of their use of SM
devices. Prior to visiting the doctor, patients thought they had ear pain, not neck-muscle
tension; therefore, the X-ray imaging was essential. The proposed approach relating to the
image-processing and subsequent extraction of GLCM parameters in order to determine
the neck-pain pathology due to the intensive use of SM devices is illustrated in Figure 1.
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Table 1. Questionnaire (short survey) provided to patients during the orthopedic visit.

Question Number Question Content

1
Gender

Male Female

2
Age (years)

16–20 21–30 31–40 41–50 Above 51

3
Do you have diabetes?

Yes No

4
Do you suffer from high blood pressure?

Yes No

5
Do you browse social media?

Yes No

6
How many hours do you spend on social media a day?

<2 h 2–3 h 3–6 h 6–9 h or more >9 h

9
Do you suffer from neck pain or neck tension?

Yes No

10

What type of pain do you face when you visit doctors?
The doctor can help you understand the nature and type of pain.

Neck pain Arthritis Others
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2.2. Ethical Approval

This research study was approved by the Institutional Review Board (IRB) of the
Hashemite University (No. 26/7/2021/2022). Informed consent was obtained from pa-
tients; it was reported on the first page of the questionnaire submitted to them, written in
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both Arabic and English. It explained the study’s aims and emphasized the confidentiality
of given information. The participants were able to withdraw from the study at any point.
No identifying information was obtained through the study, and all data collected were
solely used for the statistical analysis.

2.3. Inclusion and Exclusion Criteria

The research study was conducted on 46 patients in the Arab Medical Centre (Amman,
Jordan). All the participants declared in the completed questionnaires (Table 1) that they
used SM devices or smartphones intensively every day. Patients with any long-term
pathologies, musculoskeletal diseases or anomalies, or those who had previous surgeries
on the neck or shoulders were not included in our study.

Table 2 reports the pathology types or painful parts of the body, as declared by
the patients in the questionnaires, and the number of patients for each pathology. The
demographics of the patients who participated in the study are presented in Table 3.
The number of female patients was twenty-seven, with a mean age ± STDev (standard
deviation) equal to 33.70± 6.82, respectively, and the number of male patients was nineteen,
with a mean age ± STDev equal to 41.42 ± 8.10, respectively.

Table 2. Pain location and the number of painful patients who participated in the study (total number
of participants N = 46).

Pain Location

Number of Pained Patients
Suffering from a Given

Disease (Total Number of
Patients N = 46)

Percentage of Participants
Suffering from a Specific

Disease Compared to the Total
Number N = 46 of Participants (%)

Neck pain 38 (abnormal subjects) 82.60

Shoulder pain 9 19.56

Back pain 5 10.87

Arthritis 9 19.56

Bone pain 1 2.17

Diabetic 29 63.04

Blood pressure 17 36.95

Table 3. Demographics of the patients participating in the study (total number of participants N = 46).

Age of the Participants
(Years) Number of Participants

Percentage with Respect to the
Total Number of

Participants (N = 46)

(20–27) 4 8.70

(28–35) 21 45.65

(36–43) 11 23.91

(44–51) 8 17.39

(52–59) 2 4.35

Gender

Males 19 41.30

Females 27 58.70

Subject Situation

Normal (no perceived
neck pain) 8 17.39
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Table 3. Cont.

Age of the Participants
(Years) Number of Participants

Percentage with Respect to the
Total Number of

Participants (N = 46)

Abnormal (perceived
neck pain) 38 82.60

Neck Flexion

During the use of
smartphones/handhelds,

including for studying
purposes (online).

46 100

As can be observed, imbalanced datasets are a regular occurrence in healthcare ap-
plications. In this work, the class ratio between the majority (38 abnormal) and minority
(8 normal) samples is only five to one and does not represent a significant imbalance. The
machine learning literature on this problem has given three primary solution possibilities:

(i) To restore balance in the training set and avoid the creation of bias in the first place, it
is possible to under-sample the large class or to over-sample the small class [37];

(ii) Alternately, one can change the costs (shift matrix) associated with misclassification
in order to prevent any bias [37];

(iii) A further precaution is to replace precision with so-called balanced accuracy [37].

In this study, the first and second solutions were evaluated by choosing new pa-
rameters for the “weka.classifiers.trees.J48” package (from the University of Waikato,
Hamilton, New Zealand) that was applied to our dataset [38]. The dataset resampling
procedure was implemented as follows: in the Weka software version 2022 [38], regarding
the oversampling feature (to increase the minority group), we used the function “classi-
fiers.meta.CostSensitiveClassifier” in default mode, which reweights the training instances
to take a given misclassification cost matrix into account and then uses the classifier built
from the reweighted data. The weighted average of the receiver operating characteristic
(ROC) area and the F-measure (provided later in Section 3.2) demonstrate that the results
obtained after the oversampling procedure are extremely close to the previous resampling.

2.4. Angles and Area Measurement

Often, the practical approach to distinguishing between normal neck conditions and
pathological cases due to the use of SM devices is to measure only one angle (i.e., angle_1,
the angle between the global horizontal and the vector pointing from the C7 vertebra
to the occipito-cervical joint). Instead, in this study, two angles were measured; angle_1
and angle_2 (namely, the angle between the global horizontal and the vector pointing
from C1 vertebra to the occipito-cervical joint), together with the area between them. The
procedure of measuring angles and the area between them is shown in Figure 2. The X-ray
images showed that a curve can be drawn through the neck vertebrates, from C1 to C7
vertebrae, using the Bezier curve tool. Next, the angle between the horizontal line and the
curve at the C1 vertebra was measured using the angle tool (named angle_2, as shown
in Figure 2). The angle_1 was detected using the angle tool between the horizontal line
and the curve at C7 vertebra (as shown in Figure 2). Finally, the area between the two
angles was measured by drawing the line between these ends (the C1 and C7 vertebrae).
All parameters, including angle_1, angle_2, and area, were measured for all patients with
pathological (declared pain) and normal conditions (no declared pain). With the use of the
image analysis software Image J version 1.801 (NIH, Bethesda, MD, US), the angles and
area parameters were determined.
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2.5. Features Extraction from the Gray Level Co-Occurrence Matrix

The X-ray images of the human neck with or without muscle tension or painful
pathology have the same specifications; however, they are different from the X-ray images
of an abnormal lung affected by coronavirus or with the presence of tumor lesions. The
X-ray images of lungs can be easily applied to deep-learning machine algorithms to predict
abnormalities. In the case of X-ray images of the neck, there are no tumors or infections to
be detected by the machine-learning algorithm; thus, finding specific statistical features
through an image-based analysis is very important. The attempt to use the GLCM method
may be a suitable solution.

The parameters that can be extracted by means of the GLCM method depend on
the image quality that may be accordingly correlated with the neck shapes. GLCM was
applied to the X-ray images to extract four additional parameters [39,40], which are valuable
for evaluating neck muscle pain. The GLCM functions characterize an image texture by
calculating how often pairs of pixels with specific values and specified spatial relationships
occur in an image, creating a GLCM, and then extracting the statistical measures from this
matrix. The GLCM method calculates how often a pixel with the intensity (gray level)
value i occurs in a specific spatial relationship to a pixel with the value j (cell value). The
GLCM parameters extracted in this research work are:

(i) Contrast: the separation between the brightest and darkest image area; namely, the
difference between the highest and lowest values of the adjacent set of pixels.

contrast =
N−1

∑
i,j=0

Pi,j(i− j)2 (1)

Pi,j =
Vi,j

∑N−1
i,j=0 Vi,j

(2)

where N stands for the number of gray levels and P(i,j) is the normalized value of the
gray-scale at positions i and j of the kernel with a sum equal to 1. V is the value in the cell
i,j of the image window; if i and j are equal (i − j) = 0, the cell is on the diagonal.
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(ii) Homogeneity: the closeness of the distribution of elements in the GLCM to the GLCM
diagonal. It is defined as:

homogeneity =
Pi,j

1 + (i− j)2 (3)

In general, the cell or pixel value attribute can have a variety of display formats,
including empty, numeric, text, Boolean, or error; in this case, it is at a a gray-scale intensity
level. Windowing is a certain size of resolution with a cell format that can be applied
to the original image in the form of gray-level mapping, contrast stretching, histogram
modification, or contrast enhancement such as a filter, mask, or kernel, etc. [41].

(iii) Correlation: the linear dependency of gray levels on those of neighboring pixels. This
indicates that there is a predictable and linear relationship between two neighboring
pixels within the window, expressed by the regression equation. The correlation can
be represented mathematically as:

correlation =
N−1

∑
i,j=0

Pi,j

 (i− µi)
(

j− µj
)√(

σ2
i
)(

σ2
j

)
 (4)

where µ and σ are the GLCM mean and variance, respectively.

(iv) Energy: computed as the square root of an angular second moment:

Energy =
N−1

∑
i,j=0

P2
i,j (5)

For pre-GLCM employment, the images need to be enhanced or pre-processed. The
pre-processing steps aim to remove the background, eliminate the noise, and to visualize
the edges of the vertebrae (bones), as is shown in Figure 3. The overall flow of image
pre-processing implemented in this research work is reported below.

(1) Adjusting the contrast and brightness of the image; cropping to specify the position
of the neck;

(2) Magnification of the image and freehand selection of the vertebrae;
(3) Smoothing many times and improving the image sharpness;
(4) Finding the edges of the vertebrae using the image edge detection method;
(5) Adjusting the brightness and contrast of the image (0–108 pixels);
(6) Applying the fast Fourier transform (FFT) bandpass filter to remove low and high

spatial frequencies responsible for image blurring [42]. This filter has been designed
to smooth variations of the X-ray image (bright or dark patches) with sizes larger
than 40 pixels and to strongly attenuate insignificant spots smaller than 3 pixels. Note
that these values are half the spatial frequencies of the actual cutoff frequency. The
cutoff frequency is very soft, so the bandpass filter will also significantly attenuate
the spatial frequencies in the center of the bandpass unless the difference between the
two values is greater than a factor of five or so. It can also suppress the horizontal or
vertical stripes created by scanning an image line by line with a direction tolerance
of 5%;

(7) Further adjusting to the brightness and contrast of the image;
(8) Resizing the image size to 256 × 256 pixels and completing a gray-scale conversion;
(9) Applying the GLCM method using Matlab software (version. R2022a, MathWorks, Inc.,

Natick, MA, US) to extract contrast, homogeneity, correlation, and energy parameters.
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2.6. Descriptive Variables

The time duration of the neck-pain-causing use of SM devices in hours (H.mean) was
categorized into five groups, with a width of each group up to 4 h. These groups were:
(1) no perceived pain (normal subject); (2) pain after 2–3 h; (3) pain after 3–6 h; (4) perceived
pain after 6–9 h; and (5) perceived pain after more than 9 h. The descriptive variables used in
this study were the age, H.mean, angle_1, angle_2, area, contrast, homogeneity, correlation,
and energy. These are presented in Table 4, where statistics contain the mean, standard
deviation (STDeviation), minimum (Min), maximum (Max), and standard error (Std. Error)
values. The standard error provides the precision of a sample mean by accounting for
sample-to-sample variability; it represents the predicted measurement error in a single
individual’s score. The used formula to calculate the Std. Error is STDeviation/

√
n, where

n is the number of samples [43].
It is important to point out that the deterministic data reported in Table 4 related to

age, H.mean, angle_1, angle_2, area, contrast, homogeneity, correlation, and energy have
no random components. The same input values generate the same output. As a result, the
standard-error values from statistical data models do not have their usual meanings. A
high statistical significance (namely, a low standard-error value) is an indication of an effect
due to a model term. However, it is not possible to construct valid confidence intervals for
effects or model predictions.
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Table 4. Statistics of the descriptive variables (i.e., age, H.mean, angle_1, angle_2, area, contrast,
homogeneity, correlation, and energy) used in this study.

Parameter (Unit) N Minimum Maximum
Mean Std.

Deviation

Statistic Std. Error Statistic

Age (years) 46 24.00 58.00 36.89 1.22 8.28
H.mean (hour) 46 0.5 9.0 2.04 0.21 1.40

Angle_1 (degree) 46 38.29 101.89 79.56 2.04 13.81
Angle_2 (degree) 46 34.24 74.22 54.19 1.46 9.87

Area (mm2) 46 269.00 1305.00 1007.35 26.29 178.30
Contrast (pixels) 46 0.08 2.88 0.55 0.07 0.52

Homogeneity (pixels) 46 0.75 0.98 0.90 0.01 0.05
Correlation (pixels) 46 0.50 0.95 0.80 0.02 0.11

Energy (pixels) 46 0.16 0.76 0.41 0.02 0.13

2.7. Decision Trees

Decision trees (DTs) are standard machine-learning methods used in classification [44].
The DTs are usually known for their simplicity, reliability, and classification performance [45].
They have been used for a variety of biomedical applications. The DT’s generation depends
on performing entropy [46] and information gain (IG) calculations [47]. The DT algorithm
named C4.5, introduced by Quinlan [48], was used as a data classifier in this work known as
the “weka.classifiers.trees.J48” package (developed by the University of Waikato, Hamilton,
New Zealand). The entropy calculations were performed to determine the information
gain as described by Shannon in the following equation [49]:

E =−
n

∑
i=1

pi logb pi (6)

The information gain calculations include the comparison between the entropy of
each attribute with the total entropy of the dataset. These calculations are performed on
each node of the decision tree, as is illustrated and discussed below in Section 3.2. The
attribute is selected for that node according to the highest information gain calculation. The
calculations are then repeated recursively for each branch of the DT.

2.8. Mathematical Predictive Model for the Neck Pain Diagnosis

A mathematical, predictive model with a MATLAB graphic interface has been devel-
oped to help the orthopedic doctor predict the onset of neck pain. The gene expression
programming (GEP) technique has been used to create the model [50]; the genes are made
up of numerous linked chromosomes that look like trees and have several variables struc-
tured in a start and end point. These trees are known as GEP expression trees and can be
expressed mathematically; an example is shown in Figure 4.

The GEP method involves several mechanisms, including building and expressing
chromosomes for the dataset, running the framework, evaluating fitness criteria such as
the root-mean-square error (RMSE) or the coefficient of determination (R-squared), and
terminating the programming process if the fitness requirements are met. Otherwise, the
gene expression must be replicated through variable crossover or mutation. Figure 4 depicts
a GEP algorithm as an expression tree (ET). The algorithm starts by implementing the
GEP process, which comprises the creation of the chromosomes with the required function
settings and fitness criteria for the variables a, b, c, and d (Figure 4a). The chromosomes are
then executed and transformed into the tree expressions (TEs). The framework processing
terminates if the TEs meet the fitness criteria. However, if the fitness criteria are not met, the
variables are altered by performing one or more genetic operations (crossover or mutation)
on selected TEs. The TEs are eventually transformed into mathematical expressions to
make them more convenient for design applications.
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and categories. Note: a, b, c, and d are the feature variables of the processed model, while t1 and t2

are constants of the sigmoid function for developing the transformed expression (the related values
after having implemented the mathematical model to the specific case are specified in Equation (9)).

In this work, the experimental database was processed with GeneXproTools 5.0 software
(developed by Gepsoft Lda, Capelo, Portugal) to create the GEP model for class prediction
(normal or abnormal). The database was separated into training and testing categories
to ensure the generalization and validity of the constructed model across a wide range of
variables and to minimize overfitting. The training data were only utilized to create the
GEP model, whereas the testing data were used to test the model validity and accuracy. In
this study, 31 points (67% compared to the total of 46 patients participating in the study)
were selected at random for the training data category, whereas 15 points (equal to 33%)
were used for the testing data category.

Several GEP process settings are critical to developing the most efficient model.
Table 5 summarizes the GEP settings used in this study. The data population consisted of
46 individuals and the fitness criteria are based on the least receiver-operating characteristic
(ROC) value. There were ten independent variables: gender, age, time spent on social media
(H.mean), angle_1, angle_2, area, contrast, homogeneity, correlation, and energy. Table 5
displays the parameters chosen for the GEP algorithm; there are five genes with a maximum
tree depth of eight levels, and the three trees are linked together by multiplication.

Table 5. List of the GEP settings.

Parameter Setting

Population size (P) 46

Fitness function ROC

Dependent variable (Class) 1

Independent variables 10

Number of genes 5

Function set −,+,×, ÷, x2, x3, x4, 10x,
√

x, 3
√

x, Exp(x), Ln(x)

Maximum tree depth 10

Linking function between ETs Multiplication
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Figure 5 depicts the developed GEP model in the ET form, consisting of five sub-
trees (sub-ET1, 2, 3, 4, and 5) linked by multiplication (Equation (7)). Out of the total of
ten parameters reported in Table 6, only six variables (i.e., d0, d2, d6–d9) were employed
in the developed mathematical model, chosen by the fitness function ROC. If the fitness
conditions were not met, the variables were modified by performing one or more genetic
operations on the selected TEs (crossover or mutation).
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Table 6. List of the GEP variables.

Contributor to Class Variable ID

Gender (male or female) d0
Patient Age d1

Time duration of social media use (H.mean) d2
Angle_1 d3
Angle_2 d4

Area d5
Contrast d6

Homogeneity d7
Correlation d8

Energy d9

The product of the five sub-trees yielded the predicted classification. The GEP model
represented in Figure 5 as an ET was transformed into the mathematical expression of
Equation (7). After further simplification, Equation (9) was obtained, relating to the H-
parameter that establishes which class the patient belongs to. The values of the constants t1
and t2 (shown in the general expression of the parameter H in Figure 4c) were obtained
from the GEP model and were equal to −1797.29 and 7.28, respectively. As is reported in
Figure 4d, if H assumes values greater than or equal to 0.5, it is a normal condition (namely,
no perceived pain). If H is less than 0.5, it belongs to the abnormal class, which means the
presence of pain perceived by the user.

Equation (7) (i.e., y) represents the GEP mathematical model, in which each mathe-
matical term corresponds to an expression tree (ET). The multiplication function connects
these terms. The highlighted parameters taken from the X-images and optimized based
on the ROC fitness function are the variables d2, and d6–d9. In Table 6 these variables have
been defined.

y =
(

ed8
4
)4
× eed6 × d9

4 × d2
1
27 × d7

1
12

d24 + Ln(d8) + d6
(7)



J. Imaging 2023, 9, 14 15 of 35

y =
(

eCorrelation4
)4
× eeContrast × Energy4 × Time

1
27 × Homogeneity

1
12

Time4 + Ln(Correlation) + Contrast
(8)

H =
1

1 + e−1797.29×y+7.28 (9)

The term H is the transformed expression using the sigmoid function [50]; its numerical
limit and related class were determined as is shown in Figure 4d.

3. Results

This research aimed to define a quantitative approach for predicting conditions that
lead to neck pain resulting from the intensive use of SM devices by considering the duration
of their use, in hours, as a variable. The proposed method, presented in Figure 1, is able to
find the appropriate parameters for predicting the SM effects. Figure 2 shows the first step
of the proposed approach of finding the appropriate angles and the area between them
associated with the variability of SM-device usage. With the advantages of the Bezier curve
tool, the Image J version 1.801 software (NIH, Bethesda, MD, U.S.A.) was employed to
draw the line via the vertebrae and then draw the tangent line at the level of the C1 and
C7 vertebrae. Maintaining an accurate performance during the measurement is essential
because the difference between the condition of no perceived pain (normal) and that of
perceived pain (abnormal condition) is very sensitive.

Figure 3 shows the second part of the SM parameters detection; namely, the steps
of image quality enhancement before extracting the features (parameters) of contrast,
homogeneity, correlation, and energy through the GLCM method. All the steps in Figure 3
were performed to visualize the vertebrae edges that reflect the quality of the features. The
statistical description for all the obtained parameters is presented in Table 4 (Section 2.6).

3.1. Results of Statistical Validation for the Objectively Calculated Parameters

The Statistical Product and Service Solutions (SPSS) statistics software, version 21.0
(developed by IBM Software Group, Chicago, IL, USA), was used to analyze the data. A
one-way ANOVA test and an independent-sample t-test were used to analyze the differ-
ences in age, use duration, neck-pain duration, and GLCM features. Some studies used
both multiple linear regression and binary logistic regression analyses [51–53]. In this work,
however, the same testing protocol used in other works [49,54,55] was applied, but with
a new machine-learning model known as the decision tree. The decision tree can predict
the occurrence of neck pain better than logistic regression based on the calculated entropy
and the if–then rules. The redeployment of machine learning and genetic expression as
predictive models will allow for improved rapid diagnostic tools in this field. The obtained
progress may end with developing an in-cloud application in which physicians scan the
X-ray image while entering the patient’s gender and age to predict the neck condition,
especially for those with excessive SM-device usage.

Table 7 demonstrates the correlation between all parameters (−1 ≤ r ≤ +1) and the
response to neck condition (i.e., no perceived pain-normal condition or perceived pain-
abnormal condition). In contrast, the graphical representation for correlation vs. response
is shown in Figure 6. In Figures 7 and 8, a comprehensive analysis was performed, taking
into account all parameters: age, angle_1, angle_2, area, contrast, homogeneity, correlation,
and energy by H.mean, utilizing the box-plot, while the central value was 95%.
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Table 7. Correlation between the variables and responses related to the neck condition.

Parameter Correlation Coefficient vs. Response

Gender −0.017
Age −0.270

Time Duration of social media usage (H.mean) −0.253
Angle_1 −0.345
Angle_2 −0.139

Area −0.369
Contrast 0.306

Homogeneity −0.258
Correlation −0.167

Energy −0.223
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Figure 6. The best correlation coefficient vs. the response (perceived neck pain/no perceived neck 
pain) to angle_1, area, and contrast.  
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Figure 7. Effect of SM usage examined by time duration (i.e., H.mean) on age (a), angle_1 (b), area (c),
and angle_2 (d). In Figure 7a for the variable age, the following values are reported: the first quartile
Q1, that is the value below which 25% of the values in the data set are found, the median of the data
values Q2, the third quartile Q3, that is the value below which 75% of the values in the data set are
found, the interquartile range (IQR) = (Q3 − Q1) namely the middle 50% of the data set. The lower
whisker is a line from Q1 to the smallest data point within the (1.5 × IQR) range from Q1. The upper
whisker is a line from the Q3 to the largest data point within the (1.5 × IQR) range from Q3. The mild
outliers, values smaller than [Q1 − 1.5(IQR)] or larger than [Q3 + 1.5(IQR)], represented by circles;
the extreme outliers, values smaller than [Q1 − 3(IQR)] or larger than [Q3 + 3(IQR)], represented by
stars. Outliers in data, regardless of whether they are legitimate or the consequence of errors, are
generally worthy of investigation. Figure 7a’s upper outliers, ages 19 and 26, indicate whether or
not these patients, ages 19 and 26, had worked 3–6 h using SM devices. Instead, the patient being
observed (*32) is an error, as it does not fall within the range of 6–9 h and is eliminated.
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Figure 8. The effect of SM usage examined by time duration (i.e., H.mean) on the contrast (a),
homogeneity (b), correlation (c), and energy (d). Mild outliers, the values smaller than [Q1 – 1.5(IQR)]
or larger than [Q3 + 1.5(IQR)], represented by circles; the extreme outliers, values smaller than
[Q1 – 3(IQR)] or larger than [Q3 + 3(IQR)], represented by stars, as shown and detailed in Figure 7a.
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3.2. Results of Using the Decision Tree Method

The dataset has eleven attributes and two classes. These attributes are gender, age,
Social_Media_Use (H.mean), angle_1, angle_2, area, contrast, homogeneity, correlation,
energy, and diagnosis. The attribute “diagnosis” formed the two classes. Figure 9 shows
an unpruned DT built using 46 instances; two-thirds (66.7%) of the dataset were used to
build the DT, and one-third (33.3%) of the dataset was used for testing purposes to assess
the performance of the learning approach (16 samples). The size of the DT generated was
thirteen nodes with seven leaves in total, as is shown in Figure 9.
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Figure 9. Generated decision tree to predict the effect of SM usage on neck pain.

In this study, the confusion matrix of the test dataset was maintained by combining
normal and abnormal patients (34%; 16 samples). The next phase involved reducing
the disparity (unbalanced ratio) between abnormal and normal samples. Thus, the DT
classifier’s new function, the cost matrix, was activated with entries weighted [(0, 1); (5, 0)]
(brought by the Weka package). Consequently, the relative costs of misclassifying true
positives and true negatives were calculated. Note that the steps provided earlier had an
effect on the confusion matrix that resulted in the following prediction parameters: TP = 13,
TN = 2, FN = 1, and FP = 0 (as are reported in Table 8).

Table 8. Summary of the testing results to evaluate the DT-classifier performance after oversampling.

Confusion Matrix * Precision * Recall Accuracy * F1-Score

13 (TP) 1 (FN)
0.96 0.94 94% 0.950 (FP) 2 (TN)

Cost Matrix Cross
Validation

Percentage
Split ROC Area Total Number

of Instances

0 1
9-fold 66% 0.98 165 0

* Weighted averages are calculated for normal and abnormal samples.
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The results show that 13 out of 16 instances were classified correctly, with an accuracy
of around 94%. Furthermore, a good accuracy of class abnormal (perceived neck pain)
was obtained with an F1-score equal to 0.95. The results of the DT performance (shown in
Table 8) have been calculated using Equations (10)–(13):

Precision =
TP

(TP + FP)
(10)

Recall =
TP

(TP + FN)
(11)

F1− Score =
2× Precision× Recall

Precision + Recall
(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

TP stands for true positive, FP for false positive, TN for true negative, and FN for false
negative. The expression “perceived neck pain” refers to abnormal samples; “perceived no
pain” refers to normal cases. The confusion matrix reflects these terms as follows:

− TP: true positive represents a case or patient with neck pain (abnormal) detected correctly;
− FP: false positive represents a case or patient without neck pain (normal) detected as

abnormal (perceived neck pain);
− TN: true negative represents a case or patient without neck pain (normal) detected correctly;
− FN: false negative represents a case or patient with neck pain (abnormal) detected as

normal (no perceived neck pain).

In addition, the 9-fold cross-validation setup was applied during the run of the new
“CostSensitiveClassifier” settings of the DT, resulting in the successfully classified instance
and the weighted F-score being 93.75% and 0.94, respectively.

Noteworthily, the selection of the DT to be applied to this dataset was a successful
choice because, while the DT algorithm is suitable for large and small datasets, it may not
be suitable for large-scale metadata. If the dataset is too large, the algorithm may become
too complex, leading to an overfitting issue (a major risk). In this work, the training–
testing split protocol was selected as 70%–30% or approximately 30 samples for training
vs. 16 samples for testing. On the other hand, the dataset is unbalanced—i.e., with 38
(corresponding to 82.61%) abnormal cases and 8 (corresponding to 17.39%) normal ones
(Table 3)—which facilitates decision-making. Information gain (IG) helps measure the
uncertainty reduction of a certain feature. It also helps to decide which feature is good
as a root node. Therefore, detecting 13 (TP) out of 16 samples during the test algorithm
validation indicates very efficient decision-making. In the DT, the wrong decision is usually
related to the last leaf in one of the branches; it can be avoided if the DT is trained with
a larger dataset. Overall, the DT technique is considered one of the easiest techniques in
machine learning, with the capability of being applied even in real-time situations where
speed and simplicity are an advantage.

The DT shown in Figure 9 indicates that the more time is spent on social media, the
more abnormality and neck pain occurs. A set of classification rules generated by the DT
are summarized in Table 9.



J. Imaging 2023, 9, 14 20 of 35

Table 9. Classification (IF-THEN) rules obtained by the C4.5 algorithm for the completed DT shown
in Figure 9.

1 Social_Media_use “=1_hours” THEN→ Diagnose “Normal”

2 Social_Media_use “=2_hours” THEN→ Diagnose “Normal”

3 Social_Media_use “=8_10_hours” AND Age “<=27” THEN→ Diagnose “Abnormal”

4 Social_Media_use “<8_10_hours” AND Age “<=27” THEN→ Diagnose “Normal”

5
Social_Media_use “>2_hours and <8_10_hours” AND Age “>27” AND Contrast

“<=0.1455” AND angle_1 “<=72.42” THEN→ Diagnose “Normal”

6
Social_Media_use “>2_hours” AND Age “>27” AND Contrast “<=0.1455” AND

angle_1 “>72.42” THEN→ Diagnose “Abnormal”

7 Social_Media_use “>2_hours” AND Age “>27” AND Contrast “>0.1455” THEN→
Diagnose “Abnormal”

3.3. Results from the Developed Graphical GEP Predictive Model

The MATLAB graphical user interface (GUI) for the developed mathematical pre-
diction model based on Equations (7)–(9) is shown in Figure 10a. The MATLAB GUI’s
functionality begins with the selection, directly by the common user or by the orthopedic
doctor, of the pre-processed X-ray neck image (by the Select Image button) from the specific
folder. After that, the user must enter the d3–d5 geometrical parameters’ values (i.e., angle_1,
angle_2, and area) previously obtained from the orthopedic doctor by viewing the X-ray
image with a specific software. Thereafter, by clicking the “GLCM” button on the left of
Figure 10a (green box), the d6–d9 parameters are automatically determined using the GLCM
function (variables defined in Table 6). The geometrical and GLCM data are then combined
with additional information, such as the user’s gender, age, and time duration of SM usage
(H.mean) to predict the patient condition (i.e., no perceived neck pain—normal condition
or perceived pain—abnormal condition) by the obtained H-value. The predicted class will
be displayed on the GUI as “Normal” (if the H parameter value is greater than 0.5) or
“Abnormal;” that is, perceived pain from the patient for H values less than 0.5 (orange box
in Figure 10). The GUI also features an expanded function for archiving the patient infor-
mation by transferring all the data in an excel sheet for later use (storage and printing). For
further clarity, Figure 10b illustrates the different steps of the MATLAB application, as are
described above. An MP4 video illustrating the various operating steps of the developed
MATLAB application is available to the reader as Supplementary Materials.

Table 10 presents the results of testing the prediction GEP model (described in
Section 2.8) on 46 real patients (the total number of participants to the research work,
numbered in Table 10). All the X-ray images were saved in the specific folder and named
with the same identification number, to be selected (by the “Select Image” button) and then
processed. The normal class (that is, no perceived pain corresponding to H values greater
than 0.5) is indicated with value 1; instead, the zero indicates belonging to the abnormal
class (that is, perceived pain from the patient for H values less than 0.5). After the model
validation/testing, the obtained accuracy calculated by Equation (13) was 91.30%, in which:

− TP = 8, when the patient condition (as reported in the questionnaire) is normal (i.e., no
perceived pain, value 1) and the predicted class is normal (namely, H value ≥ 0.5);

− TN = 34, when the patient condition (as reported in the questionnaire) is abnormal
(i.e., perceived neck pain) and the predicted class is also abnormal (i.e., H value < 0.5);

− FP = 4, when the patient condition (as reported in the questionnaire) is abnormal
(i.e., perceived neck pain) and the predicted class (by the GEP prediction model) is
normal (namely, H value ≥ 0.5);

− FN = 0; when the patient condition (as reported in the questionnaire) is normal (i.e., no
perceived pain, value 1) and the predicted class is abnormal (H value < 0.5).
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Table 10. Results of the implementation of the GEP prediction model on all 46 patients for predicting the neck-pain condition. As for the predicted class column,
value 1 indicates the normal class (no neck pain for H value > 0.5), value 0 the abnormal class (perceived pain for H value < 0.5). The meanings of the parameters di
(i = 0, 1, . . . , 8) are reported in Section 2.8 (Table 6), related to the mathematical GEP model developed for the neck-pain prediction. The indications given in the
column “Class Matching” refer to the definitions provided in the Section 3.2 (on page 18).

Patient
N.

Gender
d0

Age
d1

H.mean
d2

Angle_1
d3

Angle_2
d4

Area
d5

Contrast
d6

Homo-geneity
d7

Correlation
d8

Energy
d9

Input
Class

GEP
Model (H)

Predicted
Class

Class
Matching

1 Male 29 3.5 72.42 41.35 1103 0.297 0.914 0.907 0.306 Abnormal
(0) 0.006 Abnormal

(0) OK (TN)

2 Male 30 1.5 52.06 60.84 896 0.765 0.836 0.770 0.230 Abnormal
(0) 0.028 Abnormal

(0) OK (TN)

3 Male 32 9.0 79.65 71.05 1012 1.293 0.854 0.797 0.407 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

4 Male 35 3.5 62.86 36.87 986 0.451 0.913 0.758 0.392 Abnormal
(0) 0.004 Abnormal

(0) OK (TN)

5 Male 35 7.5 59.96 59.1 1279 0.577 0.881 0.879 0.382 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

6 Male 38 9.0 90.01 50.04 1070 0.550 0.899 0.846 0.430 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

7 Male 41 6.0 87.07 47.67 1009 1.300 0.839 0.653 0.399 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

8 Male 43 3.5 65.4 47.12 993 0.168 0.945 0.935 0.358 Abnormal
(0) 0.028 Abnormal

(0) OK (TN)

9 Male 46 9.0 53.61 56.95 941 0.499 0.930 0.706 0.681 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

10 Male 51 0.5 70.13 46.61 939 0.376 0.899 0.780 0.386 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

11 Male 54 0.5 75.32 40.08 966 0.188 0.962 0.849 0.760 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

12 Male 58 0.8 38.29 38.81 1123 0.310 0.941 0.857 0.602 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

13 Female 25 9.0 89.08 68.77 1170 0.679 0.875 0.688 0.290 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)
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Table 10. Cont.

Patient
N.

Gender
d0

Age
d1

H.mean
d2

Angle_1
d3

Angle_2
d4

Area
d5

Contrast
d6

Homo-geneity
d7

Correlation
d8

Energy
d9

Input
Class

GEP
Model (H)

Predicted
Class

Class
Matching

14 Female 27 9.0 86.97 52.87 1305 0.300 0.930 0.810 0.412 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

15 Female 28 9.0 77.25 74.22 1005 1.128 0.809 0.643 0.194 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

16 Female 28 8.0 88.87 71.37 414 1.926 0.791 0.609 0.158 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

17 Female 28 9.0 93.01 69.41 921 0.395 0.912 0.754 0.473 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

18 Female 29 9.0 93.61 55.29 1105 0.675 0.886 0.683 0.373 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

19 Female 30 7.0 101.89 68.45 917 0.149 0.951 0.934 0.494 Abnormal
(0) 0.004 Abnormal

(0) OK (TN)

20 Female 31 7.0 84.22 53.13 1260 0.147 0.952 0.941 0.451 Abnormal
(0) 0.003 Abnormal

(0) OK (TN)

21 Female 32 6.0 89.95 62.34 1094 0.595 0.893 0.739 0.350 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

22 Female 32 7.5 99.41 54.11 988 0.364 0.904 0.775 0.357 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

23 Female 32 9.0 94.01 58.35 1111 0.566 0.902 0.770 0.352 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

24 Female 33 5.6 91.76 58.65 1010 0.148 0.954 0.944 0.440 Abnormal
(0) 0.016 Abnormal

(0) OK (TN)

25 Female 35 5.5 98.58 62.61 1064 0.817 0.866 0.701 0.272 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

26 Female 35 5.5 82.75 49.65 1084 0.503 0.887 0.761 0.278 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)
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Table 10. Cont.

Patient
N.

Gender
d0

Age
d1

H.mean
d2

Angle_1
d3

Angle_2
d4

Area
d5

Contrast
d6

Homo-geneity
d7

Correlation
d8

Energy
d9

Input
Class

GEP
Model (H)

Predicted
Class

Class
Matching

27 Female 35 7.0 90.62 51.84 1116 0.358 0.902 0.794 0.333 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

28 Female 36 4.5 89.32 62.01 1159 0.247 0.950 0.789 0.593 Abnormal
(0) 0.114 Abnormal

(0) OK (TN)

29 Female 37 5.5 89.31 60.28 1023 0.123 0.953 0.931 0.511 Abnormal
(0) 0.093 Abnormal

(0) OK (TN)

30 Female 42 1.5 85.57 42.02 1080 0.533 0.889 0.753 0.385 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

31 Female 42 5.5 76.91 69.09 1057 0.605 0.872 0.778 0.307 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

32 Female 46 0.8 77.76 48.61 848 0.418 0.923 0.826 0.397 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

33 Female 48 1.5 90.26 46.14 1050 0.158 0.946 0.939 0.419 Abnormal
(0) 0.001 Abnormal

(0) OK (TN)

34 Female 50 7.0 80.89 50.87 987 0.156 0.948 0.939 0.417 Abnormal
(0) 0.002 Abnormal

(0) OK (TN)

35 Male 37 4.5 57.05 56.14 1065 0.142 0.953 0.931 0.470 Normal
(1) 0.694 Normal

(1) OK (TP)

36 Male 39 2.5 60.48 46.15 1044 0.170 0.948 0.940 0.395 Normal
(1) 1.000 Normal

(1) OK (TP)

37 Male 41 3.0 67.85 50.57 912 0.146 0.952 0.937 0.459 Normal
(1) 1.000 Normal

(1) OK (TP)

38 Male 45 1.5 85.49 58.04 1143 0.265 0.945 0.846 0.661 Normal
(1) 1.000 Normal

(1) OK (TP)

39 Female 24 2.5 79.82 50.52 1055 0.822 0.868 0.711 0.432 Normal
(1) 0.691 Normal

(1) OK (TP)

40 Female 27 4.0 79.57 48.55 269 2.881 0.751 0.505 0.170 Normal
(1) 1.000 Normal

(1) OK (TP)
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Table 10. Cont.

Patient
N.

Gender
d0

Age
d1

H.mean
d2

Angle_1
d3

Angle_2
d4

Area
d5

Contrast
d6

Homo-geneity
d7

Correlation
d8

Energy
d9

Input
Class

GEP
Model (H)

Predicted
Class

Class
Matching

41 Female 30 1.5 64.12 51.31 888 0.837 0.839 0.652 0.237 Normal
(1) 0.940 Normal

(1) OK (TP)

42 Female 36 2.0 79.64 54.06 1067 0.472 0.898 0.764 0.497 Normal
(1) 1.000 Normal

(1) OK (TP)

43 Male 35 7.0 77.17 52.06 1075 0.080 0.977 0.946 0.727 Abnormal
(0) 0.994 Normal

(1)
Wrong

(FP)

44 Male 48 2.5 90.47 64.04 985 0.182 0.937 0.931 0.365 Abnormal
(0) 1.000 Normal

(1)
Wrong

(FP)

45 Male 50 1.5 82.09 34.24 789 1.321 0.845 0.669 0.337 Abnormal
(0) 1.000 Normal

(1)
Wrong

(FP)

46 Female 32 1.5 77.08 40.72 961 0.423 0.910 0.771 0.385 Abnormal
(0) 1.000 Normal

(1)
Wrong

(FP)

Note: the 1-value in the class column (input and predicted class) indicates the normal (no perceived pain) cases, whereas the 0 value indicates the abnormal (perceived pain) ones. A
class matching value of “OK” means that the “Input Class” normal (value 1) is correctly predicted as normal and defined as True Positive (TP), or that the “Input Class” abnormal
(value 0) is correctly predicted as Abnormal and defined as True Negative (TN)
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The trained model learns from the training database repeatedly until the predicted
neck pain achieves performance criteria such as RMSE, R-squared, or ROC. Based on the
ROC, the variables enrolled in the GEP mathematical model are d0, d2, and d6–d9. If the
parameters (variables) with a proportional relationship do not meet the fitness function,
they are not considered. For this reason, other parameters such as d1, d3, d4, and d5 were
left out of the model (namely, they are not present in Equation (7)). The obtained testing
accuracy equal to 91.30% is less than that of the DT (equal to 94%, as reported in Table 8).
This is supported by the different fitness functions; the entropy function was utilized in DT,
while the ROC function was utilized in the ETs. The four errors present in Table 10 (“Wrong
FP” in class matching), corresponding to 8.69%, indicate that the abnormal condition’s
variables (parameters) were incorrectly predicted, and thus the resulting H value (>0.5) led
to the incorrect classification (as normal).

3.4. Further Comorbidities

Comorbidities are the association of several diseases and health problems that can
lead to the onset of a progressive or chronic disease. The co-occurrence of new diseases
might disappear and occasionally progress. However, the engagement and reliance on
SM entertainment and smartphones has become a kind of obsessive lifestyle over the
last decade. Researchers have attempted to investigate this contentious fact from a new
perspective. For example, 159 adults from Midwestern University took part in a research
study on smartphone dependency (nomophobia) [56]. It was discovered that using a phone
while driving and being female are strong positive indicators of smartphone dependency.

Much research, such as the current study, have suggested that patients using SM
devices adopt forward postures. At the same time, web browsing, video-game playing,
emailing, and texting are linked to a variety of health issues including kyphosis, which
is associated with pulmonary and cardiovascular disorders. Furthermore, new research
indicates that when patients stare down at a smartphone, personal computer, or tablet,
they lower their heads and rotate their shoulders while looking down. As a result, rib
muscular limitation or tightness, as well as inappropriate posture during movement, make
normal breathing difficult [57]. Neck flexion and weight have a substantial proportional
relationship, which is most likely owing to decreased physical activity [36,58]. Headaches,
such as migraines, have been examined in school-age children and adolescents, and they
vary by age and gender [59]. One study discovered a 48% prevalence of headaches among
school-aged children aged 7 to 18 years, while another discovered that headaches are the
most prevalent discomfort among schoolgirls (42%) [60].

4. Discussion

This work is a new attempt to study the effects of social media entertainment usage
that may lead to serious neck pain. Patients complained of neck pain during their visit to the
orthopedic doctor before undergoing X-ray radiography; at the same time, they reported
through the questionnaires that they used SM devices for a significant number of hours
(H.mean). To develop a reliable approach to assessing SM impacts on the neck muscles, a
quantitative method was performed on 46 retrospective, neck-vertebral X-ray images. Thus,
the studied parameters were detected based on two syncretized steps: (1) three parameters,
angle_1, angle_2, and the area between them, were measured by drawing a Bezier curve
through the vertebral neck path; (2) the second step relayed the image quality in which
the GLCM was applied to extract four features of contrast, homogeneity, correlation, and
energy. The progress of the neck-muscle fatigue was classified as normal (no pain) and
abnormal (pain), and all parameters were examined by the time duration of SM usage
known as H.mean.

Table 7 shows the correlation between all parameters and the response, whether
normal (no perceived pain) or abnormal (perceived pain) cases. The absolute correlation
changes from −1 to +1 (i.e., −1 ≤ r ≤ +1) were considered, while in Figure 6, the best
correlation was calculated for the angle_1, area, and contrast of −0.34512, −0.36956, and
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0.306127, respectively. This result was proven in Figure 7b, in which the value of angle_1
in normal subjects is the smallest if the user interacted with SM devices for an average of
only two hours. It is worth noting that the greater the interaction with SM devices, the
greater the increase in angle_1. In other words, dealing with SM devices for more than
2 h may lead to neck muscle tension. In correlation with the patient age (Figure 7a), it is
obvious that candidates aged less than 30 years were qualified to develop neck pain if they
interacted with SM for more than 6 h.

Concerning angle_2, as is shown in Figure 7d, a slight increase, with times ranging
from 3 to 9 h, is observed. Also, notably, the area is not proportional to the angles increasing,
which means that area is affected (becoming smaller) by the angles increasing in the time
interval of 3–9 h and above, according to Figure 7c. Image quality may be affected by
fatigue and stress levels, as is shown by the GLCM features in Figure 8. For example, a
significant difference was observed related to the images’ contrast for normal (no perceived
pain) and pain conditions after more than 6 h usage, as shown in Figure 8a. The energy
parameter clearly differentiates between no pain and suffering claims. Alternatively, the
average values for the energy indicator remain constant with a temporal correlation (2–9 h),
indicating that neck pain was unaffected, as is shown in Figure 8d. However, given that
the change rate for these values for a time between 3 and 9 h is similar, it appears that the
difference between no pain and discomfort in terms of correlation and homogeneity cannot
be counted. (Figure 8c,d).

In this study, the DT classifier was employed successfully. Understanding and pre-
dicting the neck pain caused by SM devices can be modelled using the DT classifier’s
advantages over other classifiers. These if–then rules are presented in Table 9. They show
that participants with only 2 h of social media usage (or below this threshold) were classi-
fied as normal regardless of their age. Furthermore, participants aged 27 and below with
less than 8 h of daily social media usage were still classified as normal. On the other hand,
participants over 27 with an image contrast greater than 0.15 were classified as abnormal,
meaning that they probably suffered from neck pain, regardless of the severity. In this
regard, more details can be found in Table 9.

GLCM-based feature extraction combined with machine-learning (ML) algorithms
is being applied to many medical applications such as mammograms for breast cancer
detection, magnetic resonance imaging (MRI) for brain cancer detection, and unlimited
non-medical applications. The numerical values of GLCM always depend on the pre-
processing techniques used, such as thresholding, filtering types, and the angle rotation
on the processed images. Contrast measures the special frequency of the image and is a
different moment of GLCM; it can measure the variations between the highest and lowest
values of the adjacent set of pixels. Therefore, in this study, contrast complied with DT
branches of all ages and angle_1 very positively (Figure 9). To make the decision, it did not
work alone with the pixels’ units; entropy was calculated with the significant parameters in
the branches mentioned.

Further, the eight parameters calculated from 46 subjects were fed into the DT classifier
with a training-test protocol of 66%–34%. The number of leaves was seven, and the size of
the tree was thirteen. After evaluating the test split, the achieved accuracy and the F1-score
were 94% and 0.94%, respectively. The result of the testing performance is illustrated in
Table 8. This approach may be considered a new attempt to evaluate the influence of SM
devices (i.e., with different neck postures) based on the achieved results.

Therefore, this research work could present the following contributions:

(1) New quantitative parameters have been proposed for studying or evaluating the
effect of SM devices on their users’ neck muscles;

(2) The ability to use the DT rules increases the prediction of neck pain;
(3) The geometric measures of neck postures may increase the pain prediction;
(4) As is shown in Figure 10 and Table 10, the developed, MATLAB-based GUI imple-

menting the mathematical GEP model can be employed as a reliable diagnostic tool
to assist the orthopedic doctor;
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(5) This research activity was approached objectively rather than subjectively. The number
of input parameters received from retrospective X-ray images was seven (angle_1,
angle_2, area, contrast, homogeneity, correlation, and energy), while the remaining
parameters (age and H.mean—just two) were gathered through patient questionnaire
(survey) forms. In percentage terms, compared to the total number of parameters
considered (nine), they correspond to 77.7% and 22.2%, respectively.

It is important to note that the ETs were created using the ROC fitness function, and
that six variable parameters were chosen (d0, d2 and d6–d9). In other words, the gender,
H.mean, and GLCM characteristics were strongly implicated in the predictive mathematical
model (as are reported in Equations (7)–(9)). The model was successful in determining the
categorized limits (normal and abnormal classes) with an accuracy of 91.30%. GEP models
have several advantages over other machine-learning techniques: they are closed-form
solutions, making it easy for engineers and specialists to incorporate the models for solving
various engineering issues, and GEP models are assumed more reliable than numerical and
analytical solutions in neck-pain prediction, which are being used for the first time, to the
best of our knowledge. Nonetheless, the accuracy is fairly acceptable, but increasing the
samples and modifying the technique for acquiring new attributes (variables) that describe
neck pain is fundamental for optimizing the method and obtaining higher-accuracy values.

Based on the scientific articles reported in Table 11, it is evident that all research
works related to the effects of SM usage on neck muscles from 2008 to the present were
conducted by using surveys (questionnaire only) [51,54,61]. Scientific approaches based
on images analyses and related processing are quite limited; for example, D. David et al.
analyzed the premature and inappropriate use of personal computers and cell phones and
the related development of clinical symptoms commonly defined as “text-neck syndrome.”
The authors studied the underlying causes and risk factors of musculoskeletal discomfort
or pain by observing and processing the cervical–spine MRI images [62].

A few studies using angle measurement systems such as three-axis accelerometers
were reported in [55,63–66]. The main disadvantages of these studies were that they
became old and were not in sync with current SM devices (mainly smartphones) that have
progressively developed to cover large populations of adults. On the other hand, the current
studies from 2018 are all survey-questionnaire-based and do not objectively determine the
pain neck symptoms [51,54,61]. Previously, the machine-learning applications have not
been applied to this research area to the best of our knowledge. Thus, the quantitative
analysis of neck postures combined with machine-learning techniques (e.g., decision trees)
may improve the early prediction of neck-pain occurrences. This problem became a serious
source of neck-pain prevalence during the COVID-19 pandemic. Patterns of online distance
learning in pre-schools, schools, and universities push the authorities in charge to make
new rules and guidelines for the long-term use of SM technology, especially by children
and teens.
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Table 11. Comparison of this work with similar scientific works reported in the literature analyzing the impact of using the SM devices on neck-pain occurrence.

First Author, Ref. n.,
Year

Method Survey-Based
(Subjective) or

Quantitative (Objective)
Samples (Male/Female)

Evaluation Approach
Parameters # Target of Study

Machine-Learning Type Statistics

F. Al-Hadidi [51], 2019 Online Questionnaire
(Subjective) 500 None Significant test

(p < 0.001)
Two: duration,

neck pain

To investigate the association
between neck pain and the

duration of device use, taking
into consideration gender, age,
and the most frequent position

in which students use
their devices.

S. A. Rahman [61], 2020 Questionnaire (Subjective) 300 None Significant test
(p < 0.003)

Four: gender, age,
university campus,

academic year

To investigate the effects of SM
use on health and academic
performance of students at

Sharjah University

D. David [62], 2021 MRI of the cervical
spine (Objective)

1 case
reported None None One: neck

flexion angle

To analyze the new
phenomenon of the

“text-neck syndrome”

S. Lee [63], 2014 Three-dimensional motion
capture system (Objective) 18 None Significant test

(p < 0.05)
One: Head

flexion angle

To quantitatively assess the
amount and range of head

flexion of smartphone users

L. Straker [64], 2008
Three-dimensional posture

and muscle activity
measurement (Objective)

18 None Significant test
(p < 0.001)

Three: working in
desktop, tablet, and

paper conditions
and measuring the

head angle

To compare the posture and
muscle activity of children using
a tablet computer to the posture
and muscle activity of children
using a desktop computer and

paper technology.

E. Gustafsson [65], 2011 Angle measuring system
(Objective) 56 None Significant test

(p < 0.05)

Three:
symptomatic,

asymptomatic,
head angle

To investigate differences in
technique between young adults

with and without
musculoskeletal symptoms

when using a mobile phone for
texting, and differences in

muscle activity and kinematics
between different

texting techniques.
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Table 11. Cont.

First Author, Ref. n.,
Year

Method Survey-Based
(Subjective) or

Quantitative (Objective)
Samples (Male/Female)

Evaluation Approach
Parameters # Target of Study

Machine-Learning Type Statistics

H. Ping Chiu [66], 2015 Angle measuring system
(Objective) 30 Electromyography

measurement
Significant test

(p < 0.000)

Three: tilt angle,
task type, neck
muscle activity

To investigate the musculature
load and comfort perception of
the engaged upper extremity for

three angles of viewing, and
common task types performed

at a computer workstation.

A. Widhiyanto [54], 2018 Questionnaire (Subjective) 979 None Significant test
(p < 0.05)

Two: Duration,
Class

To analyze the effect of duration
of smartphone use on neck pain.

H. Lee [55], 2013 Three-axis accelerometer
(Objective) 12

Built-in sensors, front-
faced camera, three-axis

accelerometer
None One: angle

To monitor the posture of
smartphone users by

built-in sensors.

This work
Angles measurement and

X-ray images analysis
(Objective)

46
Decision tree.
Classification

accuracy = 94%
Significant test

Nine: age, H.mean,
angle_1, angle_2,

area, contrast,
homogeneity,

correlation, energy

To detect neck pain by:
(i) Using two angles and the
area between them instead of

just one angle;
(ii) Applying the image

statistical features (GLCM) in
the same procedure;

(iii) Utilizing DT algorithm;
(iiii) Using a MATLAB- based
GUI to help the doctor in the
diagnosis of neck pain in an

immediate way.
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5. Conclusions

This research work developed a new approach for studying the influence of us-
ing SM devices or mini displays on neck-pain occurrences. This approach was per-
formed on 46 retrospective X-ray images (subjects) through two measurement steps. First,
three geometrical parameters were detected from the neck vertebral shapes associated
with SM use for different time categories of three-hour bands. The first category (0–2 h)
belonged to the normal cases (no pain). The next bands changed from 3 to more than 9 h
and belonged to the abnormal cases (after pain). The parameters obtained in this step
were angle_1, angle_2, and the area between them. In the second step, the GLCM was
employed to extract four parameters depending on the image quality: contrast, homogene-
ity, correlation, and energy. Decision trees’ if–then rules were used to acknowledge which
combination of the detected parameters may be applied to predict the abnormal occurrence
of neck pain. The obtained classification accuracy of 94% and the F1-score of 0.95 both show
that the DT machine-learning algorithm works well with fully satisfactory results [67].

The DT classifier proved its ability to handle unbalanced datasets, which are always a
source of error in the healthcare domain. “CostSensitiveClassifier” parameters enable the
classifier algorithm (Weka package) to regulate the over- and under-sampling methods. The
DT algorithm demonstrated that the ratio of 5:1 between normal and abnormal participants
did not have a significant impact on the classification accuracy. Improving such prediction
and diagnosis techniques is extremely important for healthcare-service development. This
research should be carried out to develop a new tool for measuring musculoskeletal neck-
pain disease and symptoms.

The developments proposed in this research work will aid in the early prediction of
neck pain, especially for people who use SM devices extensively. In this regard, based on the
mathematical predictive model (Equations (7)–(9) discussed in the Section 2.8), a MATLAB-
based graphical user interface (GUI) was developed, in which the orthopedic doctor or a
generic user is able to select a specific X-ray neck image and enter the geometrical parameter
(angles and area) values as well as the age, gender, and duration of SM usage related to the
patient. Then, the MATLAB tool will be able to determine the other parameters/variables
by means of GLCM method (as shown in Figure 10). As a result, the patient would be
informed whether he/she is a candidate for neck pain or not. Furthermore, the user will
be able to use the developed GUI directly on the smartphone to receive information in a
timely manner.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jimaging9010014/s1, Video S1: MATLAB-based application for neck-pain
prediction.mp4.
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Abbreviations
List of the abbreviations and related meaning.

Acronym Meaning and Definition

Angle_1
The neck-flexion angle between the global horizontal and the vector pointing from
C7 vertebra to the occipito-cervical joint.

Angle_2
The neck-flexion angle between the global horizontal and the vector pointing from
C1 vertebra to the occipito-cervical joint.

C1, C7 Neck vertebrae
C4.5 DT algorithm named C4.5
DT Decision tree
E Entropy
FFT Fast Fourier transform
FN False negative
FP False positive
GLCM Gray-level co-occurrence matrix (GLCM)
IG Information gain
ML Machine learning
NDI Neck disability index
NP Neck pain
RMSE Root mean square error
ROC Receiver operating characteristic
SM Social media
Std. Error Standard error
STDev Standard deviation
TN True negative
TP True positive
VAS Visual analogue scale
WHO World health organization
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