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Abstract: Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat in-
fections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also
effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas
aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spi-
ramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in
P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments
demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aerug-
inosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming
motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensi-
tized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the
P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that
when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In con-
trast, when the spiramycin was injected together with the bacterium, the mortality dropped to about
50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin,
gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and
treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting
an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to
investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug
for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.

Keywords: Pseudomonas aeruginosa; spiramycin; macrolide antibiotics; anti-virulence drugs; Galleria
mellonella

1. Introduction

Drug repositioning is the practice of finding new uses for existing drugs [1]. The
benefit of drug repositioning is to drastically reduce the cost of research and development
as well as the high risk of failure that is commonly associated with new drug discovery, and,
mostly, to reduce the cost of preclinical trials to ensure their safe use. In addition to existing
drugs, drug repositioning allows the possibility to reuse helved drugs, or drug candidates
that failed clinical trials for other medical indications. Drug repositioning is particularly
valuable in the fight against pathogenic bacteria, given the high cost and considerable time
associated with the discovery and introduction into clinical practice of new antibiotics [2–5].
Furthermore, drug repositioning is helpful in the challenge against the global emergency
caused by the rapid spread of multidrug-resistant bacteria despite a decrease in the number
of approved antibiotics [2–5].

Both non-antibiotic and antibiotic drugs have been recently repositioned for new uses
against pathogenic bacteria. Examples of non-antibiotic drug repositioning include some
psychotropics, local anesthetics, tranquilizers, cardiovascular drugs, antihistamines, and
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anti-inflammatories whose antibacterial activity has also been proven [2–5]. In this context,
it may be of interest to mention the Food and Drug Administration-approved iron mimetic
metal Gallium (Ga(III)) that has been successfully repurposed as an antimicrobial drug.
First-, second-, and third-generation of Ga(III) formulations were proven to be effective
against multidrug-resistant ESKAPE pathogens (ESKAPE is an acronym that includes
six nosocomial bacterial pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) [6].

Examples of antibiotic drug repositioning include some macrolides whose activity
as anti-virulence drugs has been demonstrated in macrolide-resistant bacteria. In particu-
lar, Pseudomonas aeruginosa, which is one of the most common pathogens in chronic lung
infection and the third most common pathogen associated with nosocomial urinary tract
infections (UTIs), is considered intrinsically resistant to macrolides [7]. Indeed, most of
P. aeruginosa strains demonstrate minimal inhibitory concentrations (MIC) in the range
128–512 mg/L due to the acquirement of specific mutations in the 23S rRNA gene, ren-
dering them very poorly susceptible to macrolides [8]. Despite the results of in vitro
susceptibility tests, interest in macrolides in the treatment of some pseudomonal infections
arose from the observation, in the early 1980s, that patients with diffuse panbronchiolitis
improved during long-term treatment with macrolides [9]. Moreover, in a mouse model
of P. aeruginosa bacteremia, treatment with erythromycin led to a survival rate of 80%
compared with 20% survival rate in the control [10]. These findings led to the speculation
that macrolides may act during pseudomonadal infections by down-modulating either the
inflammatory response or P. aeruginosa virulence [11].

Macrolides have the property to accumulate within cells of the immune system
and have complex immunomodulatory activities [11–14]. Moreover, the 14-membered
macrolide erythromycin and its derivative azithromycin have the ability to inhibit, at clini-
cally relevant concentrations that are not able to affect bacterial growth, the expression of
many virulence factors of P. aeruginosa. These factors include exotoxin A, protease, elastase,
lipase, phospholipase C, lecithinase, gelatinase, DNase, and pyocyanin (PYO) [11,15–20].

Some explanations have been provided, over the last years, about the inhibitory effect
on the expression of P. aeruginosa exoenzymes by macrolides. Some of them invoked
possible inhibitory effects on protein synthesis in the case of short-chain peptides [21],
others invoke some inhibitory effects on the activity of specific enzymes. For instance,
14- and 15-membered macrolides (but not 16-membered macrolides) were reported to
inhibit specifically the guanosine diphosphomannose dehydrogenase that is required for
biosynthesis of alginate [9]. More recently, the anti-virulence activity of erythromycin and
azithromycin has been attributed to their ability to inhibit the quorum sensing (QS) circuit
in P. aeruginosa [22–25]. This finding was confirmed in a cystic fibrosis model of chronic
P. aeruginosa lung infection in which treatment with azithromycin resulted in suppression
of quorum sensing (QS)-regulated virulence factors, impairment to form mature alginate
biofilm, increased sensitivity to complement, and stationary-phase killing [26]. These results
have promoted the use of these macrolides in adjunct therapy against chronic and/or
biofilm-mediated P. aeruginosa infections [27–33]. However, some concerns have been
raised that the use of these drugs could select for more virulent strains in the nosocomial
environment [34].

While most of the studies on the anti-virulence activity of macrolides focus on ery-
thromycin and on its derivative azithromycin, there is almost no information on spiramycin,
which differs from erythromycin by having a larger macrolactone ring and a different sugar
decoration. Spiramycin is a 16-membered macrolide used in human medicine as an an-
tibacterial and antiparasitic agent (active against Toxoplasma spp.) [35–37]. The antibacterial
activity of this antibiotic belonging to the macrolide–lincosamide–streptogramine B class
(MLSB) was associated with its ability to bind the 50S ribosomal subunit and to block
the path by which nascent peptides exit the ribosome [38]. Similar to josamycin and clin-
damycin, spiramycin causes dissociation of peptidyl-tRNAs containing two, three, or four
amino acid residues [38].
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Spiramycin is mostly effective against Gram-positive bacterial pathogens responsible
for respiratory tract infections including Staphylococcus aureus, streptococci of groups A,
B, C, and D, and pneumococcus [39]. It is also effective against bacteria belonging to the
genera Neisseria, Legionella, Mycoplasma, Chlamydia, and against Toxoplasma spp. [39]. In
contrast, Pseudomonas aeruginosa is considered intrinsically resistant to spiramycin [7]. In
this study, after demonstrating that spiramycin completely inhibits the production of PYO
and pyoverdine (PVD) in P. aeruginosa without affecting growth in vitro, we tested its ability
to inhibit P. aeruginosa virulence in a Galleria mellonella animal model.

2. Results
2.1. Spiramycin Inhibits the Production of Pyocyanin and Pyoverdine in P. aeruginosa

Minimum inhibitory concentration (MIC) experiments showed that the P. aeruginosa
strain GG-7R was moderately or poorly sensitive to several antibiotics but highly resistant
to spiramycin [40] (Table 1). MIC values for ampicillin, streptomycin, and rifamycin were
500 µg/mL, 62.5 µg/mL, and 31.3 µg/mL, respectively. Bacterial growth was also inhibited
by high concentrations of erythromycin (MIC value 250 µg/mL), but never by even higher
concentrations of spiramycin (500 µg/mL) (Table 1), even though these antibiotics belong
to the same class, the macrolides.

Table 1. MIC experiments: susceptibility of P. aeruginosa GG-7R at different antibiotics tested.

µg/mL AMP STR RMP ERY SPM

500 - - - - +
250 + - - - +
125 + - - + +
62.5 + - - + +
31.3 + + - + +
15.6 + + + + +
7.8 + + + + +
3.9 + + + + +
2.0 + + + + +
1.0 + + + + +
0.5 + + + + +
0.2 + + + + +

Control + + + + +
AMP = ampicillin; RPM = rifampicin STR = streptomycin; ERY = erythromycin; SPM = spiramycin. + = Growth;
- =No growth.

Despite the inability to inhibit growth, spiramycin markedly affected PYO and PVD
pigment production by P. aeruginosa GG-7R (Figure 1). The multi-well plates from the
MIC experiments were used to measure PYO, PVD, and biomass after growth for 24 h
in Luria–Bertani (LB) broth. The results confirmed that spiramycin did not inhibit the
bacterial growth in the concentration range of 1 to 500 µg/mL, even though it did slightly
reduce the final biomass values measured as absorbance at 600 nm (Figure 1A). To study
the pigment production, the absorption and fluorescence emission spectra of the exhausted
broth of P. aeruginosa GG-7R were first analyzed (Figure 2). The absorption spectrum was
analyzed in a wavelength range from 295 to 800 nm (Figure 2A). The results showed
that the absorption spectrum of the exhausted broth of P. aeruginosa GG-7R grown in the
absence of spiramycin was similar to that found in other P. aeruginosa strains [41]. The
absorption between 295 and 421 nm and between 548 and 800 nm was markedly reduced
when the bacterium was cultured with spiramycin (30 µg/mL). The fluorescence emis-
sion spectrum was then analyzed by using 405 nm as the excitation wavelength. The
results demonstrated an inhibition of the production of fluorescent pigment in the presence
of spiramycin (30 µg/mL) (Figure 2B). Quantitative estimates showed that PVD produc-
tion decreased dramatically when the spiramycin concentration reached and exceeded
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15.6 µg/mL (Figure 1B), and PYO production also decreased with spiramycin concentra-
tion of 7.8 µg/mL or higher (Figure 1C).
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Figure 1. Biomass, PVD, and PYO production by P. aeruginosa GG-7R growing in LB for 24 h at
37 ◦C and 180 rpm. (A) Biomass was determined by absorbance at 600 nm measurement. (B) PVD in
exhausted LB was assayed by fluorescence emission (excitation at 405 nm, emission at 450 nm). The
value was normalized by the biomass (absorbance at 600 nm). (C) PYO in exhausted LB was assayed
by optical absorbance at 520 nm. The value was normalized by the biomass (absorbance at 600 nm).
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Figure 2. Absorption and fluorescence emission spectra of the exhausted LB broth of P. aeruginosa
GG-7R grown either in the absence or in the presence of spiramycin (30 µg/mL). (A) Absorption
spectra and (B) fluorescence emission spectra (excitation at 405 nm) of exhausted LB from P. aeruginosa
cultures in multiwell plates. The samples were collected after the MIC experiment. The LB broth was
diluted by 1 to 200 prior to measurement. The bacterium was grown at 37 ◦C and 180 rpm for 24 h.

The phenotype of bacteria growing at sub-MIC concentrations of spiramycin or ery-
thromycin was evaluated on LB agar plates (Figure 3A,B). After 24 h of growth, spi-
ramycin did not affect bacterial growth at all tested concentrations (30, 60, 90, 120, 150,
and 180 µg/mL). However, production of greenish pigmentation was markedly reduced
(Figure 3A). The ability of spiramycin (120, 150 and 180 µg/mL) to inhibit pigment produc-
tion without inhibiting bacterial growth was even more evident after 48 h of incubation
(Figure 3B). After 48 h (72 h, 96 h, and 120 h) no changes were detectable in the plate with
spiramycin at 120, 150 and 180 µg/mL. However, this effect could also be related to the
fact that the bacterial culture is in the stationary phase after 24 h. Production of greenish
pigmentation was also markedly reduced in erythromycin-exposed bacteria after 24 h of
incubation. However, bacterial growth was clearly inhibited at erythromycin concentra-
tions of 30, 60, and 90 µg/mL, and markedly inhibited at erythromycin concentration of
120 µg/mL or higher (Figure 3C).



Antibiotics 2023, 12, 499 6 of 21

Antibiotics 2023, 12, x FOR PEER REVIEW 6 of 22 
 

Biomass (absorbance at 600 nm), pH, and PYO production were then evaluated dur-
ing P. aeruginosa GG-7R growth in the presence of two concentrations of spiramycin (30 
and 120 ug/mL) in LB broth in 250 mL Erlenmeyer flasks. The results confirmed that spira-
mycin did not inhibit the bacterial growth, even though it did slightly reduce the final 
biomass values (Figure 4A). pH also did not vary in spiramycin-treated cultures com-
pared to untreated cultures (Figure 4B), while PYO production was markedly reduced 
(Figure 4C). Overall, these results demonstrated that spiramycin treatment inhibits PYO 
and PVD production by P. aeruginosa without substantially inhibiting growth in vitro. 

 
Figure 3. Phenotype of P. aeruginosa GG-7R growing on LB agar in the absence or presence of spira-
mycin or erythromycin. (A) Effects of spiramycin at 24 h of incubation (37 °C). (B) Effects of spira-
mycin at 48 h of incubation (37 °C). (C) Effect of erythromycin at 24 h of incubation (37 °C). 

Figure 3. Phenotype of P. aeruginosa GG-7R growing on LB agar in the absence or presence of
spiramycin or erythromycin. (A) Effects of spiramycin at 24 h of incubation (37 ◦C). (B) Effects of
spiramycin at 48 h of incubation (37 ◦C). (C) Effect of erythromycin at 24 h of incubation (37 ◦C).

Biomass (absorbance at 600 nm), pH, and PYO production were then evaluated during
P. aeruginosa GG-7R growth in the presence of two concentrations of spiramycin (30 and
120 ug/mL) in LB broth in 250 mL Erlenmeyer flasks. The results confirmed that spiramycin
did not inhibit the bacterial growth, even though it did slightly reduce the final biomass
values (Figure 4A). pH also did not vary in spiramycin-treated cultures compared to
untreated cultures (Figure 4B), while PYO production was markedly reduced (Figure 4C).
Overall, these results demonstrated that spiramycin treatment inhibits PYO and PVD
production by P. aeruginosa without substantially inhibiting growth in vitro.

After growth in the flask, RT-qPCR was performed on two genes related to PYO and
rhamnolipid synthesis. The phzS gene, which catalyzes the last step of PYO synthesis [42],
and the rhlC gene involved in di-rhamnolipid formation were analyzed [43,44]. To further
extend the results, lasB was added to the RT-qPCR analysis. LasB is an elastase involved in
biofilm formation, activates interleukin-1β (IL-1β), and cleaves host molecules such as elas-
tase and collagen [45–47]. LasB is also a new target for the development of new therapeutic
strategies [48,49]. The RT-qPCR results demonstrated that the transcript levels of the rhlC,
phzS, and lasB genes were markedly down-regulated at 24 h and 48 h (Figure 4E,F).
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Figure 4. Growth of P. aeruginosa (37 ◦C and 180 rpm) with and without spiramycin (30 or 120 µg/mL)
and RT-qPCR on phzS, rhlC, and lasB genes. (A) Estimation of biomass by turbidity (optical absorbance
at 600 nm), (B) pH of bacterial cultures, (C) estimation of the amount of PYO (optical absorbance
at 520 nm). (D) Estimation of the amount of PYO (optical absorbance at 520 nm) normalized by
the biomass (absorbance at 600 nm). This panel shows data from 24 h onwards when the optical
absorbance at 520 is >0.15 in the control sample. (E,F) Results of transcript level analysis (RT-qPCR)
at 24 h (E) and 48 h (F) of the phzS (pyocyanin synthesis), rhlC (rhamnolipid synthesis), and lasB
(elastase) genes.

2.2. Spiramycin Sensitizes P. aeruginosa to Oxidative Damage

There is evidence that PYO is an active redox compound that protects P. aeruginosa
against photodynamically induced oxidative damage [50]. Since we found that spiramycin
inhibits PYO production, we wanted to analyze the resistance to hydrogen peroxide expo-
sure of P. aeruginosa GG-7R grown either in the presence or in the absence of spiramycin.
For this purpose, bacterial cultures containing an increasing concentration of H2O2 (10,
20, 30, and 40 mM) were prepared, and spiramycin was added to these cultures at three
different concentrations (60, 120, and 180 µg/mL). The biomass increase was measured by
absorbance at 600 nm after 24 h of incubation. The results are shown in Figure 5. When cul-
tures were exposed to 10, 20, and 30 mM H2O2, the biomass at 24 h decreased significantly
as a function of spiramycin concentration and was the highest when the cultures were un-
treated with spiramycin. As expected, in samples untreated with spiramycin the biomass at
24 h decreased as a function of H2O2 concentration. At 40 mM H2O2, the effect of oxidative
damage became predominant, and final biomass values were low in all samples either with
or without spiramycin treatment. These results demonstrated that spiramycin sensitizes
P. aeruginosa to oxidative damage, and this could be due to the decreased production of
active redox compounds such as PYO.



Antibiotics 2023, 12, 499 8 of 21

Antibiotics 2023, 12, x FOR PEER REVIEW 8 of 22 
 

measured by absorbance at 600 nm after 24 h of incubation. The results are shown in Fig-
ure 5. When cultures were exposed to 10, 20, and 30 mM H2O2, the biomass at 24 h de-
creased significantly as a function of spiramycin concentration and was the highest when 
the cultures were untreated with spiramycin. As expected, in samples untreated with 
spiramycin the biomass at 24 h decreased as a function of H2O2 concentration. At 40 mM 
H2O2, the effect of oxidative damage became predominant, and final biomass values were 
low in all samples either with or without spiramycin treatment. These results demon-
strated that spiramycin sensitizes P. aeruginosa to oxidative damage, and this could be due 
to the decreased production of active redox compounds such as PYO. 

 
Figure 5. Growth of P. aeruginosa with hydrogen peroxide (H2O2) with or without spiramycin. The 
control value is indicated by a dotted line. Growth was carried out in LB at 37 °C and 180 rpm. 

2.3. Spiramycin Inhibits the Formation of P. aeruginosa Biofilm on Hydroxyapatite 
Erythromycin and azithromycin have been shown to inhibit or delay biofilm for-

mation by P. aeruginosa [51–53]. To verify that spiramycin also had this effect, bacterial 
cultures were set up using hydroxyapatite as a biomimetic substrate for biofilm formation. 
The bacterial cultures were then incubated either in the absence or in the presence of spira-
mycin (30 μg/mL) for 72 h at 37 °C and 150 rpm before subsequent analyses. After the 
incubation, the bacterial cultures incubated in the presence of spiramycin did not produce 
the intense green pigmentation that was produced by the bacterial cultures grown in the 
absence of spiramycin (Figure 6A). Quantitative estimates showed that both PYO and 
PVD production were strongly inhibited by the presence of spiramycin (Figure 6B,C). Bio-
film formation and bacterial growth on hydroxyapatite was then determined by using the 
crystal violet staining method and the CFU count, respectively. The results showed that 
both biofilm formation and bacterial growth on hydroxyapatite were inhibited by expo-
sure to spiramycin (Figure 6D,E). In contrast, the biomass of planktonic bacteria deter-
mined by absorbance at 600 nm was higher in the presence than in the absence of spira-
mycin (Figure 6F). These results suggested that spiramycin exposure disfavored biofilm 
formation in favor of planktonic growth. 

Figure 5. Growth of P. aeruginosa with hydrogen peroxide (H2O2) with or without spiramycin. The
control value is indicated by a dotted line. Growth was carried out in LB at 37 ◦C and 180 rpm.

2.3. Spiramycin Inhibits the Formation of P. aeruginosa Biofilm on Hydroxyapatite

Erythromycin and azithromycin have been shown to inhibit or delay biofilm formation
by P. aeruginosa [51–53]. To verify that spiramycin also had this effect, bacterial cultures
were set up using hydroxyapatite as a biomimetic substrate for biofilm formation. The
bacterial cultures were then incubated either in the absence or in the presence of spiramycin
(30 µg/mL) for 72 h at 37 ◦C and 150 rpm before subsequent analyses. After the incu-
bation, the bacterial cultures incubated in the presence of spiramycin did not produce
the intense green pigmentation that was produced by the bacterial cultures grown in the
absence of spiramycin (Figure 6A). Quantitative estimates showed that both PYO and PVD
production were strongly inhibited by the presence of spiramycin (Figure 6B,C). Biofilm
formation and bacterial growth on hydroxyapatite was then determined by using the
crystal violet staining method and the CFU count, respectively. The results showed that
both biofilm formation and bacterial growth on hydroxyapatite were inhibited by exposure
to spiramycin (Figure 6D,E). In contrast, the biomass of planktonic bacteria determined
by absorbance at 600 nm was higher in the presence than in the absence of spiramycin
(Figure 6F). These results suggested that spiramycin exposure disfavored biofilm formation
in favor of planktonic growth.

2.4. Spiramycin Inhibits the Swarming Motility and the Biosynthesis of Rhamnolipids of
P. aeruginosa

To find out whether spiramycin also affected the motility of P. aeruginosa, the swarming
motility was evaluated on agarized medium as described [46]. The results demonstrated
that spiramycin severely inhibited the swarming motility (Figure 7A,B). Rhamnolipids are
essential for biofilm architecture and mediate the dispersal of bacteria when the biofilm
is mature [47–55]. Furthermore, rhamnolipid production promotes twitching/swarming
motility [55–58]. Thus, rhamnolipids were quantified in the exhausted broths of P. aeruginosa
GG-7R grown either in the absence or in the presence of spiramycin (60 µg/mL). The assay
was carried out after 24, 48, and 72 h of growth in LB broth in 250 mL Erlenmeyer flasks.
The results indicated that spiramycin markedly reduced the production of rhamnolipids
(Figure 7C). This result was also confirmed with an RT-qPCR that analyzed the transcript
levels of the rhlC gene involved in the di-rhamnolipid synthesis (Figure 4E,F).
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Figure 6. Effects of spiramycin on growth, biofilm, PYO, and PVD production by P. aeruginosa GG-7R
growing on hydroxyapatite surfaces in multi-well plate filled with LB. (A) View of the plate after 72 h
of incubation (37 ◦C, 150 rpm). (B) PYO quantification (optical absorbance at 520 nm) normalized by
the biomass measured by the CV method. (C) PVD quantification (excitation at 405 nm, emission at
450 nm) normalized by the biomass measured by the CV method. (D,E) Estimation of the biomass
using Crystal Violet method (D) or CFU counts (E). (F) Biomass of planktonic bacteria estimated by
absorbance at 600 nm.
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2.5. Spiramycin Attenuates P. aeruginosa Virulence and Expression of Antimibrobial Peptides in
Galleria mellonella Animal Model

The above results showed that spiramycin inhibits the production of PYO, PVD, and
rhamnolipid. Furthermore, this macrolide also inhibited biofilm formation. Since all these
factors play an important role in the pathogenicity and virulence of P. aeruginosa [59], two
experiments were designed using G. mellonella larvae as an in vivo infection model. Indeed,
G. mellonella larvae are a widely used model in microbiological research to assess bacterial
virulence and innate immunity since they have an innate immune system that is similar to
that of vertebrates [60].

Thus, P. aeruginosa GG-7R was used to infect G. mellonella larvae either in the absence
or in the presence of spiramycin. In a first experiment, G. mellonella larvae were infected
with an inoculum suspension containing 80 CFU/larva. Mortality was determined after
incubating the larvae for 24 h at 37 ◦C. The results showed that the mortality of infected
larvae without the addition of spiramycin was about 90%, while the addition of spiramycin
reduced this value to 50% (Figure 8A). Implemented controls showed that the non-injected
larvae (control larvae), the larvae inoculated with injection solution alone (mock inocu-
lum), and the larvae injected with spiramycin alone (toxicity control) showed comparable
mortality (about 10%) (Figure 8A).

In a second experiment, G. mellonella larvae were infected with a higher concentration
of P. aeruginosa (8 × 103 CFU/larva) and incubated for 6 h at 37 ◦C. After this time, the
larvae were immediately frozen at −80 ◦C and the RNA was extracted. Then, the mRNA
levels of genes encoding three antimicrobial peptides (gallerimycin, gloverin, moricin) and
lysozyme were determined by RT-qPCR. Three groups of larvae were used in this exper-
iment: larvae inoculated with injection solution alone (mock inoculum), larvae infected
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with the bacterium, and larvae infected with the bacterium in the presence of spiramycin
(60 µg/mL). The results demonstrated increased transcript levels of all genes analyzed
in the larvae infected with P. aeruginosa compared to uninfected larvae (Figure 8B). In
contrast, the simultaneous injection of the bacterium and spiramycin reduced the transcript
levels of these genes compared to the bacterium without spiramycin (Figure 8B). These
results indicated that spiramycin was able to attenuate the virulence of P. aeruginosa and to
down-modulate the expression of determinants of innate immunity in the animal model of
G. mellonella.
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Figure 8. Effect of spiramycin on G. mellonella larvae infected with P. aeruginosa. (A) Mortality
of G. mellonella larvae infected with P. aeruginosa treated or not with spiramycin 24 h after infec-
tion. Control larvae: non-injected larvae; mock infection: larvae injected with resuspension solu-
tion without bacteria; toxicity control: larvae injected with resuspension solution and spiramycin.
(B) Transcript levels of genes encoding three antimicrobial peptides (gallerimycin, gloverin, and
moricin) and lysozyme in P. aeruginosa infected larvae treated or not with spiramycin.

3. Discussion and Conclusions

P. aeruginosa is one of the most concerning pathogens globally. In fact, it is on the
WHO Priority 1 list, mainly because some strains are resistant to carbapenems. Innovative
strategies to combat P. aeruginosa include bacteriophages, nanoparticles, QS inhibitors, and
antimicrobial peptides [61–64]. Some of these strategies, such as the use of QS inhibitors,
have the advantage of inhibiting virulence, while other molecules, such as antimicrobial
peptides, show a low level of induced resistance [64]. Using molecules that do not kill
bacteria but reduce their pathogenicity could be advantageous because these molecules
eliminate the possibility of selective pressure that would favor the emergence of antibiotic-
resistant strains.

This study investigates anti-virulence properties of spiramycin on P. aeruginosa. The
results show that spiramycin negatively affects PVD and PYO production by P. aerugi-
nosa (Figures 1, 3, 4, and 6). These molecules are important virulence factors: PYO is a
toxin and PVD is a siderophore [59,65]. Furthermore, PYO and PVD play an endogenous
role in the physiology of the bacterium. In fact, it has been shown that the reduction
PYO production sensitizes the bacterium to oxidative damage [50]. Indeed, we found
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that treatment of P. aeruginosa with spiramycin sensitizes the bacterium to H2O2 exposure
(Figure 5). This finding is relevant because the antibiotics, regardless of their specific
mechanism of actions, all trigger oxidative damage [66,67]. Consequently, spiramycin
might also sensitize P. aeruginosa to the exposure to other antibiotics. In addition to PVD,
PYO, and other virulence factors, some bacterial mechanisms also favor the onset of
P. aeruginosa infection. Among these aspects, there is the ability of the bacterium to form
biofilm and to diffuse by swarming motility thanks to the flagella and the production of bio-
surfactants [51]. Notably, spiramycin reduces biofilm formation, motility, and rhamnolipid
production in P. aeruginosa (Figure 7). Spiramycin also markedly reduces the transcript
levels of the elastase lasB [45,46,49].

Although the abilities to decrease PVD, PYO, rhamnolipid, lasB transcript, and biofilm
production as well as to inhibit swarming motility are well known for the 14-membered
macrolides erythromycin and its derivative azithromycin [11,17,68], our results revealed
these abilities, for the first time, in a 16-membered macrolide, spiramycin. Furthermore,
our results highlight that the use of spiramycin offers advantages over that of erythromycin
and azithromycin in the study of the anti-virulence properties of macrolides in P. aeruginosa.
Indeed, the growth of P. aeruginosa was not affected even with the highest concentration of
spiramycin tested (500 µg/mL), while expression of virulence determinants was markedly
reduced (Figures 1, 3 and 4). In contrast, growth of P. aeruginosa GG-7R was clearly
inhibited at erythromycin concentrations of 30, 60, and 90 µg/mL, and markedly inhibited
at erythromycin concentration of 120 µg/mL or higher (Figure 3). Thus, spiramycin
offers the advantage over erythromycin and azithromycin of studying the anti-virulence
properties of macrolides and, in particular, their inhibitory effect on bacterial QS under
conditions in which bacterial growth remains substantially unchanged.

Indeed, there is growing evidence that the anti-virulence activity of macrolides could
be due to their ability to inhibit the QS circuit in P. aeruginosa [22–24]. However, the precise
mechanism underlying the inhibitory effect of macrolides on P. aeruginosa QS remains to be
defined. The inhibitory effects of azithromycin on QS have been associated with inhibition
of the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of
lasI or rhlI [69], decreased expression of QS regulatory genes lasI, lasR, rhlI, and rhlR [70],
dysfunctional and/or impaired secretion of acyl homoserine lactones (AHL) 3-oxo-C12-
homoserine lactone (3-oxo-C12-HSL), and C4-homoserine lactone (C4- HSL) [71], changes in
membrane permeability, thereby influencing the flux of 3-oxo-C12-HSL [72] and inhibition
of expression of the GacA-dependent small RNAs RsmY and RsmZ, both of which acts
upstream of the quorum-sensing machinery [73].

Interestingly, selective inhibition of translation of subsets of mRNAs depending on
their codon usage [74], including rhlR transcript [54,75], has been proposed more recently.
According to this hypothesis, the inhibitory effect of macrolides at sub-MIC concentration
on QS and on the expression of virulence determinants would be due to their mechanism
of inhibition of translation, albeit selective on mRNA subsets, and not due to an off-
target mechanism. On the other hand, screening of FDA-approved drugs led to identify
nitrofurazone and erythromycin estolate as direct PqsE inhibitors [76]. PqsE is involved in
biosynthesis of the QS signal molecules 2-alkyl-4(1H)-quinolones (AQs) of the PQS system,
but it also increases the expression of virulence determinants and biofilm genes [77]. In
addition, PqsE exerts a repression on pqsA promoter activity that is, in contrast, stimulated
by PqsR [77]. Our evidence that spiramycin markedly reduced the expression of virulence
determinants in the absence of any significant effect on bacterial multiplication could
support an off-target mechanism, although both mechanisms (ribosomal and off-target)
can coexist.

In this study, the lepidopteran G. mellonella was used as an in vivo infection model
to investigate the anti-virulence properties of spiramycin. G. mellonella has an innate
immune system that shares essential properties with that of vertebrates [52]. Thus, this
insect has been used as a suitable infection model with various pathogens, including
P. aeruginosa [78,79]. In particular, when exposed to different pathogens, G. mellonella
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larvae produces several antimicrobial peptides, whose transcript levels can be measured
by qPCR [79–81]. Our results show that when G. mellonella larvae were infected with
P. aeruginosa the mortality after 124 h was >90%. In contrast, when the spiramycin was
injected together with the bacterium, the mortality dropped to about 50% (Figure 8A). This
result confirmed the anti-virulence properties of spiramycin, which may be due to its ability
to inhibit the biofilm formation and the expression and virulence determinants, as observed
in in vitro experiments.

It is also interesting to note a marked reduction in transcript levels of three antimicro-
bial peptides (gallerimycin, gloverin, and moricin) and lysozyme in G. mellonella larvae
infected with P. aeruginosa with spiramycin, compared to larvae infected without the addi-
tion of spiramycin (Figure 8B). This result can be interpreted either in light of the ability of
spiramycin to dampen the expression of virulence determinant and biofilm formation as
above discussed, or in light of the anti-inflammatory properties of macrolides on host cells.
Indeed, there is evidence that macrolides accumulate within cells of the immune system
where they perform immunomodulatory activities [11–14,82]. Thus, the use of spiramycin
in the G. mellonella may also be a suitable system to investigate the immunomodulatory
activities of the macrolides in an in vivo model.

Since the macrolides azithromycin and erythromycin are active on other strains of
P. aeruginosa, it is reasonable to assume that the results concerning spiramycin can be
extended to different strains of P. aeruginosa. For example, azithromycin and erythromycin
are active against P. aeruginosa PAO1 [83–87] and against various clinical isolates [85,88]. In
addition, spiramycin forms non-host-guest complexes with methyl-β-cyclodextrin; there-
fore, these complexes could be used as antibiotic delivery systems as already proposed in
the case of other macrolides [89–91].

In conclusion, the in vitro and in vivo results provided in this study, in addition
to contributing to our understanding of the mechanism of action of macrolides, lay the
foundation for clinical studies to investigate the possibility of using the spiramycin as an
anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa
infections, in combination with other antibiotics.

4. Materials and Methods
4.1. Strain, Media, Growth Condition and General Procedure

The environmental strain P. aeruginosa GG-7R was used in this study [92]. Partial
sequence of the 16S ribosomal RNA gene is deposited in the GenBank under the accession
number MF045142.1. The bacterium was grown in Luria–Bertani (LB) medium (10 g
NaCl (OxoidTM, Altrincham, England), 10 g Tryptone (BD Difco™ Bacto™, Franklin Lakes,
NJ, USA), 5 g Yeast Extract (BD Difco™ Bacto™), 15 g Agar (BD Difco™ Bacto™) when
required, distilled H2O up to 1 L) at 37 ◦C and 200 rpm. Media sterilization was performed
in an autoclave (121 ◦C, 20 min). Stock solutions of spiramycin (Sigma-Aldrich, St. Louis,
MO, USA) (100 mg/mL) and erythromycin (Sigma-Aldrich) (125 mg/mL) were prepared
by solubilizing the antibiotics with ethanol (96%). Sterilization of the antibiotic solutions
was carried out by filtration (0.22 µm, sterile syringe filter, WWR®).

LB medium, solid or liquid, with erythromycin or spiramycin, was prepared as de-
scribed above and then allowed to cool for 30 min at 45 ◦C. A volume of antibiotic solution
was added to the medium to obtain the final concentration. As a control, the same volume
of solvent (96% ethanol) was added to the antibiotic-free LB medium. After adding the
antibiotic solution or solvent, the medium was stirred for 15 min using a magnetic stirrer at
120 rpm. The solid medium was poured into 90 mm Petri dishes, while the liquid medium
was allowed to cool at 37 ◦C before use.

The inoculum was prepared for all experiments as described: (i) the bacterium was
seeded onto solid LB; (ii) the following day, a colony was taken using a sterile toothpick
and inoculated into 10 mL of liquid LB; (iii) the next day, the bacterial suspension was
inoculated (1 in 100) into an appropriate volume of liquid LB; (iv) the bacterium was grown
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until the absorbance at 600 nm was 0.3± 0.05. The resulting suspension served as inoculum
for the different growth experiments. All growth experiments were performed in triplicate.

4.2. Determination of MIC, and Measurement of PVD and PYO Production in Multiwell Plates

The MIC of spiramycin was determined by using 24-well plates and LB broth with
10 different concentrations of spiramycin (from 0 to 500 µg/mL). MIC plates were incu-
bated at 37 ◦C and 180 rpm for 24 h before analyzing the results. The amount of PVD
in the exhausted broths was measured using the fluorescence readout (λexc = 405 nm,
λem = 613 nm) [93]. The amount of PYO in the exhausted broths was measured using the
absorbance measurement (520 nm) [54]. A turbidity measurement (absorbance at 600 nm)
was performed to measure biomass increase. All the measures were performed using the
Cytation5 multimodal and imaging reader (BioTek, Winooski, VT, USA). Absorption at
520 nm (PYO) and fluorescence (PVD) values were reported as biomass (absorbance at
600 nm) normalized value.

Mic experiments for the other antibiotics (ampicillin, streptomycin, erythromycin, and
rifamycin) were carried out following the same protocol and measuring absorbance at
600 nm.

4.3. Determination of Growth Curves and Measurement of PVD, PYO and Rhamnolipid
Production in Shake Flask Experiments

P. aeruginosa was grown in 250 mL flasks containing 50 mL LB. The flasks were
incubated at 37 ◦C and 180 rpm for 72 h. Samples were taken at the set times. Biomass
increase (absorbance at 600 nm), pH, and PYO and PVD production was measured at
different time points. Broth culture samples were centrifuged at 4000 rpm at 4 ◦C for
20 min, and supernatants were used to quantify PYO and PVD production. PYO was
quantified by measuring the absorbance at 520 nm (V-10 PLUS spectrophotometer, ONDA).
PVD was quantified by measuring the fluorescence (λexc 405 nm, λem 613) (JASCO Inc.,
Easton, MD, USA, FP-750 Spectrofluorometer). The continuous absorption spectrum was
measured using a spectrophotometer (Beckman Coulter DU® 800 spectrophotometer) in
the range from 295 nm to 800 nm. The fluorescence emission spectrum was measured
using an excitation wavelength (λexc) of 405 nm, and the emission spectrum (λem) was
recorded in a range from 450 to 700 nm using a spectrofluorometer (JASCO Inc., FP-750
Spectrofluorometer). Before measuring the absorption and fluorescence spectrum, the
exhausted LB broth was centrifuged at 4000 rpm for 15 min and the supernatant was
diluted 1:200 using sterile water. The amount of PYO and PVD was normalized by the
biomass (absorbance at 600 nm). The LB medium spectrum alone was used as a blank
to detect continuous spectra of both absorption and fluorescence. The orcinol method
was used to determine the amount of rhamnolipids [54]. To quantify the rhamnolipids, a
calibration curve was set up by preparing serial dilutions of L-rhamnose concentrations
ranging from 0 to 100 µg/mL as described [54].

4.4. Resistance to Oxidative Stress

The resistance to oxidative stress of P. aeruginosa was tested in 96-multiwell plates.
Specifically, the inoculum was prepared as described above and diluted 1:50 before starting
the experiment. A 96-well plate was used for this purpose, each well containing 100 µL of
the bacterial suspension. H2O2 was added to some wells at four different concentrations
(10, 20, 30, and 40 mM). Spiramycin was added to wells at three concentrations (60, 120,
and 180 µg/mL). The broth cultures thus prepared were incubated at 37 ◦C and 180 rpm
for 24 h. After this time, the cultures were sampled, and the biomass was measured by
determination of the absorbance at 600 nm.

4.5. Biofilm Experiment and Biomass Estimation

Microcrystalline hydroxyapatite discs (diameters = 8 mm, Bonding chemical) were
used as biomimetic support to perform the biofilm experiments. The hydroxyapatite
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discs were sterilized with the aid of the autoclave (120 ◦C, 20 min) and placed inside
24-well plates. The bacteria were cultivated as described above, and 1 mL of the bacterial
suspension was used to inoculate 25 mL of LB broth. Next, 1 mL of the resulting suspension
was poured into each well containing the hydroxyapatite disc. The 24-well plates were
incubated at 37 ◦C and 150 rpm for 72 h before the analysis.

Two methods were used to assess biofilm formation: the crystal violet method [94]
and the CFU method (CFU per disc). To measure biofilm using the crystal violet protocol
(CV), discs were washed three times by sterile saline solution (0.9% NaCl) and treated
with methanol for 15 min to fix the bacteria. Subsequently, the discs were immersed into
a solution of crystal violet (Liofilchem) and ethanol (1:5). This solution was left to act for
5 min. The discs were washed three times by the sterile saline solution and immersed
in 100% ethanol for 10 min. At the end of this process, the ethanol solution was used to
measure the absorbance at 595 nm (V-10 PLUS, ONDA spectrophotometer). For the CFU
method, the discs were washed three times by the sterile saline solution and immersed
in 1 mL of LB. At this point, the discs were vortexed at maximum speed for 2 min to
promote the detachment of bacteria from the discs. The resulting solution was used to
make serial dilutions using LB as the diluent. Finally, the dilutions were plated onto LB
agar. The resulting LB plates were incubated at 37 ◦C, and CFU were counted after 24 h
of incubation. Quantitative evaluation of PYO and PVD production was carried out as
described above. The amount of PYO and PVD was normalized by the biomass measured
with the CV protocol.

4.6. Swarming Motility Evaluation

Motility experiments were performed using the BM2 solid medium [54]. The medium
was composed as follows: 62 mM potassium phosphate buffer (pH 7), 7 mM (NH4)2SO4,
2 mM MgSO4, 10 µM FeSO4, 0.4% (wt/vol) glucose, 0.1% (wt/vol) casamino acids, 0.5%
(wt/vol) agar. The bacterium was inoculated in LB and left to grow at 37 ◦C and 180 rpm
overnight. The following morning, the bacterial suspension was used to perform a 1:100
dilution in LB broth. When the absorbance at 600 nm reached 1.0, 2 µL of broth culture was
taken and seeded onto the center of the plates. The plates were incubated for 48 h at 37 ◦C.
When required, spiramycin was used at a final concentration of 60 µg/mL.

4.7. Inoculum and Management of Galleria Mellonella Larvae

Galleria mellonella larvae were used as an in vivo infection model [78,95,96]. The
inoculated larvae were selected to be the same size (approximately 2.5 cm in length).
P. aeruginosa was grown as described above, and the bacterial culture was centrifuged
(4000 rpm, 15 min, room temperature). The pellet was resuspended with an appropriate
volume of a 10 mM MgSO4 solution to obtain a final absorbance at 600 nm = 1.0. Then,
dilutions were then made to obtain a bacterial suspension containing 8 × 103 CFU/mL.
Next, 10 µL of this suspension were used to inject the larvae using a Hamilton syringe
(250 µL) and an automatic dispenser. The injection was performed on the left pro-4th leg
as described in the literature [97]. As a control, a spiramycin solution (60 µg/mL) was
prepared by diluting the stock antibiotic solution into the MgSO4 resuspension solution.

Four sets of ten larvae each were used as control groups: (i) non-injected larvae (con-
trol larvae), (ii) larvae inoculated with resuspension solution alone (MOCK inoculum),
(iii) larvae inoculated with a spiramycin solution without the bacteria (60 µg/mL) (spi-
ramycin control), (iv) larvae infected with P. aeruginosa. A set of 10 larvae was injected
with the bacterial resuspension with the addition of spiramycin (60 µg/mL). Larvae were
incubated at 37 ◦C for 24 h [96]. After this time, the larvae were observed by counting the
number of dead larvae (dark in color).

To measure the immune response of G. mellonella larvae to P. aeruginosa infection,
the resuspension solution contained 8 × 105 CFU/mL. Preparation and injection were
performed as described above. The incubation was performed for 6 h at 37 ◦C. After this
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time, the larvae were frozen at −80 ◦C. RNA extraction from the larvae was performed as
described below.

4.8. RNA Extraction from G. mellonella Larvae and RT-qPCR

Frozen larvae were harvested using sterile forceps, and then the larval segment
corresponding to the 4th pair of pro-legs was removed using sterile scissors. The har-
vested tissue was immediately immersed into 950 µL of Trizol. The larvae pieces were
finely minced using a sterile pipette and the liquid was collected after centrifugation at
12,000× g for 5 min at 4 ◦C. Subsequently, 200 µL of chloroform was added and the solution
was mixed by inversion and incubated for 5 min at room temperature. After centrifugation
at 12,000× g for 5 min at 4 ◦C, the aqueous phase was recovered, and total RNA was
precipitated by adding an equal volume of isopropanol. The solution was incubated on
ice for 10 min and then centrifugated at 12,000× g for 30 min at 4 ◦C. The supernatant
was removed, and the pellet was dissolved with 500 µL of phenol solution pH 4.8, 250 µL
of sterile distilled water, and 250 µL of chloroform. After centrifugation at 12,000× g for
5 min at 4 ◦C, the aqueous phase was recovered, and the RNA precipitated by adding
1/10 volume of 3 M sodium acetate (pH 7.0) and 2 volumes of cold ethanol, and incubated
overnight at −20 ◦C. RNA was collected by centrifugation at 12,000× g for 30 min at
4 ◦C, and then washed with cold 70% ethanol, air dried, and resuspended in 100 µL of
sterile water. RNA samples were treated with RNase-free Dnase (Promega, Madison, WI,
USA) for 1 h at 37 ◦C and then at 75 ◦C for 5 min. The integrity and the concentration
of the RNA samples were assessed by electrophoresis analysis on 1% agarose gel and
UV-spectrophotometry (NanoDrop®, ND-1000 Spectrophotometer), respectively. For each
experimental group, an equal RNA amount from three larvae was mixed at the final concen-
tration of 1 µg/µL. Reverse transcription was carried out as previously reported [98]. The
same RNA extraction protocol was used for P. aeruginosa. A volume of 1 mL was sampled
at 24 h and 48 h during the growth of P. aeruginosa in the flasks, RNA was extracted, and a
RT-qPCR was performed.

Quantitative gene expression analysis was carried out on CFX Connect™ Real-Time
PCR Detection System (Bio-Rad Laboratories, Segrate, Italy), using SYBR® Select Master
Mix for CFX (Life Technologies, Carlsbad, CA, USA) and ubiquitin for normalization. The
primers used for real-time PCR analysis are reported in Table 2 [78,80,99,100].

Table 2. Primers used for real-time PCR analysis.

Sample Primer Name Sequence 5′-3′ Reference

G. mellonella Gallerimycin f GAAGTCTACAGAATCACACGA
[79]G. mellonella Gallerimycin r ATCGAAGACATTGACATCCA

G. mellonella ubiquitin f 1 TCAATGCAAGTAGTCCGGTTC
[80]

G. mellonella ubiquitin r 1 CCAGTCTGCTGCTGATAAACC
G. mellonella Gloverin f GTGTTGAGCCCGTATGGGAA

[79]G. mellonella Gloverin r CCGTGCATCTGCTTGCTAAC
G. mellonella Lysozyme f GGACTGGTCCGAGCACTTAG

[79]G. mellonella Lysozyme r CGCATTTAGAGGCAACCGTG
G. mellonella Moricin f GCTGTACTCGCTGCACTGAT

[79]G. mellonella Moricin r TGGCGATCATTGCCCTCTTT
P. aeruginosa lasB r AACCGTGCGTTCTACCTGTT

[99]P. aeruginosa lasB f CGGTCCAGTAGTAGCGGTTG
P. aeruginosa rhlC f GCCATCCATCTCGACGGAC

[99]P. aeruginosa rhlC r CGCAGGCTGTATTCGGTG
P. aeruginosa phzS f CCGAAGGCAAGTCGCTGGTGA

[99]P. aeruginosa phzS r GGTCCCAGTCGGCGAAGAACG
P. aeruginosa COM1 1 CAGCAGCCGCGGTAATAC

[100]
P. aeruginosa COM2 1 CCGTCAATTCCTTTGAGTTT

1 = gene used for normalization.
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