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Abstract
At basin scale the physical phenomenon of diffusion involves the intricate spreading and dispersion of substances within

complex systems as networks of interconnected channels, streams, and land surfaces. Understanding this process is crucial

for many purposes as management and conservation of water resources. We extend the model application of our previous

work (Part I, Rizzello et al. in Stoch Environ Res Risk Assess 37:3807–3817, 2023) from channel to basin scale. We use

conservation of mass and momentum to formulate and apply the Master Equation system at basin scale. The results on

simulated events highlight the transition of the model from channel scale to basin scale.

Keywords Master equation � Diffusion � Basin scale � River network

1 Introduction

The assessment and analysis of water pollution from the

physical and ecological perspectives has a significant

importance.

Complex river systems are dynamic environments sus-

ceptible to pollution from various sources. The most

common ones are chemical pollutants, which often

originate from industrial discharges, agricultural runoff,

urban storm-water, and improper waste disposal (Chatwin

and Allen 1985; Duarte and Boaventura 2008; Deng and

Jung 2009; Alley 2007; Altenburger et al. 2015; Novotny

1994). These pollutants include various chemical sub-

stances such as heavy metals (e.g., mercury, lead, cad-

mium), pesticides, fertilizers (ammonia, nitrogen and

phosphorus compounds), industrial chemicals, pharma-

ceuticals, and petroleum hydrocarbons (Kakade et al. 2021;

Boon and Raven 2012). Excessive nutrients like nitrogen

and phosphorus, categorized also as nutrient pollutants, can

lead to eutrophication, a process where rapid algal growth

depletes oxygen levels, harming aquatic life (Strokal et al.

2019; Boon and Raven 2012).

Instead, from a macroscopic perspective, sediments

from erosion, construction activities, and agricultural

practices can enter rivers and cause turbidity, reducing

light penetration and negatively impacting aquatic plants

and animals. Suspended solids can also carry attached

pollutants, making them potential carriers of chemical

contaminants. At the basin scale, fast estimates of the

damages on the water quality due to pollution could play

essential role in establishing governmental regulations for

environmental protection (Kachiashvili et al. 2007; Chat-

win and Allen 1985; Duarte and Boaventura 2008).

Estimating pollution using physical models in rivers

involves fundamental concepts of fluid mechanics, mass
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transport, and chemical interactions to simulate and predict

the behavior, the dispersion of contaminants within the

river system (Alley 2007; Altenburger et al. 2015; Novotny

1994). Capturing all the relevant processes, such as sedi-

ment transport, turbulence, and mixing, can be time-con-

suming and inadequate if an immediate decision is

required; further simplifications may be necessary, leading

to some level of uncertainty in the model results. Signifi-

cant amount of data inputs as river geometry, flow char-

acteristics, accurate boundary conditions and pollutant

properties, are required. In case of unavailability or

inconsistent data quality errors and uncertainty could affect

the model (Kachiashvili et al. 2007; Strokal et al. 2019).

To address these limitations, it is essential to comple-

ment physical models with other approaches, such as

stochastic methods, and field monitoring, to gain a more

comprehensive understanding of pollutant behavior

(Chatwin and Allen 1985; Duarte and Boaventura 2008).

From this point of view, stochastic dispersion models in

rivers are a type of mathematical model that incorporates

randomness and uncertainty into the simulation of pollutant

dispersion in natural water systems. Unlike deterministic

models, which provide precise predictions based on known

inputs and equations, stochastic models introduce proba-

bilistic elements to account for the inherent variability and

unpredictability of certain factors in river environments

(King and Turner 2021; Raudkivi 2020).

Stochastic dispersion models are particularly useful

when dealing with complex and uncertain systems, as they

allow for the consideration of various sources of variabil-

ity, such as fluctuating river flow rates, changing wind

patterns, and varying pollutant release rates (Fernengel and

Drossel 2022; Van Kampen 1992; Honerkamp 2012).

These models are especially relevant in scenarios where the

Table 1 Summary results for

phosphorus solute P
Scheme b) P� ¼ 0:63, P17;15 ¼ 0:50, P12;11 ¼ 0:81, P4;3 ¼ 0:35

Curve tpðdÞ qP (kg/d) Time-lag (d) Error %

Experimental data 1 4.15 11.30 – –

Experimental data 4 2.85 1.87 – –

Experimental data 7 3.10 5.25 – –

Experimental data 8 2.65 1.22 – –

Experimental data 12 2.05 0.72 – –

Experimental data 14 1.90 0.10 – –

Experimental data 16 1.90 0.05 – –

Experimental data 17 1.90 0.05 – –

Simulated data 1’ 4.15 11.95 – 5.7

Simulated data 4’ 2.85 1.87 – –

Simulated data 7’ 3.1 5.15 0.05 1.9

Simulated data 8’ 2.55 1.22 0.10 –

Simulated data 12’ 2.00 0.72 0.05 –

Table 2 Summary results for suspended sediments S (�103)

Scheme b) P� ¼ 0:65

First peak tp1ðdÞ q1;S (mg/L) Time-lag (d) Error %

Experimental data 1 2.60 14.45 – –

Experimental data 4 2.35 9.25 – –

Experimental data 8 2.25 6.15 – –

Experimental data 12 1.95 1.95 – –

Experimental data 14 1.80 3.69 – –

Experimental data 16 1.95 1.70 – –

Simulated data 1’ 2.70 14.75 0.10 2.1

Simulated data 4’ 2.55 9.63 0.10 –

Simulated data 8’ 2.45 6.30 0.1 3.7

Simulated data 12’ 1.90 1.95 0.05 –

Simulated data 14’ 1.90 3.69 0.10 –

Simulated data 16’ 1.85 1.76 0.10 3.5

Second peak tp2ðdÞ q2;S (mg/L) Time-lag (d) Error %

Experimental data 1 7.90 6.15 – –

Experimental data 4 2.85 1.87 – –

Experimental data 8 6.90 2.35 – –

Experimental data 12 6.60 0.61 – –

Experimental data 14 6.75 0.64 – –

Experimental data 16 6.65 0.66 – –

Simulated data 1’ 7.50 5.7 0.40 7.3

Simulated data 4’ 2.85 1.87 – –

Simulated data 8’ 7.00 2.35 0.10 –

Simulated data 12’ 6.60 0.61 – –

Simulated data 14’ 6.75 0.62 – 2.6

Simulated data 16’ 6.35 0.60 0.30 9.1
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available data may be limited, or when dealing with long-

term pollutant behavior (Wing et al. 2020; Kerachian and

Karamouz 2007).

Combining different modeling techniques and data

sources can help mitigate uncertainties and improve the

accuracy of pollution assessments and management

strategies (Wing et al. 2020; Kerachian and Karamouz

2007).

In the previous work (Part I) a numerical technique,

computationally less expensive than the existing diffusive

methods, was presented (Rizzello et al. 2023). The

numerical model was applied at the channel scale with the

aim of observing its applicability from a computational

point of view, monitoring the first results with the purpose

of extending the obtained results to a larger scale

(De Bartolo et al. 2006, 2009a, 2022). As described in the

previous work, this model is based on two essential phys-

ical conservation laws, the principle of mass conservation,

represented by the Master Equations (MEs), and the prin-

ciple of momentum conservation, condensed into the

parameter Pij (Botter et al. 2011, 2010; Rodriguez-Iturbe

et al. 2009; Rinaldo et al. 2018).

The MEs describe the time and spatial evolution of a

complex system, combining the transition probabilities

which bind the elements of this system for different states,

where the new dynamics can arise (Fernengel and Drossel

2022; Van Kampen 1992; Honerkamp 2012). A particular

example of a ME special case is the Fokker-Planck equa-

tion, describing the time evolution of continuous proba-

bility distribution (Keizer 1972; Van Kampen 1992;

Gardiner et al. 1985).

The transition probability, Pij, plays a noteworthy role in

transport scales, particularly concerning river networks.

Specifically, from a physical point of view, Pij represents

the conservation of the momentum characterising the pro-

cess in its evolution, while from a stochastic point of view,

it takes into account uncertainties arising e.g. from limited

spatial and temporal resolution, accuracy and availability

of input data (Rodriguez-Iturbe et al. 2009; Rinaldo et al.

2018; Rizzello et al. 2023).

In relation to the events studied, new considerations

have been made for Pij that can lead to possible reformu-

lations to describe, for example, delays or accelerations of

the dispersion phenomenon in complex river systems. The

aim of this work is to highlight what are the elements of

validation, applicability and limits of the basin-scale

methodology with respect to the channel-scale. The anal-

ysis of the data provided by the USGS was performed and

the same Master Equations were applied on a basin reach

belonging to the Maumee River basin in Ohio (USA).

The results presented here are a continuation of the

research conducted in Part I (Rizzello et al. 2023).

2 Methods

River networks are complex geomorphological systems.

Understanding the scaling behavior of network structures is

essential in describing numerous hydraulic and hydrologi-

cal processes (De Bartolo et al. 2006, 2009a, 2022).

Existing dispersion models of river systems integrate

hydrodynamic and water quality data to simulate how

contaminants interact within the water. In this way, it is

possible to estimate pollutant concentrations at different

locations and times.

On the basis of a previous work Rizzello et al. (2023),

the numerical method for solving the steady one-dimen-

sional advection-dispersion problem for solute transport is

extended at basin scale. The boundary conditions consist of

multiple point-loading in the outer areas of the basin where

pollutant measuring stations record events of interest.

The proposed method starts with the definition of the

basin of interest. When that has been identified, the chan-

nels of the complex river network are connected through a

computational scheme of nodes and lines (arcs). The n

channels of the system, with lengths L1; L2. . .Ln, are par-

titioned using a base length ~L and identifying new m par-

titioned channels of the computational domain. The new

pattern obtained has a number of arcs equal to m, where

m ¼
Pn

k¼1 Lk
~L�1 while the number of nodes can be found

through the relationships with physical geography by

means of an ordering, for example the Horton-Strahler

ordering (Strahler and Strahler 2013). The inter-lines

defined connect internal nodes where the unknown con-

centrations are evaluated at subsequent time steps. As a

first step, the flow parameters can be assumed to remain

constant over time, t, although their spatial variations may

be accepted. Therefore, each segment assumes parameters

of velocity, dispersion coefficient, or transition probability

that are line-constant with respect to time.

While this assumption may impose limitations during

the initial stages of pollutant dispersion phenomena in

rivers, it represents the minimum first starting condition

from the available experimental data to define a global

basin probability transition P�. Indeed, when information

regarding riverbed geometries, sections, and velocity scale

measurements is unavailable, these assumptions can still

yield initial approximation results. After defining a basin

transition probability for the entire catchment area, the

channel transition probabilities can be defined to get closer

to the solution represented of the experimental data and

calibrate the model. These transition probabilities can be

constant over time, different from channel to channel or

time-functions in order to define local delays or accelera-

tions in the stretches of the complex network (Rizzello
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et al. 2023; Rodriguez-Iturbe et al. 2009; Rinaldo et al.

2018).

The results are computed starting from a specified time

level with a known spatial concentration within the

domain. The boundary source nodes, i.e., the terminal

upstream nodes of the channels in which the event starts to

happen, have specified solute concentration values that are

either constant or possibly varying with time, t, and are

used to generate the solution through evolution in time.

The computed concentration values of the solute along the

channel lengths of the basin channels may thus vary with

time, although the flow velocities are assumed to be in a

steady state in the various channels of the basin.

Specifically, the solute spatial concentration is obtained

as a solution of a system of linear equations. These are the

principle of mass conservation, expressed through the use

of MEs, and the principle of momentum conservation, with

the Pij formulation (Rizzello et al. 2023). Hence, the main

objective of this work is to characterize the transition

probabilities, Pij, by a non-direct best fitting procedure. In

the next section more details about the transition proba-

bilities, Pij and mathematical formulations are provided.

2.1 Transition probabilities and mathematical
formulation at the basin scale

As in the case of channel scale, at basin scale we look for

the solution to the mono-dimensional equation system

governing the longitudinal spread (dispersion) of the solute

concentration in space and time (Benedini and Tsakiris

2013) in the basin. The n basin streams of lengths

L1; L2. . .Lq. . .Ln�1; Ln can be discretized, using m nodes

and a fixed length ~L, in small stretches of length, Lq;ij,

where i and j are the extreme-boundaries of each stretch

and q is the index of the stream considered. The well-know

local conservation mass equation as a ME in a discrete

form (Rodriguez-Iturbe et al. 2009; Rinaldo et al. 2018;

Rizzello et al. 2023) can be written as:

qiðtkÞ ¼ qiðtk�1Þ þ Pq;ijqjðtk�1Þ ð1Þ

where qi and qj represent the discrete-time solute con-

centration in nodes i and j at time tk, respectively. The

parameter Pq;ij denotes the transition probability associated

with the reach Lq;ij. If we assume a steady flow along the

channels, the real mass conservation over the time interval

(ti to tf ) during which the phenomenon occurred is

described at basin channel by following integral form:

Z tf

ti

dtqiðtÞvi ¼
Xn

q¼1

Z tfþDtq

tiþDtq

dtqq;jðtÞvq;j ð2Þ

where ti, tf are the extremals of the time interval of the

event occurring at the basin closure section (node i), vi is

the velocity at node i and Dtq is the shift-time travel

interval along the channel q, with velocity vq;j, respect to

the event occurred in the closure section.

If the velocity of each channel, vq;j, does not deviate

much from the mean velocity of the all basin channels,

�v ¼ 1
n

Pn
q¼1 vq;j � vi, it can be simplified in its integral form

(2). These deviations from the mean velocity are taken into

account by the transition probabilities, Pi;j, which influence

the shape of the pollutant wave. After discretizing the basin

domain channels in nodes and lines (arcs), the matrix

formulation of equation (1) extended to the entire basin is

(Rizzello et al. 2023):

~qðtkÞ ¼ ~qðtk�1Þ þ ~Pu ~quðtk�1Þ � ~Pd ~qdðtk�1Þ ð3Þ

in which ~qðtkÞ, ~qðtk�1Þ are the solute concentration vectors

at the time tk and tk�1, and ~quðtk�1Þ, ~qdðtk�1Þ are the solute

concentrations at the upper and lower nodes at the time

tk�1, respectively.

Therefore, ~Pu, ~Pd are the transition probability matrices

estimated for each local transition. In the case of the

minimal structure and one junction node, a maximum of

four nodes and three arcs may be included in each local

transition. In other cases, usually three nodes and two arcs

are sufficient. The case of local transition with a number of

nodes greater than four (Rizzello et al. 2023; Strahler and

Strahler 2013) is quite rare.

The procedure is repeated over discrete time steps, until

a specified final time is reached. The description of the

transition probabilities Pi;j between nodes i and j can be

made from the definition of the transition probability of the

entire basin P� found in the first instance. From a physical

point of view Pi;j represents the equation of conservation of

momentum, while from a stochastic model point of view it

can express the probability of the solute passing from one

point to another in the complex river system.

We can therefore express the transition probabilities of

the river network of n channels (before the discretization

on the basis of ~L occurs) as Pij ¼ cijP
� with 0�Pij � 1,

where the coefficients cij allow to express the behavior of

the single channel with respect to the behavior of the entire

basin. When defining a localised delay of the phenomenon

at a certain instant of time t0(this may be the case for source

nodes), the transition probability Pij can be expressed as a

time-function:

PijðtÞ ¼ cijP
�Hðt � t0Þ ð4Þ

where Hðt � t0Þ is the shifted Heaviside step function

defined as follows:

Hðt � t0Þ ¼
0; if t\t0

1; if t� t0

�

ð5Þ
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where t0 is the time shift. Thus, if the dispersion phe-

nomenon is intermittent, the associated function is a

trigonometric function, if it is destined to expire over time

with a delay, the time function is decreasing over time, in

the general case it is a time-dependent function PijðtÞ.
Some results of this approach involving all the considera-

tions made for the transition probabilities are shown in the

next section.

2.2 Study area and sampling dataset localization

The study area that we considered is the Maumee River

Basin, also known as the Maumee Watershed, a significant

river system located in the northwestern part of Ohio in the

United States. The basin is named after the Maumee River,

which is the primary watercourse flowing through the

region; it is one of the largest watersheds in the Great

Lakes region and drains a primarily rural farming region in

the watershed of Lake Erie (Martin and Pederson 2022;

Stothers and Tucker 2006). The topography of the basin is

characterized by flat plains, fertile farmland, and extensive

wetlands, therefore it is difficult to find motion traps. The

basin includes several tributaries to form the domain area,

in particular the upper and lower part of Maumee River,

and other tributaries named Tiffin, Auglaize, Blanchlard

and Flatrocks. In Fig. 1 it is possible to observe the geo-

graphical framework of the basin under consideration, and

the representation of the channels included.

Several pollutant measurement stations are located in

the area, which have made it possible to create a database

of pollutant concentrations recorded over time. The data on

which the model is based were collected by the USGS (see

https://www.usgs.gov). Agricultural practices contribute to

pollution, especially nitrogen and phosphorus loading in

the river and leading to water quality problems. Further-

more soil erosion from agricultural fields and construction

sites contributes to sedimentation in the river. Excess

sediment can cloud the water, reducing light penetration,

and adversely affecting aquatic plants and animals. Indeed,

sediment can also transport pollutants, such as pesticides

and heavy metals, impacting water quality. Taking into

account this environmental condition, the analysis consid-

ers various solutes, such as filtered and unfiltered ammonia,

phosphorus, nitrate plus nitrite, ammonia plus organic

nitrogen, orthophosphates, and suspended sediments. Some

of the results obtained from this analysis are presented in

the following paragraph.

3 Results and discussion

In order to define the computing domain, the channel map

of Maumee Basin in Fig. 1 is represented as a graph with

points and arcs in scheme a) of Fig. 2. Considering a first-

order scheme in discrete time, two simulation cases are

reported below. The first case that we analyzed is

Fig. 1 Geographic maps of the Maumee Basin. On the left the geographical framework (41	04’58‘‘ N 85	07’56’’ W), on the right the complex

river network with water quality gauging stations represented as red points and junction points between channels in white

Stochastic Environmental Research and Risk Assessment (2024) 38:751–760 755
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concerned with the phosphorus solute P. The second case

focuses on the suspended sediments S.

Considering Fig. 2, starting from scheme (a) we use a

length ~L in order to discretize the basin domain. Dividing

the channel lengths that form the hydrographic network by
~L leads to the second scheme, (b). Furthermore, as in the

case of channel scale, a fictitious node is added before each

source node also for the basin scale, and similarly a ficti-

tious outlet node is added after the basin closure node

(Rizzello et al. 2023). Hence, the scheme used for both

simulated cases is the scheme b) shown in Fig. 2 and ~L was

set 5 km. The data, provided by the USGS, for the first case

range from mid-November to mid-December 2016, while

for the second case they refer to the entire month of

February 2017.

For the phosphorus pollutant P, we analyze the con-

centration peaks of source nodes (in this case, source nodes

are 4, 7, 12, 14, 16, 17) and closure node is 1. Results are

shown in Table (1). In particular the trend of nodes 16 and

17 is very low compared to the other source nodes and

could also be ignored in the computation.

The MEs system is solved by means of a Computer

Algebra System, Reduce (Hearn 2008), which is free

software available at Reduce project page (2023). We

wrote a program which iteratively updates the values of the

solute concentration at each time tk on each node. The

graph is represented by a list which is traversed by a

recursive algorithm, which is easy to design using Reduce

Lisp system. It is remarkable that the software scales well

and delivers results in few minutes even with a very high

number of nodes (e.g., several thousands).

After solving the MEs system, the basin transition

probability P� was found to be equal to 0.63. In this case,

but also in the subsequent case reported, the optimal P�

value is obtained in an iterative manner by finding a sim-

ulated concentration curve that comes closest to the

experimental one and thus minimising the errors between

the concentration peaks and the respective time lags, as in

Part I (Rizzello et al. 2023).

The relative error defined as
jqN�qN0 j

qN
(where N is the

generic node) is evaluated for the considered nodes. Thus,

for the outlet node 1 it is 5.7 %, while for the source node 7

is 1.9 %. In addition, there is a time-lag of 0.05 days (about

1 h) for source nodes 7 and 12 and a a time-lag of 0.1 days

(about 2 h) for junction node 8. The transition probability

P7;5 was adjusted to 0.30, instead P12;11 was adjusted to

0.35 (result are similar to the cases of Part I at channel

scale) (Rizzello et al. 2023).

Similar behaviours can be found in other frameworks

and investigations (Rodriguez-Iturbe et al. 2009; Rinaldo

et al. 2018). At the basin scale, this makes it possible to

estimate the pollutant wave, at intermediate nodes. The

trend of the concentrations is shown in Fig. 3.

Fig. 2 Domain discretization

configurations considered in the

computational analysis.

Scheme (a) is a graphical

representation of the channels

included in the basin from

which, on the basis of the

channel lengths, the domain is

discretized by fixing a base

length ~L, obtaining the

scheme (b)
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In the case of suspended sediments S, two peak events

occurred leading to increased calculation complexity (see

Fig. 4).

In this case the source nodes are 4, 12, 14, 16 the closure

node is the same, 1. The results of our analysis are shown

in Table (2). The basin transition probability P� was found

Fig. 3 Time development of phosporous concentrations qP using scheme (b). The peaks and their respective times are highlighted

Fig. 4 Time development of suspended sediments concentrations qS using scheme b). The peaks and their respective times are highlighted
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equal to 0.65. For the first peak, the percentage error for

outlet node 1 is 2.1 %, while on sources node 4 and 16 it is

about 3.7 % and 3.5 % respectively. Instead, for the second

peak it is 7.3 % for outlet node 1 and for nodes 14 and 16 it

is about 2.6 % 9.1 and % respectively. In addition, there is

a time-lag of 0.4 days, 0.1 days (about 5 h and 2 h) and 0.3

day (about 4 h) for nodes 1, 8 and 16 respectively. In this

case, the transition probability P16;15 was adjusted to 0.50,

instead P4;3 was adjusted to 0.35 respectively. The source

node 12 had a delay in its boundary condition, thus it was

added was added by the condition P12;11 ¼ 0:81Hðt � t1Þ
where t1 ¼ 0:5 days. Same consideration for node 14 with

P14;13 ¼ 0:65Hðt � t2Þ where t1 ¼ 0:7 days.

At the basin scale, this makes it possible to estimate

concentrations of the pollutant wave, at intermediate nodes

(Rizzello et al. 2023). On the basis of the results obtained it

is important to note that the model exhibits a time-lag in

dispersion concerning the peaks, which is approximately

1–5 h within the complete time span of the dispersion

phenomenon (about 15–20 days). Furthermore, increasing

the complexity and number of internal nodes may intro-

duce errors in peak concentration predictions due to

approximation errors that accumulate in each computa-

tional operation.

The model provides valuable indications of how vari-

ables of interest are spread; it is also important to recognize

its limitations. According to (Huang et al. 2022; Ito 1992;

Ajami et al. 2007; Van Kampen 1992; Hervouet 2007),

dispersion models are based on a set of assumptions and

mathematical representations of physical processes, which

can introduce uncertainties and errors into the predictions.

The accuracy of these models depends on high-quality data

inputs, such as river flows and water quality parameters,

which may not always be available or accurate (Ito 1992;

Hervouet 2007). This type of model often requires a sig-

nificant amount of data for parameterization and calibra-

tion, especially considering complex river systems. To

achieve the best calibration of the model at basin scale, all

measurement stations available from the USGS were used.

Reducing the number of available stations used, obviously

errors increase in simulations, often leading to incorrect

transport estimates. In particular, the intermediate stations

allow to check in their position whether or not any event

has modified the transport started upstream. Furthermore, it

is important to consider the process type when using these

models to make decisions, including field measurements

and observational data, to validate the results: the process

considered usually is a normal-diffusive type (Rizzello

et al. 2023; De Bartolo et al. 2022, 2009a, b).

Despite these limitations, the Master Equation model is

a valuable tool for studying pollutant/sediment transport in

rivers. When used appropriately and in conjunction with

other modeling approaches and field data, it can offer

valuable insights into pollutant behavior and aid in devel-

oping effective pollution management strategies for

reducing the impact on the environment.

Basing on the results obtained, it would be interesting to

investigate and compare the hydrodispersive behaviour on

complex hydrographic networks characterized by a differ-

ent geomorphology, more extreme events and a larger

number of nodes and channels. That will be the subject of

future works.

4 Conclusions

In this work the dispersion analysis of some contaminants

within the catchment area of the Maumee River’s Basin in

the Ohio State (USA) was addressed at basin scale.

Specifically, a set of data concerning phosphorus and sus-

pended sediments were analyzed, on the basis of data

provided by the American USGS service. The time period

concerned the months November-December 2016 for

phosphorus, and February 2017 for suspended sediments.

The analysis on the geomorphological basin scale con-

cerned a bain area of approximately 13,000 km2.

The hydrodynamic dispersion model used for this pur-

pose has been derived from a particular class of dynamical

differential system, derived from the Fokker-Planck equa-

tions, called Master Equations, MEs. The MEs model here

proposed, according to (Rodriguez-Iturbe et al. 2009;

Rinaldo et al. 2018), based on mass and momentum con-

servation principles, has been implemented on an equiva-

lent graph representing the basin domain. The MEs

proposed is able to deal with large amounts of data and

intensive computational processing.

The model in its peculiar characteristics has offered

interesting results in terms of peak time and maximum

solute concentration. It allows a reconnaissance of the

dispersion phenomenon at the channel scale to be carried

out quickly with an interesting low percentage error (0.1–9

%) and time-lag (1–7 h). Moreover, according to the sci-

entific literature (Rodriguez-Iturbe et al. 2009; Rinaldo

et al. 2018; Botter et al. 2010, 2011; Rodriguez-Iturbe and

Rinaldo 2001), functional validity was given to the tran-

sition probabilities, Pij, considering real cases.

The extension of the method to the basin should imply a

variation to the definition of the transition probabilities Pi;j

in order to take into account the possible local delays or

accelerations occurring at the channel scale and thus the

different velocities. Consequently, the transition probabil-

ities Pi;j could be time-dependent. Furthermore, the method

makes it possible to carry out estimations of pollutant

dispersion in intermediate points of basin-scale.
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Based on these encouraging results obtained, in order to

make comparisons in results, the model proposed here can

be further applied to a different basin which can take into

account a greater complexity of the river network, for

example large Hortonian structures characterized by a

relevant number of internal and external nodes. Indeed,

expanding the application to a different basin with diverse

characteristics will enhance our understanding of pollutant

transport processes in various hydrographic settings. It will

also allow for the exploration of potential differences and

similarities between river networks, providing valuable

information for water quality management and environ-

mental protection strategies on a broader scale. Further-

more, the model can be applied to compare the seasonal

events of one or more years with the aim of identifying any

dependencies in the transport phenomenon such as those of

the seasonal average velocity or the total mass of water

flowed.

In any case, calibrating and validating the dispersion

model on another basin is a crucial step to ensure the

reliability and applicability. High-quality data from field

measurements, water quality monitoring, and pollutant

concentration measurements are essential for validating the

performance of the model. In the case that the model is

applied to events that do not satisfy the previously defined

hypotheses, it is necessary to modify the equations by

introducing appropriate variables that allow to obtain the

correct mass balance in the various nodes and momentum

conservation along the arches. The most appropriate

alternative remains that of combining different modeling

techniques and data sources to mitigate uncertainties and

improve the accuracy of pollution assessments and man-

agement strategies. Additionally, ongoing research and

advancements in data collection techniques and computa-

tional capabilities may help overcome some of the limita-

tions of physical models.

In conclusions, these processes help build confidence in

the model predictions and allow for better decision-making

in water resource management and pollution control

strategies.

5 Supplementary information

The analyzed data can be found and downloaded from the

public domain USGS website (https://www.usgs.gov).
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