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A B S T R A C T

The insurgence of delamination phenomena of glued slender devices represents a diffuse drawback in numerous
technological applications and it is diffusely observed in several biomechanical systems. Starting from the
classical Euler elastica, we study the delamination of an inextensible elastic rod, with an end–end confinement,
adhered to a rigid flat substrate. This system represents also a prototypical scheme mimicking decohesion
induced by differential growth. Using energetic considerations, we draw a phase diagram between two classes
of solutions: partially adhered and fully detached equilibrium states. We highlight a discontinuous transition
between these two configurations, triggered by the confinement 𝜀 and regulated by the ratio between the
elastocapillary length 𝓁ec and the length of the rod 𝐿. Eventually, we provide the approximate formula
𝜀cr ≈ 𝐿2∕(27𝜋2𝓁2

ec), in very good agreement with the numerical results.
1. Introduction

The delamination of thin sheets from an adhesive substrate repre-
sents a widespread problem observed in numerous branches of mate-
rials and structure engineering (Ke et al., 2010; Domokos et al., 2003;
Petrik et al., 2020) and it is also the basis of several effects in biological
sciences (Wyatt et al., 2020; Douglas et al., 2014; Goriely, 2017;
Pocivavsek et al., 2018). Such instability represents generally an in-
convenience to be avoided in various technological applications, since
it potentially leads to device deterioration or breakage. However, its
control and reversibility proposes a new paradigm, paving the way for
a new generation of electronic devices and mechanical actuators (Sun
et al., 2006; Kim et al., 2020; Lu and Kim, 2020). Thus, the possibility of
reversible and controlled decohesion (Maddalena et al., 2009; Wu et al.,
2011a,b) can be, as schematized in this paper, a key step toward the
design of new adhesion-based actively controlled systems (Wang and
Yamamoto, 2017). Similar phenomena have been speculated in Puglisi
and Truskinovsky (2013) as mechanisms able to explain the strong
reversible adhesion observed in biological systems.

The deformation of the delaminated components is often large so
that linear theories are inappropriate to describe such effects. Previous
analyses, which employ the Euler’s elastica, studied delamination effects
from various types of adhesive substrates such as flat, wet rigid sur-
faces (Majidi, 2007; Wagner and Vella, 2013), or soft solids (Vella et al.,
2009; Oshri et al., 2018; Oshri, 2020). The same scheme can also be ap-
plied to study delamination in hard and soft confined strips (Cerda and
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Mahadevan, 2005; De Pascalis et al., 2014; Napoli and Goriely, 2017;
De Tommasi et al., 2021; Maddalena et al., 2012; Coclite et al., 2019;
Turzi et al., 2021). The Euler’s elastica offers the invaluable feature
of integrability of equilibrium equations, letting semi-analytical results
with solutions in closed form and leading to a clear description of
physical phenomena that cannot be achieved within classical linearized
approaches.

More specifically, with respect to the phenomenon of decohesion
buckling of interest in this paper, we recall that in Wagner and Vella
(2013) it has been shown that Euler’s elastica well describes quanti-
tatively the delaminated shape for deflections with large slope and,
hence, geometrically nonlinear. However, under the considered in-
extensibility assumption, the compressive stress required to induce
delamination is theoretically unbounded. Thus, to describe the tran-
sition between the fully attached state and the delaminated config-
urations with finite-size blisters, due to either a finite compressive
load (Napoli and Turzi, 2015) or body accretion (Napoli and Turzi,
2017), the theory of nearly inextensible rods has been successfully
considered. Furthermore, the analysis in Wagner and Vella (2013)
has recently been extended, including again weak rod compressibility,
to take into account also of folded configurations with self-contact
points (Davidovitch and Démery, 2021).

Our analysis goes in the direction of completing the one in Wagner
and Vella (2013), considering the possibility of having a completely
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Fig. 1. Scheme of the possible delamination configurations of an elastic rod. (a)
Undeformed beam, (b) blister configuration, (c) fully detached state.

delaminated solution with only the ends in contact with the substrate
and describing the important effect of a discontinuous transition be-
tween partially attached configurations, characterized by finite blisters,
to fully delaminated states. Our energetic approach let us attain a clear
physical description of the phenomenon that is summarized in a phase
diagram. In particular the transition is triggered by the confinement
𝜀 and the critical threshold is regulated by one single parameter 𝜉ec,
measuring the relevance of elastic versus adhesion energy. We specu-
late that the obtained controllable bifurcation system can be adopted in
actuation or sensing devices, by tuning either 𝜉ec –e.g. through classical
electroadhesion procedures (Shintake et al., 2016)– and 𝜀 –through a
thermal (Que et al., 1999) or growth control as in the recently proposed
approach in Arazoe et al. (2016)–.

2. Equilibrium configurations

Consider, by following the analysis in Wagner and Vella (2013), an
inextensible and unshearable planar elastic rod with length 𝐿, resting
on a rigid substrate (Fig. 1). We prescribe the distance between the ends
of the rod and we consider the presence of a capillary adhesion, while
we neglect gravity effects. We then solve the equilibrium equation and
we compare the energies of the fully detached and partially attached
solutions.

Let then 𝐫(𝑠) be the position of a point of the curve represent-
ing the rod that can be parameterized by its Cartesian coordinates
r(𝑠) = 𝑥(𝑠) e𝑥 + 𝑦(𝑠) e𝑦, where 𝑠 is the arc length. Denoting by 𝜃(𝑠) the
angle between the tangent vector 𝝉(𝑠) and the horizontal axis e𝑥, the
inextensibility constraint leads to 𝝉(𝑠) = r′(𝑠) = cos 𝜃(𝑠) e𝑥 + sin 𝜃(𝑠) e𝑦,
where a prime denotes differentiation with respect to 𝑠. Consequently,

𝑥′(𝑠) = cos 𝜃(𝑠), 𝑦′(𝑠) = sin 𝜃(𝑠). (1)

Under the simplifying assumption of symmetric solutions with respect
to the 𝑦 axis (see Fig. 1), we consider two possible non trivial equilib-
rium configurations: (i) the case where the rod is partially attached in
2

𝑠

two end point portions of length 𝐿∕2 − �̄� and detached in the middle
portion of length 2�̄� (see Fig. 1(b)), and (ii) the case where the rod is
fully detached as represented in Fig. 1(c).

We refer to the detached portion as blister and we determine
its equilibrium shape as stationary points of the total energy func-
tional (Wagner and Vella, 2013):

𝑈 (𝜃(𝑠), 𝜃′(𝑠), �̄�)

= 2∫

�̄�

0

𝑘
2
[𝜃′(𝑠)]2d𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bending

−2∫

𝐿
2

�̄�
𝛥𝛾 d𝑠

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
adhesion

−2𝜆

[

∫

𝐿
2

0
cos 𝜃(𝑠) d𝑠 − 𝑎

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
end–end confinement

, (2)

where 𝑘 is the bending stiffness, 𝛥𝛾 the sheet–substrate adhesion energy
density, and 2𝑎 is the constraint distance between the ends of the rod.
The Lagrange multiplier 𝜆, which ensures the geometrical condition of
fixed distance between the end-points of the rods, measures the reaction
force applied by the constraint at the end-points.

The equilibrium configuration descends by the Euler–Lagrange sta-
tionarity condition, and assigns the possible shapes of the blister:

𝑘 𝜃′′(𝑠) − 𝜆 sin 𝜃(𝑠) = 0, 𝑠 ∈ [0, �̄�]. (3)

This equation may be recast as

𝜃′′(𝑠) + �̄� sin 𝜃(𝑠) = 0, 𝑠 ∈ [0, �̄�], (4)

where �̄� ∶= −𝜆∕𝑘. Note that both �̄� and �̄� are unknowns.

2.1. Partially detached equilibrium solutions

Let us consider first the solutions represented in Fig. 1(b). In this
case, we have to solve Eq. (4) supplied by the boundary conditions

𝜃(0) = 0, 𝜃(�̄�) = 0 (5)

and by the transversality condition (see e.g. Gelfand and Fomin, 1963),
assigning the change of curvature at the detachment points,

𝜃′(�̄�) =

√

2
𝓁ec

, 𝓁ec ∶=
√

𝑘
𝛥𝛾

, (6)

where 𝓁ec represents the characteristic length of the system, here
referred as elastocapillary length (Bico et al., 2004).

Eq. (4) admits the first integral
1
2
[𝜃′(𝑠)]2 − �̄� cos 𝜃(𝑠) = 𝐶. (7)

Denoting by 𝑠0 the abscissa of the inflection point of the blister (i.e.
𝜃′(𝑠0) = 0) and by 𝜃0 ∶= 𝜃(𝑠0), we obtain 𝐶 = −�̄� cos 𝜃0. On the other
hand, by using Eq. (6), we obtain 𝐶 = 𝓁−2

ec − �̄� and, hence, we deduce

�̄� = 1
𝓁2
ec

1
1 − cos 𝜃0

. (8)

Consequently, Eq. (7) gives

[𝜃′(𝑠)]2 = 2
𝓁2
ec

cos 𝜃(𝑠) − cos 𝜃0
1 − cos 𝜃0

. (9)

One can show (Wagner and Vella, 2013) that 𝑠0 = �̄�∕2 and that the
portion of curve 𝑠 ∈ [𝑠0, �̄�] can be obtained by an in-plane rotation of
𝜋 of the segment of the curve 𝑠 ∈ [0, �̄�0]. We also assume that 𝜃(𝑠) is
a decreasing function for 𝑠 ∈ [0, 𝑠0], so that (9) can be integrated by
separation of variables

∫

𝑠0

0
d𝑠 = −

𝓁ec
√

2

√

1 − cos 𝜃0 ∫

𝜃0

0

d𝜃
√

cos 𝜃 − cos 𝜃0
, (10)

leading to

̄ = −2
√

2𝓁 F(𝑞 ), (11)
ec 0
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where F denotes the incomplete elliptic integral of first kind
Abramowitz and Stegun, 1964) and, for simplicity of notation, we set
0 = (𝜃0∕2, csc2 𝜃0∕2).

Similarly, by denoting �̄� ∶= 𝑥(�̄�), we have

̄ = ∫

�̄�

0
cos 𝜃(𝑠) d𝑠 = 2∫

𝑠0

0
cos 𝜃(𝑠) d𝑠

= −𝓁ec
√

2(1 − cos 𝜃0)∫

𝜃0

0

cos 𝜃 d𝜃
√

cos 𝜃 − cos 𝜃0
, (12)

hence we get

̄ = −2
√

2𝓁ec
[

(1 − cos 𝜃0)𝐸(𝑞0) + cos 𝜃0𝐹 (𝑞0)
]

, (13)

where E denotes the incomplete elliptic integral of second kind.
Finally, by using the inextensibility constraint, we can obtain that

̄ = 𝑎 − (𝐿∕2 − �̄�) that, combined with Eqs. (11) and (13), yields

𝑎 = 𝐿
2
+ 2

√

2𝓁ec(1 − cos 𝜃0)(F(𝑞0) − E(𝑞0)). (14)

Eq. (14) can be solved numerically to obtain 𝜃0 as a function of the
parameters 𝐿, 𝑎 and 𝓁ec. Then, the obtained 𝜃0 can be replaced into
Eq. (11) to obtain the length of the blister.

2.2. Fully delaminated configurations

Consider now the completely detached symmetric solution with
only the ends of the rod, which are free to rotate, touching the substrate
(see Fig. 1(c)). For these configurations, we have to solve Eq. (4) for
𝑠 ∈ [0, 𝐿∕2], with the boundary conditions

𝜃(0) = 0, 𝜃′(𝐿∕2) = 0, (15)

where the second condition represents the condition of null moment at
the ends.

By combining the boundary condition (15)2 and the first integral
(7), we get

[𝜃′(𝑠)]2 = 2 �̄�
(

cos 𝜃(𝑠) − cos 𝜃𝑓
)

, (16)

where 𝜃𝑓 ∶= 𝜃(𝐿∕2). In the right-half portion of the rod, 𝑠 ∈ [0, 𝐿∕2],
we assume 𝜃(𝑠) to be a decreasing function, taking values between 0
and 𝜃𝑓 . Thus, Eq. (16) can be solved by separation of variables

∫

𝐿
2

0
d𝑠 = − 1

√

2�̄� ∫

𝜃𝑓

0

d𝜃
√

cos 𝜃 − cos 𝜃𝑓
, (17)

ielding

= −2
√

2
�̄�

F(𝑞𝑓 )
√

1 − cos 𝜃𝑓
, (18)

where 𝑞𝑓 ∶= (𝜃𝑓∕2, csc2 𝜃𝑓∕2). Since the distance between the ends of
he rod is prescribed, we have

= ∫

𝐿
2

0
cos 𝜃(𝑠) d𝑠 = − 1

√

2�̄� ∫

𝜃𝑓

0

cos 𝜃 d𝜃
√

cos 𝜃 − cos 𝜃𝑓
, (19)

whence we get

𝑎 = −

√

2
√

�̄�(1 − cos 𝜃𝑓 )

[

(1 − cos 𝜃𝑓 )𝐸(𝑞𝑓 ) + cos 𝜃𝑓F(𝑞𝑓 )
]

. (20)

Eqs. (18) and (20) allow us to determine �̄� and 𝜃𝑓 as functions of the
parameters 𝐿 and 𝑎.

3. Results

We now compare the energies of the two considered equilibrium
configurations. Let us begin by calculating the energy 𝑈 of the partially
3

𝑝

delaminated configuration. By using Eq. (2) and the symmetry of the
blister, we obtain

𝑈𝑝 = 4∫

𝑠0

0

𝑘
2
[𝜃′(𝑠)]2d𝑠 − 2𝛥𝛾

(𝐿
2
− �̄�

)

. (21)

By combining Eqs. (9) and (13), we get

∫

𝑠0

0
[𝜃′(𝑠)]2d𝑠 = ∫

𝑠0

0

2
𝓁2
ec

cos 𝜃 − cos 𝜃0
1 − cos 𝜃0

d𝑠 = 1
𝓁2
ec

�̄� − �̄� cos 𝜃0
1 − cos 𝜃0

, (22)

that replaced into (21) yields

𝑈𝑝 =
2𝑘
𝓁2
ec

(

�̄� − �̄� cos 𝜃0
1 − cos 𝜃0

+ �̄� − 𝐿
2

)

(23)

and hence

𝑈𝑝 =
2𝑘
𝓁2
𝑒𝑐

(

𝑎 − 𝐿∕2
1 − cos 𝜃0

+ 2�̄� − 𝐿
2

)

. (24)

The energy 𝑈𝑓 of the fully delaminated solution is instead given by

𝑈𝑓 = 𝑘∫

𝐿
2

0
[𝜃′(𝑠)]2d𝑠, (25)

hat, by using Eq. (16), reduces to

𝑓 = 𝑘∫

𝐿
2

0
2�̄�

(

cos 𝜃(𝑠) − cos 𝜃𝑓
)

d𝑠 (26)

and finally

𝑈𝑓 = 𝑘 �̄� (2𝑎 − 𝐿 cos 𝜃𝑓 ). (27)

We now compare the energies (24) and (27). To this end, we first in-
troduce the dimensionless confinement and elastocapillary parameters

𝜀 ∶= 𝐿 − 2𝑎
𝐿

, 𝜉ec ∶=
𝓁ec
𝐿

(28)

and the dimensionless energies

𝑢𝑝 ∶=
𝑈𝑝𝐿
𝑘

= − 1
𝜉2ec

[

𝜀
1 − cos 𝜃0

+
(

1 − 4�̄�
𝐿

)

]

, (29a)

𝑢𝑓 ∶=
𝑈𝑓𝐿
𝑘

= ℎ𝐿2(1 − 𝜀 − cos 𝜃𝑓 ). (29b)

In Fig. 2 (left), we represent the energies 𝑢𝑝 (blue curves) and 𝑢𝑓 (red
curve) as functions of the dimensionless confinement 𝜀, for different
values of 𝜉ec. As 𝜀 increases from zero, a critical threshold is reached
above which the fully delaminated solution corresponds to the absolute
minimum of the energy. This threshold grows as the energy of adhesion
increases (𝜉ec decreasing).

The set of critical thresholds obtained by varying 𝜉ec defines the
urve in the plane of parameters (𝜉ec, 𝜀) corresponding to the phase
iagram represented in Fig. 2 (right). As expected, the critical strain
t the which the rods completely delaminates is an increasing function
f the adhesion energy.

To better understand the behavior of the critical curve, we consider
he asymptotic expansion for 𝜀 ≪ 1 of the above obtained equations.
hese developments, which we do not detail here, use the approxima-
ions for elliptic integrals given in Wagner and Vella (2013) . Thus, at
he leading order, we obtain a simple (but effective) formula

cr ≈
1

27𝜋2𝜉2ec
, (30)

which is represented by the dashed curve in Fig. 2 (right). Interestingly,
Eq. (30) provides a very good account of the numerical results for
the whole range before the first self-contact point. This equation can
then be considered as a simple relation assigning the critical condition
indicated in the introduction for possible applications in actuation and
sensing devices, or, in the spirit of Wagner and Vella (2013), as a
relation to accurately measure the capillarity energy density 𝛥𝛾.
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Fig. 2. (Left) Energy function for the partially detached solutions 𝑢𝑝 (blue curves), at variable 𝜉ec, and for the fully detached solution 𝑢𝑓 (red curve), as functions of the constraint
measure 𝜀. The lower limit for any blue curves is −𝜉−2ec , whereas the upper limit corresponds to the first self-contact point. (Right) Critical confinement 𝜀cr as a function of the
lastocapillary parameter 𝜉ec. The solid curve represents numerical result, while the dashed curve represents the asymptotic result provided by Eq. (30). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. (Left) Maximum displacement ℎ as a function of the confinement measure 𝜀. Blue curves represent ℎ𝑝∕𝐿 at different values of 𝜉ec, while the red curve represent ℎ𝑓 ∕𝐿.
ℎ measures the difference between the maximum displacements at the critical threshold. (Right) 𝛥ℎ as a function of the elastocapillary parameter 𝜉ec. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
More in detail, we may observe that as 𝜀 grows, the transition occurs
iscontinuously, with the solution abruptly switching from the partially
elaminated to the fully detached state. In order to give a measure of
uch effect, we can integrate Eq. (1)2 to obtain the height ℎ of the
ymmetry point (𝑠 = 0). Thus, for the partially detached solution, we
ave

𝑝 = −2∫

𝑠0

0
sin 𝜃(𝑠) d𝑠, (31)

hat, with the use of Eq. (9), reduces to

𝑝 = 𝓁ec
√

2(1 − cos 𝜃0)∫

𝜃0

0

sin 𝜃 d𝜃
√

cos 𝜃 − cos 𝜃0
(32)

and, therefore,

ℎ = 2
√

2𝓁
(

1 − cos 𝜃
)

. (33)
4

𝑝 ec 0
In a similar way, we can use Eqs. (1)2 and (16) to obtain the height of
the middle point of the completely detached solution:

ℎ𝑓 = −∫

𝐿
2

0
sin 𝜃(𝑠) d𝑠 = 1

√

2�̄� ∫

𝜃𝑓

0

sin 𝜃 d𝜃
√

cos 𝜃 − cos 𝜃𝑓
=

√

2(1 − cos 𝜃𝑓 )

�̄�

(34)

Fig. 3 (left) sketches ℎ𝑓∕𝐿 (red curve) and ℎ𝑝∕𝐿 (blue curves)
for several values of 𝜉ec. Both these quantities increase as the ends
approach each other. At the critical threshold (end of continuous curve)
the difference 𝛥ℎ ∶= (ℎ𝑓 − ℎ𝑝)∕𝐿, is finite. Fig. 3 (right) shows 𝛥ℎ as a
function of the parameter 𝜉cr .

Finally, we observe that also the internal force �̄� undergoes a finite
jump at the critical threshold. In particular, from switching from the
partially adhered to the fully detached solution, �̄� suddenly decreases
as Fig. 4 (left) shows. This jump increases with the adhesion energy
(Fig. 4 (right)).
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Fig. 4. (Left) Dimensionless Internal force �̄�𝐿2 as a function of the confinement measure 𝜀. Blue curves represent partially adhered configurations at different values of 𝜉ec, while
he red curve represent the completely detached solution. 𝛥𝜆 measures the jump of force at the critical threshold. (Right) 𝛥�̄� as a function of the elastocapillary parameter 𝜉ec.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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. Conclusions

Technologies at small scales such as MEMS and NEMS, as well as
iological systems in soft materials, suggest many applications relying
n the possibility of actively controlling adhesion devices based on de-
amination phenomena. In typical devices the delaminated components
ndergo large deflection with the involvement of nonlinear effects. Our
pproach combines a simple model of adhesion and the Euler’s elastica
o study the transition between partially adhered to completely delam-
nated states of an elastic rod with end–end confinements. In order to
ell describe these effects, the interaction between the involved elastic
nd adhesion energy and the resulting equilibrium conformations must
e analyzed.

Our study, which uses closed-form solutions of the equilibrium
quations, is complementary to other studies in the literature inves-
igating the early stages of delamination (Wagner and Vella, 2013;
apoli and Turzi, 2017; Davidovitch and Démery, 2021). We show

hat there exists an initial stage when as the compression is increased
he system is partially detacched with the size of the blister of the
artially delaminated solution increasing continuously until the con-
inement reaches a critical value. Beyond this critical threshold, the
artially adhered solution becomes unstable (or metastable), while the
ully delaminated configuration represents the absolute minimum of
he energy. Using asymptotic calculation, we also provide a simple
ormula for the critical threshold that is in excellent agreement with
he numerical results that can deliver a simple design approximation.
urthermore, our result highlight a sudden change of shape, with a
iscontinuous transition in terms of equilibrium configurations and of
he involved forces.

In the light of our findings, we may speculate that our system can
e a prototypical device of controlled adhesion. Indeed it is possible
o actively control the parameter 𝜉ec by electromechanical adhesion
ystems or the parameter 𝜀 by a thermal or chemical external field.
he existence of the obtained relevant morphological and force discon-
inuities in correspondence of the critical thresholds enables different
pplications in the fields of sensoring and actuation. We may also
uppose that such kind of instability thresholds can be used for accurate
easurement of capillary adhesion (Wagner and Vella, 2013). Finally
e may argue that important growth-induced decohesion instabili-

ies in the biological field can also be described within the proposed
ramework.
5
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