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Small area estimation often suffers from imprecise direct estimators due to
small sample sizes. One method for giving direct estimators more strength
is to use models. Models employ area effects and include supplementary in-
formation from extra sources as covariates to increase the accuracy of direct
estimators. The valid covariates are the basis of the small area estimation.
Therefore, measurement error (ME) in covariates can produce contradictory
results, i.e., even reduce the precision of direct estimators. The measure-
ment error is usually assumed normally distributed with a known mean and
variance in most cases. However, in real problem, there might be situations
in which the normality assumption of MEs does not hold. In addition, the
assumption of known ME variance is restricted. To address these issues and
obtain a more robust model, we propose modeling ME using a t-distribution
with known and unknown degrees of freedom. Model parameters are esti-
mated using a fully Bayesian framework based on MCMC methods. We val-
idate our proposed model using simulated data and apply it to well-known
crop data and the cost and income of households living in Kurdistan province
of Iran. The results of the proposed model are promising and, especially in
presence of outlying observations, the proposed approach performs better
than competing ones.
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1 Introduction

For survey statisticians, small area statistics are becoming an increasingly significant
subject. The main problem is that direct design-based estimates for small areas usually
suffer from large standard errors due to small sample sizes. Consequently, model-based
estimation of small area parameters has received a lot of attention in statistical literature
aiming at extracting information from sources other than the survey data (see Molina
and Rao (2015) for a complete review). Literature on this topic is continuously evolving
and several aspects have been investigated. To improve the precision of the small area
estimates, model-based methods can be used to borrow strength, by relating the sur-
vey and auxiliary data through use of linking models, and by introducing area-specific
random effects and covariates. Covariates play a key role in these models: they can
be obtained from different data sources such as administrative records or censuses. A
problem arises when we suspect that covariates may be affected by measurement error
(ME). As well known, when covariates are measured with error, small area estimates
may be lead to biased model parameter estimates and they may result in a loss of power
for detecting interesting relationships among variables.

In Ybarra and Lohr (2008) the authors suggested a suitable modification of area-
level model to the estimates of small area effects in a Fay-Herriot (FH) model where
some of the covariates are measured with error. They explain that “when the auxiliary
information used in the model is measured with error, using a small area estimator
such as the Fay-Herriot estimator while ignoring measurement error may be worse than
simply using the direct estimator”. Adopting a Bayesian approach, Arima et al. (2015)
rewrite the measurement error model as a hierarchical model. They use improper non-
informative priors on the model parameters and show, under a mild condition, that
the joint posterior distribution is proper and the marginal posterior distributions of
the model parameters have finite variances. In that framework, the measurement error
is modelled as a Normal noise. However, there might be situations that ME are not
normally distributed. For example, people tend to over declare or under declare their
income depending on specific situations. Moreover, mismeasured covariates can show
extreme or outlying values. One way to model outliers in small area estimation is to use t-
distribution. As an example, in Bell and Huang (2006), the authors modelled the random
effects through a t-distribution with known degrees of freedom (df) to deal with outliers
in the data. They explained that the use of a t-distribution with few degrees of freedom
can decrease the impact of outliers on the estimation process. Furthermore, Ghosh et al.
(2018) used modified Jeffry prior for random effects via t-distribution with unknown
df. In ME context, Hariyanto et al. (2020) in unit-level model used t-distribution with
known df to deal with outliers in ME covariates.

To overcome the effects of outlier measurement errors and to make the approach
robust with respect violations of the normality assumption of the measurement error,
we propose to model the ME in auxiliary variables with t-distribution in area-level model.
As highlighted in the simulation study, our proposal makes the small area estimates more
robust with respect to violations of the normality assumption as well as to the presence
of outlying ME observations.
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The paper is organized as follows. In Section 2 we explain our proposal and the com-
putational issues related to the model estimation are outlined in Section 3 and Section 4
for ME with t-distribution with known and unknown df, respectively. A simulation
study, described in Section 5, is designed to compare the different measurement error
models, highlighting the competitiveness of the proposed model. In Section 6, the well
known crop areas (LANDSAT) data as in Battese et al. (1998) and the cost and income
of households living in Kurdistan province of Iran are analysed. The paper concludes
with some discussions in Section 7.

2 The FH model under t-distributed measurement error

The Fay-Herriot model is defined as

yi = XT
i β + vi + ei, i = 1, . . . ,m, (1)

where yi is the sample value of variable of interest and the direct estimate of ith
small area parameter, Xi = (Xi1, . . . , Xid)

T is the d-dimensional vector of covariates,
β = (β1, . . . , βd)

T is a d-dimensional vector of regression coefficients andm is the number
of small areas. The sampling error vector e = (e1, . . . , em)

T and the random effect vector
v = (v1, . . . , vm)

T are assumed to be independent. In (1), it is assumed that vis are
independent and identically distributed (i.i.d) from N(0, σ2v) distribution, and eis are
independent with ei ∼ N(0, ψi) distribution, where ψis are all assumed to be known.
When covariates Xi are affected by ME, we assume that they cannot observed directly
but we observe a surrogate, W i. In other words, ME models assume that W i is an
estimator for Xi and

W i = Xi + ηi

or Wij = Xij + ηij , j = 1, . . . , d, where ηi = (ηi1, . . . , ηid)
T is a vector of measurement

errors and independent of Xi.
ME is typically modelled with a normal distribution (Arima et al., 2015; Goo and

Kim , 2013). However, there might be situations that the normality assumption does
not hold especially when the observed data are contaminated with outliers. To overcome
this issue and to make small area estimates more robust, we propose to assume that ME
in auxiliary variables are measured with t-distribution with known and unknown ki
degrees of freedom, i.e., ηij ∼ tki for j = 1, . . . , d. We call this model t-ME Fay-Herriot
(t-MEFH) model.
Hereafter, following Arima et al. (2015), we divide the covariate vector in two parts:

with and without measurement error. So the proposed model with t-distribution mea-
surement error in covariates is defined as:

yi = XT
i β + zTi τ + vi + ei,

W i = Xi + ηi.

where zi = (z1, . . . , zq)
T is vector of covariates without ME and τ = (τ1, . . . , τq)

T is
a q-dimensional vector of regression coefficients. When one deals with one covariate
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measured with error, d = 1, the distribution of the observed covariate wi conditional to
the true covariate Xi is a univariate t-distribution with ki degrees of freedom, namely

Γ(ki+1
2 )

Γ(ki2 )
√
kiπ

(
1 +

(wi −Xi)
2

ki

)− ki+1

2 .

Notice that Xi acts as location parameter and the scale parameter is fixed equal to 1.
In the proposed approach, we assume that the degrees of freedom are a-priori known.
This assumption is necessary for identifying the model as well as the knowledge of the
variance of the measurement error in the FH model. However, when the degrees of
freedom are unknown, one can fit different models with different degrees of freedom and
select the best one according to model selection criteria.

3 Parameter estimation in t-MEFH: known df

The following hierarchical model can be employed to represent the model.

Stage 1. yi|θi
ind∼ N(θi, ψi) where ψi is known.

W i|Xi, ki
ind∼ t(Xi, ki)

Stage 2. θi|Xi,β, τ , σ
2
v
ind∼ N(XT

i β + zTi τ , σ
2
v)

Stage 3. π(X1, . . . , Xm,β, τ , σ
2
v) = 1

where t(Xi, ki) denote the joint distribution of t(Xij , ki) for j = 1, . . . , d. From a
computational point of view, it is convenient to re-parametrize the model using the scale
mixtures of normals property of t-distribution distribution, that is

Stage 1. yi|θi
ind∼ N(θi, ψi)

W i|λi,Xi
ind∼ Nd(Xi, λiI)

λi|ki
ind∼ IG(ki2 ,

ki
2 )

Stage 2. θi|Xi,β, τ , σ
2
v
ind∼ N(XT

i β + zTi τ , σ
2
v)

Stage 3. π(X1, . . . ,Xm,β, τ , σ
2
v) = 1

According to the Bayes’ theorem, the joint posterior distribution is given by

π(θ,β, τ , σ2v ,λ,X1, . . . ,Xm|y,W 1, . . . ,Wm)

= π(θ1, . . . , θm,β, τ , σ
2
v ,λ,X1, . . . ,Xm|y1, . . . , ym,W 1, . . . ,Wm)

∝ π(yi|θi)π(θi|Xi,β, τ , σ
2
v)π(W i|λi,Xi)π(λi|ki)π(β)π(τ )π(σ2v)

(2)



726 Zarei and Arima

where θ = (θ1, . . . , θm)
T is vector of the small area means, y = (y1, . . . , ym)

T is the
observations vector, λ = (λ1, . . . , λm)

T is the vector of latent variables. Due to the
conditional structure of the (2) model, the joint posterior distribution is given by

1

σmv

m∏
i=1

[
exp

{
−(yi − θi)

2

2ψi
−

(
θi −XT

i β − zTi τ
)2

2σ2v
− (W i −Xi)

T (W i −Xi)

2λi

}

×
(

1

λi

) ki
2
+1

e
−ki
2λi

]
(3)

Given the complexity of the expression (3), posterior distributions cannot be obtained
in closed-form and Monte Carlo Markov Chain (MCMC) algorithm should be involved
to obtain samples from them.

3.1 Computational details

We use the standard MCMC framework to estimate models parameters. To this end, the
full conditional distributions for Xi, β, τ , σ

2
v , λi and θi (i = 1, . . . ,m) are calculated.

We assume that d+q < m, X = Xm×d = (x1, . . . ,xm)
T and Z = Zm×q = (z1, . . . ,zm)

T

have rank d and q, respectively.

Parameters θi, Xi, β, τ , σ
2
v and λi are updated through Gibbs sampling algorithm

according to the following full conditional distributions (see Appendix):

1. θi|β, τ , σ2v , θ,X, y, λi,W ∼ N
(ψ−1

i yi+σ
−2
v (βXT

i β+zT
i τ )

ψ−1
i +σ−2

v
, (ψ−1

i + σ−2
v )−1

)
2. Xi|β, τ , σ2v , θ, y, λi,W ∼ N

(
W i +

yi−W T
i β−zT

i τ

ψi+σ2
v+βTλiβ

λiβ, λi − λiββ
′
λi

ψi+σ2
v+β

′
λiβ

)
3. β|τ , σ2v , θ,X, y, λi,W ∼ N

(
(X

′
X)−1X

′
(θ −Zτ ), σ2v(X

′
X)−1

)
4. τ |β, σ2v , θ,X, y, λi,W ∼ N

(
(Z

′
Z)−1Z

′
(θ −Xβ), σ2v(Z

′
Z)−1

)
5. σ2v |β, τ , θ,X, y, λi,W ∼ IG

(
1
2(m− 2), 12Σ

m
i=1(θi −X

′
iβ − z

′
iτ )

2
)

6. λi|rest ∼ IG(12(ki + 1), ki2 + (W i−Xi)
2

2 )

4 Parameter estimation in t-MEFH: unknown df

The hierarchical model in this instance is as follows:

Stage 1. yi|θi
ind∼ N(θi, ψi) where ψi is known.

W i|Xi, ki
ind∼ t(Xi, ki)

ki ∼ π(.)
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Stage 2. θi|Xi,β, τ , σ
2
v
ind∼ N(XT

i β + zTi τ , σ
2
v)

Stage 3. π(X1, . . . ,Xm,β, τ , σ
2
v) = 1.

Similar to previous section with respect to the scale mixtures of normals property of
t-distribution, we have

Stage 1. yi|θi
ind∼ N(θi, ψi)

W i|λi,Xi
ind∼ Nd(Xi, λiI)

λi|ki
ind∼ IG(ki2 ,

ki
2 )

ki
2 = si ∼ E(ri)

Stage 2. θi|Xi,β, τ , σ
2
v
ind∼ N(XT

i β + zTi τ , σ
2
v)

Stage 3. π(X1, . . . ,Xm,β, τ , σ
2
v , r1, . . . , rm) = 1

Stage 4. π(ri) ∝ IG(a1, b1)

where abbreviation E refer to exponential distribution and we assume that a1=b1=1.
According to the Bayes’ theorem, the joint posterior distribution is given by

π(θ,β, τ , σ2v ,λ,X1, . . . ,Xm,S,R|y,W 1, . . . ,Wm)

= π(θ1, . . . , θm,β, τ , σ
2
v ,λ,X1, . . . ,Xm,S,R|y1, . . . , ym,W 1, . . . ,Wm)

∝ π(yi|θi)π(θi|Xi,β, τ , σ
2
v)π(W i|λi,Xi)π(λi|si)π(si|ri)π(ri)π(σ2v)π(α)π(β)π(τ )

(4)

where S = (s1, . . . , sm)
T is the vector of degrees of freedom and R = (r1, . . . , rm)

T is
the vector of parameters of si for i = 1, . . . ,m. Because of the conditional structure of
the (4), the joint posterior distribution is given by

1

σmv

m∏
i=1

[(
1

λi

) 1
2

exp

{
−(yi − θi)

2

2ψi
−

(
θi −XT

i β − zTi τ
)2

2σ2v
− (W i −Xi)

T (W i −Xi)

2λi

}

×
(

1

λi

)si+1

e
−si
λi

(
1

ri

)
e

−si
ri

(
1

ri

)a1
e

−b1
ri

]
(5)

Given the complexity of the expression (5), posterior distributions cannot be obtained
in closed-form and Monte Carlo Markov Chain (MCMC) algorithm should be involved
to obtain samples from them.
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4.1 Computational details

According to assumptions in Subsection 3.1, parameters θi, Xi, β, τ , θ, σ
2
v , λi and ri are

updated through Gibbs sampling algorithm according to the following full conditional
distributions.

1. θi|β, τ , σ2v , θ,X, y, λi,W ∼ N
(ψ−1

i yi+σ
−2
v (βXT

i β+zT
i τ )

ψ−1
i +σ−2

v
, (ψ−1

i + σ−2
v )−1

)
2. Xi|β, τ , σ2v , θ, y, λi,W ∼ N

(
W i +

yi−W T
i β−zT

i τ

ψi+σ2
v+βTλiβ

λiβ, λi − λiββ
′
λi

ψi+σ2
v+β

′
λiβ

)
3. β|τ , σ2v , θ,X, y, λi,W ∼ N

(
(X

′
X)−1X

′
(θ −Zτ ), σ2v(X

′
X)−1

)
4. τ |β, σ2v , θ,X, y, λi,W ∼ N

(
(Z

′
Z)−1Z

′
(θ −Xβ), σ2v(Z

′
Z)−1

)
5. σ2v |β, τ , θ,X, y, λi,W ∼ IG

(
1
2(m− 2), 12Σ

m
i=1(θi −X

′
iβ − z

′
iτ )

2
)

6. λi|rest ∼ IG(si + 0.5, si +
(W i−βXi)

T (W i−βXi)
2 )

7. π(si|rest) ∝
(

1
λi

)si+1
e
−si( 1

λi
+ 1

ri
)

8. ri|rest ∼ IG(a1 + 1, b1 + si)

4.2 Updating si

Since π(si|rest) ∝
(

1
λi

)si
e
−si( 1

λi
+ 1

ri
)
does not has a closed-form, following Zarei et al.

(2021) the si is updated using the Metropolis-Hastings algorithm. For each si, we choose
the uniform distribution centred on the current state of the chain, denoted by cand,
as proposal distribution, i.e., q(λi|α) ∼ U(cand − 0.3, cand + 0.3). Since the uniform
distribution is symmetric, the acceptance probability in iteration t and for each si is

min
{
1,
π(si

new)π(λi|sinew)
π(si(t))π(λi|si(t))

}
(6)

5 Simulations

In this section, we investigate the performance of the t-MEFH model in estimating small
area means, in controlled simulated settings.
Our data generating setting is similar to Ybarra and Lohr (2008) and Zarei et al.

(2021). We generate Xi from a N(5, 32). At each iteration, θi = 1+3xi+ vi, yi = θi+ ei
and Wi = Xi + ηi, where vi, ei and ηi are assumed to be independent. Sampling errors
ei simulated from N(0, ψi) where ψi generated from a gamma distribution with shape
4.5 and scale 2 and vi ∼ N(0, 22). Similar to Bell and Huang (2006), we consider four
simulation scenarios according to different generation scheme of ME, namely:

Scenario 1: ηi ∼ t∞ (Standard Gaussian Scenario thus σ2ME = 1);
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Scenario 2: ηi ∼ t8 (thus σ2ME = 1.33);

Scenario 3: ηi ∼ t5 (thus σ2ME = 1.67);

Scenario 4: ηi ∼ t3 (thus σ2ME = 3);

where tdf and σ2ME denote the t-distribution with df degrees of freedom and the mea-
surement error variance, respectively. We assume that degrees of freedom ki is the same
in all small areas. The aforementioned simulation scheme is repeated for m = 10 and
m = 50.

5.1 Performance of t-MEFH in estimating small area means

We compare the estimated small area means θi obtained with the following models:

� the proposed model with known df, θ̂i,TMEK ;

� the proposed model with unknown df, θ̂i,TMEU ;

� a fully Bayesian version of the Fay-Herriot model involving the true covariates,
θ̂i,FHT ;

� a fully Bayesian version of the Fay-Herriot model not accounting for the measure-
ment error in covariates, θ̂i,FH ;

� the Bayesian measurement error model in Arima et al. (2015) θ̂i,ADL;

� the EBLUP estimators proposed in Ybarra and Lohr (2008) θ̂i,Y L.

Performance in estimating small area means are studied according to the following
deviance measures: average absolute deviation (AAD) and empirical mean square error
(EMSE) or average squared deviation (ASD), defined as follows

AAD =
1

m

m∑
i=1

|θ̂i − θi|, ASD =
1

m

m∑
i=1

(θ̂i − θi)
2.

We also consider the improve percentage (IP) of each method to compare results with
direct estimator. This quantity is defined as

IP = 100 ∗ ASD.direct−ASD

ASD.direct

where

ASD.direct =
1

m

m∑
i=1

(yi − θi)
2.

IP is a measure of how much better our revised method is compared to the direct
estimator. Therefore, a higher improve percentage indicates a greater improvement in
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performance, while a lower percentage indicates a smaller improvement. In real data
applications, when the true value of θ is unknown, we rely to the deviance information
criterion (DIC; Spiegelhalter et al. (2002)) for evaluation of goodness of fit of Bayesian
approaches and choose the model with smallest DIC as the best performing one. Tables 1
and 2 show the results of simulations in Scenarios 1 to 4, averaged over the 100 datasets,
respectively when m = 10 and m = 50.

Each column in the table corresponds to a simulation Scenario: the first row, corre-
sponding to the Fay-Herriot model involving the true covariates, should be considered
as a reference model. As expected, all ME models perform very similarly in the first
scenario since the measurement error is normally distributed. On the other hand, de-
creasing the degrees of freedom, all performance indices show that the proposed approach
performs better than the other competing models. The improvement of our proposal is
more evident when the number of areas is low, e.g. m = 10.

Table 1: Comparison of different models performances when data are simulated under
different Scenarios and m = 10. Bold numbers highlight the best performance
for each setting.

Simulation scenarios (m = 10) Simulation scenarios (m = 10)

Criteria Estimate t∞ t8 t5 t3 Criteria Estimate t∞ t8 t5 t3

θ̂FHT 1.708 1.619 1.523 1.774 θ̂FHT 22.648 17.995 24.642 18.241

θ̂FH 2.180 2.104 1.998 2.253 θ̂FH 9.215 2.878 5.191 0.362

EMSE θ̂TMEK 2.071 1.979 1.975 2.118 IP θ̂TMEK 9.746 5.799 7.414 1.328

θ̂ADL 2.131 2.000 1.993 2.128 θ̂ADL 9.039 5.259 7.154 1.391

θ̂Y L 3.296 3.065 2.176 2.214 θ̂Y L 1.662 2.125 2.601 0.467

θ̂FHT 1.018 0.992 0.975 1.012 θ̂FHT 43.004 42.806 42.972 42.680

θ̂FH 1.113 1.097 1.098 1.138 θ̂FH 44.426 44.327 44.687 45.478

ADD θ̂TMEK 1.111 1.083 1.082 1.131 DIC θ̂TMEK 44.312 44.242 44.673 44.559

θ̂ADL 1.123 1.084 1.100 1.130 θ̂ADL 44.308 44.262 44.691 44.575

θ̂Y L 1.218 1.371 1.144 1.159 θ̂Y L - - - -

Table 2: Comparison of different models performances when data are simulated under
different Scenarios and m = 50. Bold numbers highlight the best performance
for each setting.

Simulation scenarios (m = 50) Simulation scenarios (m = 50)

Criteria Estimate t∞ t8 t5 t3 Criteria Estimate t∞ t8 t5 t3

θ̂FHT 1.512 1.398 1.358 1.462 θ̂FHT 30.557 34.850 33.394 31.952

θ̂FH 1.848 1.907 2.210 1.890 θ̂FH 15.911 12.508 10.667 11.931

EMSE θ̂TMEK 1.839 1.878 1.991 1.841 IP θ̂TMEK 16.377 12.885 11.451 12.952

θ̂ADL 1.855 1.869 1.997 1.889 θ̂ADL 15.470 13.013 11.144 10.770

θ̂Y L 1.840 1.911 2.049 1.890 θ̂Y L 16.225 12.670 8.453 10.824

θ̂FHT 0.975 0.932 0.945 0.952 θ̂FHT 208.546 211.611 211.290 210.913

θ̂FH 1.073 1.095 1.206 1.099 θ̂FH 219.786 222.772 222.835 223.416

ADD θ̂TMEK 1.074 1.069 1.104 1.078 DIC θ̂TMEK 219.187 222.325 222.136 222.444

θ̂ADL 1.078 1.074 1.107 1.098 θ̂ADL 220.105 222.303 222.262 222.583

θ̂Y L 1.072 1.076 1.116 1.093 θ̂Y L - - - -
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Notice that all models, with the exception of the proposed model, require the specifi-
cation of the true value of measurement error variance. On the other hand, the proposed
model requires the specification of the degrees of freedom. Both specifications can be
hard in real data analysis. In order to investigate the robustness of all proposed model
with respect to model misspecification, we simulate data according to the simulation
scheme described above in which ηi ∼ t3: the proposed model is then estimated by
fixing a different number of degrees of freedom, namely 6 and 10; the other models are
estimated by fixing σ2ME equal to a wrong value, namely, 1.5 and 1.25, respectively.

Table 3 reports the performance of the competing models to model misspecification.
Each column shows the estimates obtained with different models: in particular, the
first column shows the estimates obtained when we fit the proposed approach modelling
the measurement error as a t-distribution with 6 degrees of freedom and the competing
models fixing the variance of the measurement error equal to 1.5. Table 3 highlights that
the proposed t-MEFH model is more robust rather than the competitive ME models and
it has the best overall performance under model misspecification. As expected, since the
true df is 3, the proposal has better performance for df=6 than df=10.

Table 3: Scenario 5: Comparison of different ME models performances when data are
simulated under ηi ∼ t3, m = 10 and m = 50 with wrong estimated of σ2ME

and df (namely 6 and 10). Bold numbers highlight the best performance for
each setting.

Simulation scenario 5: ηi ∼ t3

Criteria Estimate m = 10 m = 50 m = 10 m = 50

(t6; σ
2
ME = 1.5) (t10; σ

2
ME = 1.25) (t6; σ

2
ME = 1.5) (t10; σ

2
ME = 1.25)

θ̂TMEK 1.953 1.914 2.057 2.179

EMSE θ̂ADL 1.985 1.912 2.084 2.177

θ̂Y L 2.262 1.922 2.145 2.177

θ̂TMEK 1.078 1.084 1.105 1.155

ADD θ̂ADL 1.085 1.086 1.105 1.150

θ̂Y L 1.137 1.083 1.114 1.154

θ̂TMEK 5.884 8.561 8.005 8.086

IP θ̂ADL 4.767 8.470 8.150 8.450

θ̂Y L -2.785 8.461 3.345 7.876

θ̂TMEK 44.594 222.755 44.818 222.811

DIC θ̂ADL 44.552 222.758 44.781 222.781

θ̂Y L

To examine the proposal’s robustness further, we simulate data according to the simu-
lation scheme described above and simulate the measurement error according to a Pareto
distribution ηi ∼ Pareto(5, 3). Such a distribution is particularly skewed and it presents
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several outlying observations making it not suitable for all aforementioned models. The
proposed model (with known df) is estimated by fixing the degrees of freedom equal to
3, 6 and 10; the variance of the measurement error σ2ME is fixed equal to variance of
Pareto(5, 3) i.e., 18.75 (scenario 6).

Table 4: Scenario 6: m = 50, ηi ∼ Pareto(5, 3). Bold and blue numbers highlight the
first and second best performance, for each setting after θ̂FHT , respectively.
The numbers in parentheses are df of the t-MEFH model.

Criteria Method Estimate Criteria Method Estimate

θ̂FHT 1.258 θ̂FHT 37.167

θ̂FH 1.942 θ̂FH 5.914

θ̂TMEU 1.913 θ̂TMEU 6.445

θ̂
(3)
TMEK 2.063 θ̂

(3)
TMEK 5.201

EMSE θ̂
(6)
TMEK 1.989 IP θ̂

(6)
TMEK 6.693

θ̂
(10)
TMEK 2.064 θ̂

(10)
TMEK 5.201

θ̂ADL 1.917 θ̂ADL 6.425

θ̂Y L 2.024 θ̂Y L 1.329

θ̂FHT 0.898 θ̂FHT 210.782

θ̂FH 1.087 θ̂FH 224.413

θ̂TMEU 1.084 θ̂TMEU 223.949

θ̂
(3)
TMEK 1.139 θ̂

(3)
TMEK 224.019

ADD θ̂
(6)
TMEK 1.079 DIC θ̂

(6)
TMEK 223.966

θ̂
(10)
TMEK 1.138 θ̂

(10)
TMEK 224.178

θ̂ADL 1.087 θ̂ADL 224.812

θ̂Y L 1.108 θ̂Y L -

Table 4 confirms that the proposed t-MEFH methods (with and without known df)
are robust under outlier ME in covariates with respect to model misspecification and
they have the best overall performance among the ME models. These results are quite
expected since when data are generated from a Pareto distribution, the t-distribution
is more robust in accommodating outlying observations. Furthermore, this simulation
shows that determining correct df is very important. The estimated value of df, when
we assume that df is known, with trail-error method is df = 7 and for unknown df case
is df = 7.912.

To further study of the robustness of the proposal and also comparing between the
t-MEFH models (with and without known df) as seventh Scenario, we simulate data
according to the simulation scheme described above and for m ∈ {20, 50, 100, 200} where
the measurement error has t-distribution with df=3. The results are presented in Table 5.

Table 5 shows under this Scenario as expected the proposal methods generally has
the best performance. For m = 20, 50 and 200 the θ̂TMEK is better than θ̂TMEU and
for m = 100 vice versa. These results show that the proposal model with unknown
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df is valuable tool for estimating small area parameters when covariates are measured
with outlier MEs. However, estimating the degrees of freedom introduces some error
compared to knowing the exact degrees of freedom. Nevertheless, it still performs better
than other measurement error methods and does not impose the restrictive assumption
of known degrees of freedom.
The simulation study highlights that the proposed approach is competitive with ex-

isting approaches resulting more robust in several Scenarios. We should stress that, as
shown in Scenario 5, the misspecification of the degrees of freedom in the proposed model
as well as the misspecification of the variance of the measurement error in the competing
models have important effects on the estimates. However, we acknowledge that in real
data analysis we can find the optimal number of degrees of freedom for θ̂TMEK using
standard model choice criteria, such as DIC by trail and error method.

Table 5: Scenario 7: Comparison of different ME models performances when data are
simulated under ηi ∼ t3 for m = 20, 50, 100, 200. Bold numbers highlight the
best performance for each setting.

m m

Criteria Estimate 20 50 100 200 Criteria Estimate 20 50 100 200

θ̂TMEU 2.366 1.822 1.857 1.914 θ̂TMEU 11.003 18.175 15.485 13.359

θ̂TMEU 2.366 1.822 1.857 1.914 θ̂TMEU 11.003 18.175 15.485 13.359

EMSE θ̂TMEK 2.365 1.807 1.863 1.901 IP θ̂TMEK 11.846 18.826 15.140 13.946

θ̂ADL 2.366 1.912 1.892 1.935 θ̂ADL 12.893 13.877 13.755 12.866

θ̂Y L 2.716 1.930 2.002 2.013 θ̂Y L 2.232 13.422 8.555 8.776

θ̂TMEU 1.143 1.049 1.032 1.040 θ̂TMEU 89.369 221.786 444.309 890.094

ADD θ̂TMEK 1.128 1.051 1.035 1.038 DIC θ̂TMEK 89.490 220.420 444.917 890.126

θ̂ADL 1.125 1.081 1.041 1.047 θ̂ADL 90.026 222.239 445.330 890.719

θ̂Y L 1.229 1.085 1.064 1.057 θ̂Y L - - -

6 Real data analysis

6.1 The corn and soybean data

In this subsection, we analyse the well known county crop areas data (also known as the
corn and soybean data), first analysed by Battese et al. (1998). Corn and soybeans
areas have been obtained in 37 sample segments from 12 Iowa counties (small areas) by
interviewing farm operators. From the analysis of these data in Battese et al. (1998),
emerged that data corresponding to the Hardin county can be considered outliers, and
as a consequence, the authors removed them from the analysis. However, outliers can be
a good source of information; furthermore, removing data from any analysis leads to loss
of possibly, valuable information about part of the non-sampled units of the population.
Similar to Sinha and Rao (2009) and Chakraborty et al. (2017), for illustrative pur-
poses, we analyse the full data set for corn. This dataset comprises the number of
segments in each county, the reported number of hectares of corn for each sampled seg-
ment (direct estimate), and the number of pixels classified by the LANDSAT satellite as
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corn for each sampled segment (covariate). Furthermore, for corn and soybean data both
the sample number of pixels (ME covariate) and the population number of pixels (true
covariate) are available. So, we can easily calculate the variance of ME. The original
data is unit-level data. To have data in the area-level frame, the sample mean is calcu-
lated for each county. The means of the number of pixels of a given crop per segment
in sample and population are used as a ME and true auxiliary data, respectively.

We estimate ψis with the sample variances S2
i divided by the sample sizes ni, i.e.,

S2
i
ni
. When computing the sample variances for the first four areas, there is a problem

because ni < 3. Following You and Chapman (2006) we limit the number of areas to
8 by using only the counties with a sample size greater than 2. The crop hectares for
corn in each counties, i.e., yi were modelled as a function of the auxiliary data, i.e., xi
for those counties in the form

yi = β0 + β1xi + vi + ei, i = 1, . . . , 8,

where vi are assumed to be i.i.d. N(0, σ2v). The goal is to estimate the small area mean
hectares of corn per segment in the ith county. Since the true values of small area means
are unknown and for m = 10 the Bayesian methods have the best performance, we focus
only on Bayesian methods. And DIC is used to compare different models.

In Table 6 we present the values of DIC for all methods. Since for θ̂TMEK , we assume
that the degrees of freedom are known: in practice, we fit models assuming df = 3, ..., 10
and select the best model according to DIC. Here, the best model is the one in which the
degrees of freedom are set equal to 5. Furthermore, the estimated df for θ̂TMEU is 6.779.
Table 6 shows that the proposed models has the best performance when estimating the
number of hectares of corn for each sample. Table 7 presents the predicted mean hectares
of corn per segment.

Table 6: Values of DIC for different ME models. Bold number highlight the best perfor-
mance for each scenario.

methods: θ̂TMEU θ̂TMEK θ̂FHT θ̂FH θ̂ADL

Estimated DIC : 74.902 74.997 76.144 75.024 75.728

6.2 The cost and income of urban households in Kurdistan province of
Iran

In this subsection to apply the performance of the proposed model, we analyze Iranian
urban household income and expenditure survey data (IUHIE)1 in the year 2020 for
Kurdistan province. The IUHIE general aim is to estimate the average income and
expenditure for urban households at provincial and country levels. This survey is done

1Available at www.amar.org.ir/english/Statistics-by-Topic/Household-Expenditure-and-Income.
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Table 7: Predicted mean hectares of corn per segment in different ME methods.

Estimated hectares

County Sample segments θ̂TMEU θ̂TMEK θ̂FHT θ̂FH θ̂ADL

Franklin 3 157.48 157.47 157.40 157.44 157.57

Pocahontas 3 99.72 87.20 105.11 89.91 106.62

Winnebago 3 117.54 116.28 115.59 116.35 116.53

Wright 3 142.63 152.22 129.46 149.21 137.88

Webster 4 114.16 111.28 113.98 112.00 117.53

Hancock 5 112.36 114.04 114.54 111.28 111.89

Kossuth 5 114.79 116.08 112.25 115.72 112.63

Hardin 6 117.18 117..89 124.43 116.40 118.25

monthly. In this survey, the sample size is optimized at the level of the provinces.
Therefore, the cities of each province can be small area. Kurdistan province is one of
the 31 provinces of Iran and has m = 10 cities or counties.
For illustration purposes, we examine households whose head is self-employed and their

income is registered with a self-declaration. Since, people usually record and express their
income and expenditure more or less than the reality, this can indicate the possibility
of measurement error in covariate. We choose the logarithm (in base 10) of household
housing cost in each city as response variable (yi, i = 1, . . . , 10) and available auxiliary
information for this study are the logarithm (in base 10) of the household self-employed
income. In Figures 1 and 2, the box plots of these variables are drawn. As it is clear
from Figure 1 we can see some outliers in the data.

�

Table 8: Calculation of DIC for different degrees of freedom of the θ̂TMEK method, which
shows how to choose the appropriate degree of freedom.

df

Criteria Estimate 3 4 5 6 7

DIC TD −29.65 −30.83 −29.79 −31.72 −24.23

To use the t-MEFH model with known df, first by calculating the DIC index for
different degrees of freedom, we determine the optimal degree of freedom by trial and
error. Table 8 shows the calculated values for this parameter. According to this, the
proposed method θ̂TMEK , in the case of df = 6 has its best value of DIC which is equal
to -31.72. For the t-MEFH model with unknown df the estimated df is 5.1 and the
value of DIC for this model is −30.91. Comparing the DIC value of the θ̂TMEK method
with df 6 with the DIC values of the θ̂TMEU , θ̂FHT and θ̂ADL methods shows that the
proposed method with known df is the best and θ̂TMEU has the second rank. The value
of DIC for θ̂FHT and θ̂ADL is -5.30 and -4.30, respectively. It should be noted that we
estimate ψis similar to explained methodology for the corn data.
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Figure 1: Box plot of the logarithm (in base 10) of households with self-employed head
income (covariate) for the cities of Kurdistan province. This graph shows the
presence of two outliers in the data. Therefore, there is a possibility of existing
of outlier measurement error.

Figure 2: Box plot of the logarithm (in base 10) of housing costs of households with self-
employed head (response variable). This plot shows the approximate normal
distribution of the logarithm of household housing cost.
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Table 9: The average logarithm of housing cost in the cities of Kurdistan province.

County θ̂TMEK θ̂TMEU θ̂FH θ̂ADL County θ̂TMEK θ̂TMEU θ̂FH θ̂ADL

Baneh 6.131 6.089 6.131 6.130 Bijar 6.293 6.291 6.297 6.293

Saghez 6.151 6.154 6.150 6.149 Sanandaj 6.326 6.331 6.330 6.330

Ghorveh 6.152 6.152 6.151 6.150 Marivan 6.121 6.124 6.121 6.122

Divandareh 6.313 6.315 6.310 6.310 Kamyaran 6.399 6.401 6.401 6.402

Sarvabad 5.950 5.951 5.960 6.954 Dehgolan 6.024 6.019 6.011 6.011

In Table 9, the estimated averages of the cost of housing of households with self-
employed head for the cities of Kurdistan province as small areas are given. According
to obtained results for θ̂TMEK , The most expensive and cheapest cities based on housing
costs are Kamyaran and Sarvabad. Furthermore, the city of Sanandaj, which is the
center of this province, has the second most expensive housing cost. This means that,
on average, each household with self-employed head in Sanandaj spends 2118361 Tomans
(the common currency of Iran) per month for housing cost.

7 Conclusion

In this paper, we propose a Bayesian small area mode accounting for the presence of
measurement error in covariates. In particular, we propose to model the measurement
error as t-distribution with known and unknown degrees of freedom. Simulation studies
show that the proposed approaches are an evaluable alternative to the models existing
in literature both in terms of predictions as well as in terms of overall fit. One of open
problem in ME literature is estimating variance of ME. Because of identifiable problem,
often is assumed that this variance is known. We assumed that df is unknown (corre-
sponding to unknown variance). Convergence of our algorithms show that there is no
problem related to model identifiable. As previously mentioned, if the degrees of freedom
are known in the presence of outlier measurement error, model θTMEK is more accurate
than model θTMEU . However, knowing the degrees of freedom is a restrictive assumption
and is not valid in practice. On the other hand, in the presence of measurement error
in the data, model θTMEU performs better than other available models in controlling
measurement error.

We also apply the proposed model to two real data sets the corn and soybean: accord-
ing to the DIC measure our modeles are better than competitive model even when we
use the number of pixels classified by the LANDSAT satellite as corn for each sampled
segment obtained by the census from the population. Furthermore, analysing urban
household income and expenditure data of Kurdistans’ cities show that our modeled are
useful to model data under doubt existence of ME. As a future work, one can develop
our methodology for situation that MEs have skew t-distribution. All the algorithms
have been implemented in the R software and the codes are available upon request from
the authors.
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Appendix

Comparing (2) with equation (6) in Arima et al. (2015), for computing the full con-
ditional distributions, except λi, it is only necessary we replace Ci with λiI. So we
compute only the full conditional distribution for λi.

Posterior distribution of λi when d = 1: According to the Bayes’s rule and Equa-
tion (2), since posterior is proportional to the product of the likelihood and prior and
using elements that only include λi. Therefore,

π(λi|rest) ∝ π(λi)π(Wi|Xi, λi)

∝ (
1

λi
)a+1e

−b
λi (

1

λi
)
1
2 e
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2
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