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Abstract
We present connections between left non-degenerate solutions of the set-
theoretic braid equation and left shelves using Drinfel’d homomorphisms. We
generalize the notion of affine quandle, by using heap endomorphisms and
metahomomorphisms, and identify the underlying Yang–Baxter algebra for
solutions of the braid equation associated to a given quandle. We introduce the
notion of the pre-Lie skew brace and identify certain affine quandles that give
rise to pre-Lie skew braces. Generalisations of the braiding of a group, associ-
ated to set-theoretic solutions of the braid equation are also presented. These
generalized structures encode part of the underlying Hopf algebra. We then
introduce the quasi-triangular (quasi) Hopf algebras and universal R-matrices
for rack and set-theoretic algebras. Generic set-theoretic solutions coming from
heap endomorphisms are also identified.
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1. Introduction

Yang–Baxter equation is a keymathematical object in the theory of quantum integrable models
and solvable statistical systems [32], as well as in the formulation of quantum groups [27, 32,
43, 44]. It was first introduced in [65] as the main mathematical tool for the investigation of
quantum systems with many particle interactions, and in [6] for the study of a two-dimensional
solvable statistical model known as the anisotropic Heisenberg magnet or the XYZ model.
In early 90s Drinfel’d [26] suggested the idea of set-theoretic solutions to the Yang–Baxter
equation and since then, set-theoretic solutions have been extensively investigated primarily by
means of representations of the braid group. It is worth noting that set-theoretic solutions and
Yang–Baxter maps have been also studied within the context of classical discrete integrable
systems connected also to the notion of Darboux–Bäcklund transformation in the Lax pair
formulation [1, 52, 64]. In classical integrable systems usually a Poisson structure exists asso-
ciated to a classical r-matrix, which is a solution of the classical Yang–Baxter equation [31].
Various connections between the set-theoretic Yang–Baxter equation and geometric crystals
[8, 30], or soliton cellular automatons [39, 62] have been also demonstrated. The theory of
braces was established around 2005, when Wolfgang Rump developed an algebraic struc-
ture that generalizes radical rings called a brace [54, 55] to describe all finite involutive set-
theoretic solutions of the braid (and hence the Yang–Baxter) equation, whereas skew-braces
were developed by Guarnieri and Vendramin to describe non-involutive solutions [38].

The investigation of set-theoretic solutions of the braid (and Yang–Baxter) equation and the
associated algebraic structures is an emerging research area that has been particularly fruit-
ful, and a significant number of related studies has been produced over the past few years
(see for instance [7–19, 33–35, 41, 57, 58]). In [20–24] key links between set-theoretic solu-
tions and quantum integrable systems and the associated quantum algebras were uncovered.
Moreover, interesting correspondences between Yang–Baxter algebras and pre-Lie algebras
found in [25], whereas connections between braces and pre-Lie rings established in [59]. In
general, the theory of the set-theoretic Yang–Baxter equation turns out to have intriguing inter-
links with numerous research areas, for example with group theory (Garside groups, regular
subgroups, factorized groups, see for example [7, 41, 42]), algebraic number theory, Hopf–
Galois extensions [7, 57], non-commutative rings [55], Knot theory [45–48], Hopf algebras,
quantum groups [29], universal algebras, groupoids [53], semi-braces [15], trusses and heaps
[11], pointed Hopf algebras, Yetter–Drinfield modules and Nichols algebras [3].

We now introduce the notion of the set-theoretic braid equation. Following [26], given a set
X, a map r : X×X→ X×X is said to be a set-theoretic solution of the Yang–Baxter equation,
if r satisfies the braid identity

(r× idX)(idX×r)(r× idX) = (idX×r)(r× idX)(idX×r) . (1.1)

Starting now, we call such a map r simply a solution and write (X,r) to denote a solution r
on a set X. Besides, if we write r(a,b) = (σa (b) , τb (a)), with σa, τa maps from X into itself,
then r is said to be left non-degenerate if σa ∈ SymX, for every a ∈ X, right non-degenerate
if τa ∈ SymX, for every a ∈ X, and non-degenerate if r is both left and right non-degenerate.
Furthermore, if r is a solution such that r2 = idX×X, then r is said to be involutive.

It is also worth recalling the connection between the set-theoretic braid equation (1.1) and
the set-theoretic Yang–Baxter equation (see also [43, 44]). We introduce the map R : X×X→
X×X, such that R= rπ, where π : X×X→ X×X is the flip map: π(x,y) = (y,x). Hence,
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R(y,x) = (σx(y), τy(x)), and it satisfies the set-theoretic Yang–Baxter equation:

R12 R13 R23 = R23 R13 R12, (1.2)

where we denote R12(y,x,w) = (σx(y), τy(x),w), R23(w,y,x) = (w,σx(y), τy(x)) and
R13(y,w,x) = (σx(y),w, τy(x)).

To study solutions, Etingof et al [29] introduced the notion of equivalence, or isomorphism,
of solutions. Specifically, following [16], two solutions (X,r) and (Y,s) are said to be homo-
morphic if there exist a map f : X→ Y, such that ( f× f)r= s( f× f). In particular, r and s are
said to be homomorphic via f. If in addition f is bijective, then (X,r) and (Y,s) are said to be
equivalent or isomorphic.

To date, left non-degenerate solutions have been investigated through different algebraic
structures such as cycle sets [54], q-cycle sets [14, 56], twisted Ward left quasigroups [61],
semi-braces [15], semitrusses [18], and left simple semigroups [17]. In any case, given a left
non-degenerate solution (X,r), one can define another left non-degenerate solution (X,r ′) on
the same underlying set X connected to r, namely, the map r ′ : X×X→ X×X defined by
r ′ (a,b) = (b, σbτσ−1

a (b) (a)), for all a,b ∈ X. Such a solution is called derived solution of r.
Set a ▷ b := σbτσ−1

a (b) (a), for all a,b ∈ X, we obtain that (X,▷) is a left shelf. Conversely, if a
set X is endowed with a binary operation such that (X,▷) is a left shelf, then the map r▷ : X×
X→ X×X defined by r▷ (a,b) = (b, σbτσ−1

a (b) (a)), for all a,b ∈ X, is a left non-degenerate
solution, known as the derived solution.

In this paper, we show that the well-known correspondence between derived solutions and
left shelves can be ‘improved’ describing all left non-degenerate solutions. To obtain this
description, the notion of D-isomorphic (Drinfel’d isomorphic) solutions is crucial. In par-
ticular, we show that D-isomorphic classes of left non-degenerate solutions correspond to iso-
morphic classes of left shelves endowed with special endomorphisms (these left shelves are
exactly the same ones associated with their derived).

The key outcomes of this investigation are essentially summarized in theorem 2.15, where it
is shown that every left non-degenerate solution can be obtained from a shelf solution by find-
ing special shelf automorphisms, and in sections 3–5. In sections 3–5 we generalize the notion
of affine quandle, by using heap endomorphisms and metahomomorphisms, and identify the
Yang–Baxter algebra for solutions of the braid equation associated to a given rack/quandle.
Motivated by the notion of pre-Lie algebras (also studied under the name chronological algeb-
ras) [2, 36, 63] (see also [5, 51] for a recent reviews) we introduce a novel algebraic structure
called pre-Lie skew brace to describe the underlying algebraic structures associated to certain
set-theoretic solutions of the braid equation. In fact, we identify families of affine quandles that
produce pre-Lie skew braces. We then consider the linearized version of the braid equation and
we introduce the notion of the quasi-triangular Hopf algebras associated to set-theoretic solu-
tions; the rack type Universal R−matrix is also derived. By identifying a suitable admissible
Drinfel’d twist [27, 28] we are able to extract the general set-theoretic universal R−matrix.
Our findings on universal admissible Drinfel’d twists are consistent with theorem 2.15.

More precisely, the outline of the paper is as follows. We start with section 2 which is
divided into two subsections. The first subsection contains preliminaries on shelves. In the
second subsection, in definition 2.9, we introduce the notion of a Drinfel’d homomorphism
between set-theoretic solutions of the Yang–Baxter equation, based on the well known idea
of Drinfel’d twists. When one considers a Drinfel’d automorphism, one gets a set-theoretic
analogue of admissible twists of quasitriangular Hopf-algebras. We show that every left non-
degenerate solution is Drinfel’d isomorphic to a solution given by a shelf, see lemma 2.12. In
fact, by theorem 2.15, every left non-degenerate solution can be acquired from a shelf solution
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by finding special automorphisms of the shelf itself, which we name twists, see definition 2.14.
In particular, bijective solutions correspond to racks. We show that two homomorphic shelves
with twists have D-homomorphic solutions, and bijectivity of a homomorphism of shelves
implies D-isomorphism of solutions. We conclude section 2 with examples of solutions given
by shelves and twists on them.

Section 3 is divided into three subsections. In the first subsection, we present a definition
of a Yang–Baxter algebra (X,m) associated with a given solution (X, r) as a binary operation
m : X×X→ X such thatmr= m, i.e.by the Yang–Baxter algebra in definition 3.1; specifically,
we understand an algebra in the sense of a universal algebra that is invariant under the entangle-
ment of a particular set-theoretic solution of the Yang–Baxter equation. We show that for any
set endowed with a left non-degenerate solution, the Yang–Baxter algebra exists, see lemma
3.4. We conclude the first subsection with examples of Yang–Baxter algebras for solutions
given by skew braces and near braces. In the second subsection, we introduce three gener-
alisations of affine quandles to the non-abelian case and study their Yang–Baxter algebras,
see examples 3.12–3.14. In particular, endofunctions called metahomomorphisms and heap
endomorphisms allow us to define such generalized quandles. Moreover, if the underlying
group of those quandles is abelian and metahomomorphisms are group endomorphisms, all the
examples collapse to the definition of an affine quandle. In addition, every heap endomorph-
ism gives rise to quandle given by a metahomomorphism, see lemma 3.16; nevertheless, the
Yang–Baxter algebra operation obtained by a heap endomorphism is not necessarily given by
a metahomomorphism, see remark 3.11 and lemma 3.20. In the third and last subsection, we
introduce a notion of the right pre-Lie skew brace, see definition 3.23. In particular, every
pre-Lie ring is a right pre-Lie brace. Next, we show that Yang–Baxter algebras from examples
3.13 and 3.14 admit a pre-Lie skew brace structure, see theorem 3.28. If an underlying group
of a pre-Lie skew brace is abelian, one can acquire a pre-Lie ring. We conclude the subsection
with example 3.34 in which we show that Lie rings associated with a Yang–Baxter algebra
given by affine quandle have a zero Lie bracket.

In section 4, we present a generalized version of the braiding of a group, with some
examples that have already appeared in [23, 24], see definition 4.1. We generalize it bey-
ond the group structure to be compatible with Yang–Baxter algebras. We conclude the section
with examples of such braidings, see examples 4.6–4.9. This section serves as a precursor of
the last section given that the generalized braided structures encapsulate part of the associated
underlying Hopf algebras, which is introduced next.

In section 5, which is divided in two subsections, we shift our focus from set-theoretic solu-
tions to linearized versions and Hopf algebras. Specifically, in the first subsection, introduce
the Yang–Baxter algebras of rack/quandle type and set-theoretic solutions as quasitriangular
(quasi)-Hopf algebras [27, 28]. Relevant earlier works in [21–23] also in [29] and [3] in con-
nection with pointed Hopf algebras, and the bialgebras associated to racks are studied in [4, 19,
47].We first introduce the quandle Hopf algebra and we then systematically construct the asso-
ciated universal R-matrix. In the second subsection, we suitably extend the quandle algebra
and present the set-theoretic Yang–Baxter algebra, which is also a Hopf algebra. By means
of a a suitable admissible universal Drinfel’d twist we construct the universal-set theoretic
R−matrix. We note that the linearized version of the Yang–Baxter equation allows the invest-
igation of the full Hopf algebras and not only the study of the subset consisting of group-like
elements that naturally appear in the set-theoretic frame. Fundamental representations of the
aforementioned algebras are also considered leading to the rack and general set-theoretic solu-
tions of theYang–Baxter equation. Generalized novel set-theoretic solutions coming from heap
endomorphisms and being compatible with the universal set-theoretic Yang–Baxter algebra are
also introduced.
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2. From left shelves to set-theoretic solutions and vice versa

In this section, we study and summarize connections between left non-degenerate solutions of
the set-theoretic braid equation and left shelves. The first subsection contains preliminaries on
shelves. In the second subsection, we collect various results and remarks scattered in literat-
ure on shelves and set-theoretic braid equations. Motivated by Drinfel’d’s theory of admiss-
ible twists of Hopf-algebras, we introduce a set-theoretic analogue of those twists, which we
call Drinfel’d isomorphisms. Inspired by recent developments in linearized and set-theoretic
settings, we present how starting with a shelf, we can construct all left non-degenerate set-
theoretic solutions using a particular family of shelf isomorphisms, which we name twists.

2.1. Left shelves

This section contains preliminaries on left shelves. For the first systematic study of shelves,
we refer reader to [13].

Definition 2.1. Let X be a non-empty set and ▷ a binary operation on X. Then, the pair (X, ▷)
is said to be a left shelf if ▷ is left self-distributive, namely, the identity

a ▷ (b ▷ c) = (a ▷ b) ▷ (a ▷ c) (2.1)

is satisfied, for all a,b,c ∈ X. Moreover, a left shelf (X, ▷) is called

(1) a left spindle if a ▷ a= a, for all a ∈ X;
(2) a left rack if (X, ▷) is a left quasigroup, i.e. the maps La : X→ X defined by La (b) := a ▷ b,

for all b ∈ X, are bijective, for every a ∈ X.
(3) a quandle if (X, ▷) is both a left spindle and a left rack.

Example 2.2.

(1) Let X := Z6 the set of integers modulo 6. Then the binary operation of X given by a ▷ b :=
2a+ 2b, for all a,b ∈ X, endows X of a structure of a left shelf that is not a spindle.

(2) Given a set X and considered the binary operation of X given by a ▷ b := a, for all a,b ∈ X,
we trivially obtain a left spindle (in particular, the structure (X, ▷) is a left-zero band).

(3) Let X := Z4 the set of integers modulo 4. Then the binary operation of X given by a ▷ b :=
2a+ b, for all a,b ∈ X, endows X of a structure of a left rack that is not a quandle.

(4) Given a set X and considered the binary operation of X given by a ▷ b := b, for all a,b ∈ X,
we trivially obtain a left quandle (in particular, the structure (X, ▷) is a right-zero band).

Definition 2.3. If (X, ▷) and (Y,▶) are left shelves, a map f : X→ Y is said to be a shelf homo-
morphism if f(a ▷ b) = f(a)▶ f(b), for all a,b ∈ X, or, equivalently, fLa (b) = L̄f(a)f(b), for
all a,b ∈ X, where L̄u (v) = u▶ v, for all u,v ∈ Y. We denote the set of all endomorphisms of
(X, ▷) by End(X, ▷) and the set of all automorphisms of (X, ▷) by Aut(X, ▷).

Remark 2.4. By (2.1), one trivially obtains that La ∈ End(X, ▷), for every a ∈ X. Moreover,
the identity

LaLb = LLa(b)La (2.2)

is satisfied, for all a,b ∈ X.
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The following proposition describes a well-known connection between left non-degenerate
solutions and left shelves [21–23, 48, 60]

Proposition 2.5. If (X, ▷) is a left shelf, then the map r▷ : X×X→ X×X defined by r▷ (a,b) =
(b, b ▷ a), for all a,b ∈ X, is a left non-degenerate solution of derived type.
Conversely, if (X,r) is an arbitrary left non-degenerate solution, then the structure (X, ▷r)

is a left shelf where ▷r is the binary operation on X given by a ▷r b := σaτσ−1
b (a) (b), for all

a,b ∈ X.

Remark 2.6. With reference to proposition 2.5, let us observe that: If (X, ▷) is a left spindle,
then the solution r▷ is square free. Moreover, if (X, ▷) is a left rack, then the solution r▷ is
non-degenerate.

Definition 2.7. From now on, given a left shelf (X, ▷), we call r▷ the solution associated to
(X, ▷). Moreover, given a left non-degenerate solution r, we call (X, ▷r) the left shelf associated
to r.

Example 2.8.

(1) The solution associated to the left shelf (X,▷) in example 2.2(2) is the map r▷ : X×X→
X×X given by r▷ (a,b) = (b,b) and it is clearly left non-degenerate and idempotent.

(2) The solution associated to the left rack (X,▷) in example 2.2(4) is the map r▷ : X×X→
X×X given by r▷ (a,b) = (b,a), so it is the twist map that is clearly non-degenerate and
involutive.

2.2. Left-non degenerate solutions and left shelves

We first introduce the notion of a Drinfel’d isomorphism and recall some known results [18,
21–23, 48, 60].

Definition 2.9. Let (X, r) and (Y, s) be solutions. Then we say that a map φ : X×X→ Y×Y
is a Drinfel’d homomorphism or in short D-homomorphism if

φr= sφ.

Ifφ is a bijection, we callφ aD-isomorphism and we say that (X, r) and (Y, s) areD-isomorphic
(via φ), and we denote it by r∼=D s.

Lemma 2.10. If (X, r) and (Y, s) are homomorphic (resp. equivalent) solutions via f : X→ Y,
then they are D-homomorphic (resp. D-isomomorphic) via φ = f× f.

The converse of the previous fact does not hold.

Example 2.11. Let us consider a set U(Z/8Z) := {1,3,5,7} and the following solution for all
a,b ∈ U(Z/8Z)

r(a,b) =
(
1− a+ ab,(1− a+ ab)−1 ab

)
,

where+ and juxtaposition are addition and multiplication of integers modulo 8. Then one can
show that r is not equivalent to the flip map, but it is D-isomorphic with the flip map.
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Lemma 2.12. Let (X, r) be a left non-degenerate solution and (X,r ′) be the derived solution
of (X, r). Then r is D-isomorphic to r′.

Proof. Let φ : X×X→ X×X be the map defined by

φ(a,b) := (a,σa (b)) ,

for all a,b ∈ X. Since r is left non-degenerate, φ is bijective and φ−1 (a,b) =
(
a,σ−1

a (b)
)
, for

all a,b ∈ X. Then

φrφ−1 (a,b) = φr
(
a,σ−1

a (b)
)
= φ

(
σaσ

−1
a (b) , τσ−1

a (b) (a)
)
=
(
b,σb

(
τσ−1

a (b) (a)
))

.

That is r∼=D r ′.

Lemma 2.13. Given a set X, a map r : X×X→ X×X, such that r(a,b) = (σa(b), τb(a)), for
all a,b ∈ X, satisfies (1.1) if and only if the following three conditions are satisfied for all
a,b,c ∈ X

σaσb = σσa(b)στb(a) (bI)

στσb(c)(a)τc (b) = τστb(a)
(c)σa (b) (bII)

τcτb = ττc(b)τσb(c). (bIII)

Definition 2.14. Let (X,▷) be a left shelf. We say that φ : X→ Aut(X,▷), a 7→ φa is a twist if
for all a,b ∈ X,

φaφb = φφa(b)φφ−1
φa(b)

Lφa(b)(a)
. (2.3)

In the following, we show that any left non-degenerate solution (X, r) can be described in
terms of the left shelf (X, ▷r) defined in proposition 2.5 and its twist.

Theorem 2.15. Let (X, ▷) be a left shelf and φ : X→ SymX, a 7→ φa. Then, the function rφ :
X×X→ X×X defined by

rφ (a,b) =
(
φa (b) , φ

−1
φa(b)

(φa (b) ▷ a)
)
, (2.4)

for all a,b ∈ X, is a solution if and only if φ is a twist. Moreover, any left non-degenerate
solution can be obtained that way.

Proof. First, let us assume that φ is a twist. Then (bI) follows by (2.3). Set τb (a) :=
φ−1
φa(b)

Lφa(b) (a), for all a,b ∈ X. If a,b,c ∈ X, we get that

τφτb(a)
(c)φa (b) = φ−1

φφa(b)φτb(a)
(c)Lφφa(b)φτb(a)

(c)φa (b)

= φ−1
φaφb(c)

Lφaφb(c)φa (b) by (bI)

= φ−1
φaφb(c)

φaLφb(c) (b) φa ∈ End(X, ▷)

= φτφb(c)
(a)φ

−1
φb(c)

Lφb(c) (b) by (bI)

= φτφb(c)
(a)τc (b) ,

hence (bII) holds.

7



J. Phys. A: Math. Theor. 57 (2024) 405203 A Doikou et al

In particular, from the previous equalities, we obtain that

φτφb(c)
(a)τc (b) = φ−1

φaφb(c)
φaLφb(c) (b) . (2.5)

Moreover, by applying twice (bI),

φφaφb(c)φτφτb(a)
(c)φa(b) = φφφa(b)φτb(a)

(c)φτφτb(a)
(c)φa(b) = φφa(b)φφτb(a)

(c). (2.6)

Thus,

ττc(b)τφb(c) (a) = φ−1
φτφb(c)

(a)τc(b)
Lφτφb(c)

(a)τc(b)τφb(c) (a)

= φ−1
τφτb(a)

(c)φa(b)
L
φ−1
φaφb(c)

φaLφb(c)
(b)φ

−1
φaφb(c)

Lφaφb(c) (a) by (bII) and (2.5)

= φ−1
τφτb(a)

(c)φa(b)
φ−1

φaφb(c)
LLφaφb(c)

φa(b)Lφaφb(c) (a) φ−1
φaφb(c)

,φa ∈ End(X, ▷)

= φ−1
φτb(a)

(c)φ
−1
φa(b)

Lφaφb(c)Lφa(b) (a) . by (2.6) and (2.2)

= φ−1
φτb(a)

(c)Lφ−1
φa(b)

φaφb(c)
φ−1

φa(b)
Lφa(b) (a) φa ∈ End(X, ▷)

= φ−1
φτb(a)

(c)Lφτb(a)
(c)τb (a) by (bI)

= τcτb (a) ,

and we obtain that (bIII) is satisfied.
Conversely, if the map rφ is a solution on the set X. Then, (bI) coincides with the iden-

tity (2.3). Furthermore, by applying (bI) to the identity (bII) and by looking at the previous
computations, we get that φ−1

φaφb(c)
φaLφb(c) (b) = φ−1

φaφb(c)
Lφaφb(c)φa (b), for all a,b,c ∈ X, i.e.

φaLφb(c) (b) = Lφaφb(c)φa (b), for all a,b,c ∈ X. Equivalently, φaLb (c) = Lφa(b)φa (c), for all
a,b,c ∈ X, i.e. φa ∈ End(X, ▷), for every a ∈ X. Therefore, the first claim follows.

To observe that any left non-degenerate solution r(a,b) := (σa (b) , τb (a)) can be obtained
that way, it is enough to show that σ is a twist of the shelf (X,▷r),where a ▷r b := σaτσ−1

b (a) (b) .
Indeed, for all a,b,c ∈ X,

σa (b ▷r c) = σσa(b)στb(a)τσ−1
c (b) (c) by (bI)

= σσa(b)στ
σc(σ−1

c (b))
(a) τσ−1

c (b) (c)

= σσa(b)τστc(a)σ
−1
c (b)σa (c) by (bII)

= σσa(b)τσ−1
σa(c)

σa(b)
σa (c) , by (bI)

= σa (b) ▷r σa (c) ,

and σa is a shelf homomorphism. Clearly, τb (a) = σ−1
σa(b)

(σa (b) ▷ a), and the map r can be
written as in (2.4). One can easily show that the identity (2.3) holds. Therefore, the statement
is proven.

Corollary 2.16. A left non-degenerate solution (X, r) is bijective if and only if (X,▷r) is a rack.

Proof. This follows from the fact that r is invertible if and only if r▷r is invertible.

As a consequence of corollary 2.16 and [14, corollary 6] we can state the following result.

Corollary 2.17. If X is a finite set, a left non-degenerate solution (X,r) is right non-degenerate
and bijective if and only if (X,▷r) is a rack.

8
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Remark 2.18. More generally, we obviously get that a bijective left non-degenerate solution
(X, r) is non-degenerate if and only if (X, ▷r) is a rack such that

∀ b,c ∈ X ∃a ∈ X φφa(b) (c) = Lφa(b) (a) .

Remark 2.19. If (X, ▷) is a left shelf, φa : X→ X a bijective map, for every a ∈ X, set a · b :=
φ−1
a (b) and a : b := φ−1

a (a ▷ b), for all a,b ∈ X, one can check that the map r in (2.4) is a
solution if and only if (X, ·, :) is a q-cycle set, namely the structure introduced by Rump in
[56]. In this way, we obtain a connection between theorem 2.15 and the result provided by
Rump in [56, proposition 1] on the correspondence between left non-degenerate solutions on
a set X and q-cycle sets on the same set X (see also [14, p 2]).

Corollary 2.20. All the left non-degenerate idempotent solutions on a set X are the maps r :
X×X→ X×X defined by

r(a,b) =
(
φa (b) ,φ

−1
φa(b)

φa (b)
)

satisfying (bI), where φa : X→ X is a bijective map, for every a ∈ X.

Proof. Let (X,▷) be the trivial left shelf in example 2.2(2) where a ▷ b= a, for all a,b ∈ X.
Since every bijection on (X,▷) is obviously an automorphism of the same structure, the claim
follows by theorem 2.15.

Remark 2.21. Set a ∗ b := φ−1
a (b), for all a,b ∈ X, it is easy to check that themap r in corollary

2.20 satisfies (bI) if and only if (a ∗ b) ∗ (a ∗ c) = (b ∗ b) ∗ (b ∗ c), for all a,b,c ∈ X, i.e, the
structure (X,∗) is a twisted Ward left quasigroup. Hence, corollary 2.20 coincides with the
result provided by Stanovský and Vojtěchovský in [61, proposition 2.2] in which they establish
a correspondence between left non-degenerate idempotent solutions on a set X and twisted
Ward left quasigroups on the same set X.

Corollary 2.22. All and only the left non-degenerate involutive solutions on a set X are the
maps r : X×X→ X×X defined by

r(a,b) =
(
φa (b) ,φ

−1
φa(b)

(a)
)

satisfying (bI) where φa : X→ X is a bijective map, for every a ∈ X.

Proof. Let (X, ▷) be the trivial left rack in example 2.2(4) where a ▷ b= b, for all a,b ∈ X.
Since every bijection on (X, ▷) is obviously an automorphism of the same structure, the claim
follows by theorem 2.15.

Remark 2.23. Set a · b := φ−1
a (b), for all a,b ∈ X, it is easy to check that the map r satisfies

(bI) if and only if (a · b) · (a · c) = (b · a) · (b · c), for all a,b,c ∈ X, i.e. the structure (X, ·) is
a cycle set. Thus, corollary 2.22 coincides with the result provided by Rump in [54] on the
correspondence between left non-degenerate involutive solutions on a set X and cycle sets on
the same set X.

Remark 2.24. The description of left non-degenerate solutions in terms of automorphisms
of shelves in theorem 2.15 allows for explicitly obtaining the Drinfel’d twists that realize the
conjugation between a left-non degenerate solution and its derived. We note that a similar
connection between derived solutions/shelves and left non-degenerate solutions also appears
in [56, p 145], even if not explicitly made.

9
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Lemma 2.25. Let (X,▷), (Y,▶) be shelves, f : (X,▷)→ (Y,▶) be a shelve homomorphism and
φ : X×X→ X, ψ : Y×Y→ Y be twists of the shelves. Then

Φ(a, b) =
(
f(a) , ψ−1

f(a)fφa (b)
)

for all a,b ∈ X, is a D-homomorphism of solutions (X,rϕ) and (Y,rψ). Moreover, f is bijective
if and only if Φ is a D-isomorphism.

Proof. Observe that for any a,b ∈ X, we have that

Φrφ (a,b) =
(
fφa (b) , ψ

−1
fφa(b)

fφφa(b)φ
−1
φa(b)

Lφa(b) (a)
)
=
(
fφa (b) , ψ

−1
fφa(b)

L̄fφa(b)f(a)
)

=

(
ψf(a)ψ

−1
f(a)fφa (b) , ψ

−1
ψf(a)ψ

−1
f(a)fφa(b)

L̄ψf(a)ψ
−1
f(a)fφa(b)

f(a)

)
= rψ

(
f(a) , ψ−1

f(a)fφa (b)
)
= rψΦ(a,b) .

Thus, (X, rφ) and (Y, rψ) are D-homomorphic via the map Φ.
It is a simple check to show that bijectivity of f implies bijectivity of Φ. Other way, assume

that Φ is bijective. Let a,c ∈ X such that f(a) = f(c). Then,

Φ(a,b) =
(
f(a) ,ψ−1

f(a)fφa (b)
)
=
(
f(c) ,ψ−1

f(c)fφcφ
−1
c φa (b)

)
=Φ

(
c,φ−1

c φa (b)
)

that implies a= c. Now, if a ∈ X, then there exist x,y ∈ X such that Φ(x,y) = (a,a), hence
there exists x ∈ X such that f(x) = a.

Example 2.26. If (X, ▷) is a left rack, setφa = La, for all a ∈ X, by 2.4, assumptions in theorem
2.15 are trivially satisfied. Thus, the map rφ : X×X→ X×X given by rφ (a, b) = (a ▷ b, a),
for all a,b ∈ X, is a solution.

Example 2.27. Let (X,+) be a (not necessarily abelian) group and consider the quandle oper-
ation on X given by a ▷ b :=−a+ b+ a, for all a,b ∈ X. Let f ∈ Aut(X,+), k ∈ Z(X,+), and
set φa (b) := k+ f(b), for all a,b ∈ X. Then, f ∈ Aut(X, ▷) and the identity (2.3) is trivially
satisfied. Hence, by theorem 2.15, the map rφ : X×X→ X×X given by

rφ (a, b) :=
(
k+ f(b) ,−f−1 (k)− b+ f−1 (a)+ b

)
,

for all a,b ∈ X, is a bijective and non-degenerate solution on X. Let us note that the binary
operation given by a ◦ b= a+ f(k)+ b, for all a,b ∈ X, endows X of a structure of group with
identity −f(k) and, for every a ∈ X, the inverse of a is a− =−f(k)− a− f(k). Moreover, the
structure (X,+,◦) is a (singular) near brace (that is similar to [24, example 2.10]).

3. Quandles & and pre-Lie skew braces

This section aims to study Yang–Baxter algebras associated to left non-degenerate solutions
(X, r), namely, structures (X,m) wherem a binary operation onX satisfying the identitymr=m.
In the first part, we show that, for any left-non-degenerate solution, such an algebra exists,
and, in general, it is not associative. In the second part, we introduce a generalisation of affine
quandles using metahomomorphisms (arising from solutions given in [37]) and heap endomo-
morphisms. Even though definitions of metahomomorphisms and heap endomomorphisms do

10
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not contain each other, we show that both of them yield a Yang–Baxter algebra. Furthermore,
we prove that some Yang–Baxter algebras lead to right pre-Lie skew braces, namely, algebraic
structures including pre-Lie rings.

3.1. Yang–Baxter algebras

We note that in this section, whenever we say algebra we mean a binary algebra in a universal
algebra sense, see [9].

Definition 3.1. Let (X, r) be a solution of the set-theoretic Yang–Baxter equation. We say that
a pair (X,m), where m : X×X→ X, is a Yang–Baxter (or braided) algebra, if for all x,y ∈ X,
m(x,y) = m(r(x,y)).

Remark 3.2. Observe that we assume nothing about m, thus (X,m) is in general a magma.

Remark 3.3. If (X,m) is a Yang–Baxter algebra for some solution r and φ : X×X→ X×X is
a D-isomorphism, then (X,mφ) is a Yang–Baxter algebra for a solution φ−1rφ.

Lemma 3.4. Let (X, r) be a left non-degenerate solution and (X,▷r) the shelf associated to r.
Then, if x ∈ X, the binary operation • on X defined by

a • b= σa (b) ▷r (a ▷r x) .

makes (X,•) a Yang–Baxter algebra.

Proof. Let a,b ∈ X. Since by theorem 2.15 τa (b) = σ−1
σa(b)

(σa (b) ▷r a), it follows that

σa (b) •
(
σ−1
σa(b)

(σa (b) ▷r a)
)
= (σa (b) ▷r a) ▷r (σa (b) ▷r x) = σa (b) ▷r (a ▷r x) = a • b,

which is our claim.

Remark 3.5. In the special case of a derived solution (X, r), r(a, b) = (b, b ▷ a), we clearly
obtain that for that associated Yang–Baxter algebra (X,•) it is satisfied the identity

a • b= b • (b ▷ a) ,

for all a,b ∈ X.

In the linearized version of the problem definition 3.1 is equivalent to the following state-
ment for set-theoretic solutions. Consider a free vector space V= CX of dimension equal to
the cardinality of X. Let B= {ea}a∈X be the basis of V and B∗ = {e∗a}a∈X be the dual basis:
e∗aeb = δa,b, also ea,b := eae∗b . Let also r ∈ End(V⊗V) be a solution of the braid equation and
q̂ ∈ V⊗Q, then the structure Q is a Yang–Baxter (or braided) algebra if

r (q̂⊗ id)(id⊗ q̂) = (q̂⊗ id)(id⊗ q̂) , (3.1)

where q̂=
∑

a∈X ea⊗ qa and r=
∑
r(a,c|b,d)ea,b⊗ ec,d. If · : X×X→ X, then q : X→Q,

a 7→ qa, is a (X, ·) homomorphism. The interested reader is referred to e.g. [32, 50] for a more
detailed description. This description can be formally generalized to infinite countable sets, but
for continuous sets the description requires functional analysis and kernels of integral operat-
ors to describe the solution r.

11
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Example 3.6. We present below three key examples of set-theoretic solutions of the braid
equation and their respective Yang–Baxter algebras (X, ·).

(1) Flip map: r(a,b) = (b,a) and the Yang–Baxter algebra is a · b= b · a.
(2) General set-theoretic solution: r(a,b) = (σa(b), τb(a)) and the Yang–Baxter algebra is a ·

b= σa(b) · τb(a).
(3) Shelf solution: r(a,b) = (b,b ▷ a) and the Yang–Baxter algebra is a · b= b · (b ▷ a).

Henceforth, whenever we say set-theoretic solution we mean the general set-theoretic solu-
tion, r(a,b) = (σa(b), τb(a)).

Let us first recall the well knownmaps coming from skew braces. Before we further proceed
we recall the definition of skew braces.

Definition 3.7 ([38, 54–56]). A left skew brace is a set B together with two group operations
+,◦ : B×B→ B, the first is called addition and the second is called multiplication, such that
for all a,b,c ∈ B,

a ◦ (b+ c) = a ◦ b− a+ a ◦ c. (3.2)

If + is an abelian group operation B is called a left brace. Moreover, if B is a left skew brace
and for all a,b,c ∈ B (b+ c) ◦ a= b ◦ a− a+ c ◦ a, then B is called a skew brace. Analogously
if + is abelian and B is a skew brace, then B is called a brace.

The additive identity of a skew brace B will be denoted by 0 and the multiplicative identity
by 1. In every skew brace 0= 1.

Let (X,+,◦) be a skew brace and let r, r∗ : X×X→ X×X such that r(x,y) = (σx(y), τy(x)),
r∗(x,y) = (σ̂x(y), τ̂y(x)) are solutions of the braid equation, and rr∗ = id:

(1) σa (b) =−a+ a ◦ b
(2) σ̂a (b) = a ◦ b− a. (3.3)

We recall below the underlying Yang–Baxter algebra for the corresponding quandles (also
examined in [48]).

(1) For σa(b) =−a+ a ◦ b the corresponding left shelf operation of derived solution takes the
simple form,

b ▷ a=−b+ a+ b. (3.4)

The underlying Yang–Baxter algebra is satisfied as a+ b= b+(b ▷ a), i.e. we define a •
b := a+ b and (X,+) is apparently a group.

(2) For σa(b) = a ◦ b− a the corresponding left shelf action takes the simple form

b ▷ a= b+ a− b. (3.5)

Notice that if+ is a commutative operation then, b ▷ a= a and the twisted map rφ reduces
to the flip map. Then any commutative binary operation m on X makes (X,m) into Yang–
Baxter algebra. In particular, (X,+) is a Yang–Baxter algebra. For not necessarily com-
mutative group, the underlying Yang–Baxter algebra satisfied b+ a= (b ▷ a)+ b, i.e. we
define a • b := b+ a and (X,•) is a Yang–Baxter algebra.

12
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Note that in both cases above the map a 7→ b ▷ a is a bijection and also a ▷ a= a, i.e. (X,▷) is
a quandle.

We present in what follows some fundamental findings of the present analysis. We consider
a generalized version of the set-theoretic solution of the braid equation by introducing some
‘z-deformation’ [23, 24]. Indeed, let z ∈ X be fixed, then we denote

rp (x,y) =
(
σpx (y) , τ

p
y (x)

)
. (3.6)

The superscript p stands for parametric; in our case we consider functions of three fixed para-
meters z1,2, z ∈ X, then f p := f(z1,z2,z) for any function f of the parameters.

Let (X,+,◦) be a skew brace and rp, r∗p : X×X→ X×X are solutions of the braid equation,
such that rp(x,y) = (σpx (y), τ

p
y (x)), r∗p(x,y) = (σ̂px (y), τ̂

p
y (x)) [24],

(1) σpa (b) = z1 − a ◦ z+ a ◦ b ◦ z2
(2) σ̂pa (b) = a ◦ b ◦ z1 − a ◦ z+ z2 (3.7)

such that for all a ∈ X, a ◦ z2 ◦ z1 − a ◦ z= z2 ◦ z1 − z := c1 and−a ◦ z+ a ◦ z1 ◦ z2 =−z+ z1 ◦
z2 := c2. Both solutions satisfy the Yang–Baxter algebra conditions,

a ◦ b= σpa (b) ◦ τ
p
b (a) . (3.8)

Also rp̂r∗p = id, where rp̂ := r(ẑ1, ẑ2, ẑ), such that ẑ= z−1, ẑ1,2 = z2,1 ◦ z−1. In this case the
Yang–Baxter algebra is a group. For the rest of this section we are omitting the superscript p
for brevity.

Lemma 3.8. Let (X,+,◦) be a skew brace and σa(b), σ̂a(b) be the bijective maps defined in
(3.7), also τb(a) = σa(b)−1 ◦ a ◦ b and τ̂b(a) = σ̂a(b)−1 ◦ a ◦ b. Then the corresponding left
shelf operations are

(1) b ▷ a := σb

(
τσ−1

a (b) (a)
)
= z1 − b ◦ z+ a ◦ z− z1 + b

(2) b ▷ a := σ̂b

(
τ̂σ̂−1

a (b) (a)
)
= b− z2 + a ◦ z− b ◦ z+ z2, (3.9)

and (X,▷) is a quandle.

Proof. The proof is immediate after substituting the explicit expressions of the bijecitve maps
in the expression for b ▷ a (1), (2) in (3.9). In both cases the map a 7→ b ▷ a is a bijection and
also a ▷ a= a, i.e. (X,▷) is a quandle.

Notice that even if + is a commutative operation, b ▷ a 6= a, as opposed to the non-
parametric case.

3.2. Generalized affine shelves and Yang–Baxter algebras

In this section, we extend the notion of the affine quandle to the non-abelian case. To achieve
this, we introduce the notions of metahomomorphisms and heap endomorphisms. Every gen-
eralisation of an affine quandle given by heap endomorphisms is also given by some metaho-
momorphisms which are group endomorphisms. The opposite is not true. We show that both
metahomomorphisms and heap endomorphisms lead to Yang–Baxter algebras on the corres-
ponding affine quandle solutions. In this case, not every operation given by heap endomorph-
isms is given by somemetahomomorphism and vice versa. Next, we introduce the notion of the
pre-Lie skew brace, and observe that, even though both metahomomorphisms and heap endo-
morphisms lead to quandles and Yang–Baxter algebras, the property of heap endomorphisms
allows us to construct pre-Lie skew braces.

13
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Let us start by recalling the notions below.

Definition 3.9. Let (X,+) be a (not necessarily abelian) group and f : X→ X a map.

(1) f is said to be a heap endomorphism of (X,+) if

∀ a,b,c ∈ X f(a− b+ c) = f(a)− f(b)+ f(c) .

(2) [37, definition 1] f is said to be a metahomomorphism of (X,+) if

∀ a,b ∈ X f(a+ b− f(a)) = f(a)+ f(b)− f 2 (a) .

Example 3.10. Let (X,+) be a group.

(1) Any endomorphism of (X,+) is both a heap endomorphism and a metahomomorphism of
(X,+).

(2) The map ι defined by ι(a) =−a, for every a ∈ X, is a metahomomorphism of (X,+) that
is neither a homomorphism nor a heap endomorphism if (X,+) is not abelian.

(3) The constant map of value k ∈ X, namely, the map f defined by f(a) = k, for every a ∈ X,
is both a heap endomorphism and a metahomomorphism of (X,+).

Remark 3.11. Let (X,+) be a group and f, f̂ : X→ X maps such that f̂(x) := f(x)− f(0), for all
x ∈ X. Then,

(1) f is a heap endomorphism of (X,+) if and only if f̂ is a homomorphism of (X,+);
(2) if f is a metahomomorphism of (X,+), then f̂ is metahomomorphism of (X,+) such that

f(0) = 0, namely, f is a unitary metahomomorphism. More generally, any metahomo-
morphism can be obtained from a unitary one (see [37, theorem 4]).

Moreover, note that any heap endomorphism f such that f(0) ∈ Z(X,+) is a
metahomomorphism.

We are now ready to introduce generalisations of affine quandles. We include the first
example as it was inspired by the affine quandle. Compare with [40, (1.1)] and [10, theorem
5.9].

Example 3.12. Let f be a heap endomorphism of a group (X,+). Then the following operation

a ▷t b= f(b)− f(a)+ a (3.10)

is a spindle, and if f is bijective it is a quandle. More generally, if f : X→ X is a bijective map
such that f(0) = 0, it is easy to check that (X,▷t) is a quandle if and only if f(a− f(b)+ b) =
f(a)− f 2 (b)+ f(b) holds, for all a,b ∈ X. Note that, in the case of f ∈ Aut(X,+), the structure
(X,▷t) coincides with (right) quandles provided in [45, p 42].

The second is motivated by the connection to metahomomorphisms and particular solutions
provided in [37], and generalizes the one acquired from braces.

14
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Example 3.13. Let (X,+) be a group and f : X→ X be a metahomomorphism. Then the fol-
lowing operation

a ▷r b= a+ f(b)− f(a) (3.11)

is a spindle, and if f is bijective it is a quandle. It is easy to check that if f : X→ X is a bijective
map such that f(0) = 0, then and (X,▷r) is a quandle if and only if f is a metahomomorphism.

The third example also generalizes the one acquired from braces, see (3.9).

Example 3.14. Let (X,+) be group and f : X→ X ametahomomorphism of the group (X,+op),
where a+op b := b+ a, for all a,b ∈ X. Then the following operation

a ▷s b=−f(a)+ f(b)+ a (3.12)

is a spindle, and if f is bijective it is a quandle. It is easy to check that if f : X→ X is a bijective
map such that f(0) = 0, then (X,▷s) is a quandle if and only if f is a metahomomorphism of
(X,+op).

Remark 3.15. Observe that if (X,+) is an abelian group and f ∈ Aut(X,+), then all the oper-
ations from examples 3.12–3.14 coincide, and we acquire a quandle known in literature as
affine quandle.

Lemma 3.16. If (X,+) is a group and f a heap endomorphism, then there exist k ∈ X and
l,r ∈ End(X,+) such that, for all x ∈ X, f(x) = k+ l(x) = r(x)+ k. Moreover, the following
hold:

(1) For all a,b ∈ X, f(b)− f(a)+ a= r(b)− r(a)+ a, that is heap endomorphism allows us to
define the spindle ▷t from example 3.12 for a metahomomorphism r.

(2) For all a,b ∈ X, a+ f(b)− f(a) = a+ r(b)− r(a), that is heap endomomorphism allows
us to define the spindle ▷r from example 3.13 for a metahomomorphism r.

(3) For all a,b ∈ X, −f(a)+ f(b)+ a=−l(a)+ l(b)+ a, that is heap endomorphism allows
us to define the spindle ▷s from example 3.14 for a metahomomorphism l.

Remark 3.17. Let (X,+) be a group and f : X→ X a map. Then, the map t : X×X→ X×X
defined by

t(a,b) = (−b− f(a)+ a, f(a)) ,

is a solution of the braid equation if and only if f(a− f(b)+ b) = f(a)− f 2 (b)+ f(b), for all
a,b ∈ X, that is the same identity found in example 3.12. Moreover, t is left non-degenerate and
the shelf operation associated with it is the operation on X given by a ▷t b= f(b)− f(a)+ a,
for all a,b ∈ X, thus the shelf (X,▷t) is the same in example 3.12.

Remark 3.18. Let (X,+) be a group and f : X→ X a map. Then, the map r : X×X→ X×X
defined by

r(a,b) = (a+ b− f(a) , f(a))

is a solution of the braid equation if and only f is a metahomomorphism of (X,+), see [37,
theorem 1]. Analogously, one can check that the map s : X×X→ X×X defined by

s(a,b) = (−f(a)+ b+ a, f(a))

15
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is a solution of the braid equation if and only f is a metahomomorphism of the group (X,+op).
Moreover, let us observe that the solutions r and s are left non-degenerate, and the shelves

associated with them are

a ▷r b= a+ f(b)− f(a) and a ▷s b=−f(a)+ f(b)+ a,

respectively, thus they coincides with examples 3.13 and 3.14, respectively.

Lemma 3.19. Let (X,▷t) be the quandle from example 3.12, i.e. a ▷t b= f(b)− f(a)+ a, for
all a,b ∈ X. Let us define the following binary operation on X

a •t b :=−f 2 (a)+ f(a)− f(b)+ b. (3.13)

Then, a •t b= b •t (b ▷t a), i.e. (X,•t) is a Yang–Baxter algebra for r▷t .

Lemma 3.20. Let (X,▷r) be the quandle from example 3.13, i.e. a ▷r b := a+ f(b)− f(a), for
all a,b ∈ X, for f being bijective metahomomorphism or a heap homomorphism (X,+). Let us
define the following binary operation on X

a •r b := b+ f(a) . (3.14)

Then, a •r b= b •r (b ▷r a), i.e. (X,•r) is a Yang–Baxter algebra for r▷r . Similarly, for the
quandle (X,▷s) in example 3.14, i.e. a ▷s b :=−f(a)+ f(b)+ a, for all a,b ∈ X, for f being
bijective metahomomorphism or a heap endomorphism of (X,+op), the binary operation

a •s b := f(a)+ b (3.15)

satisfies a •s b= b •s (b ▷s a), i.e. (X,•s) is a Yang–Baxter algebra for r▷s .

Proof. We compute, for the quandle (X,▷r),

b •r (b ▷r a) = b ▷r a+ f(b) = b+ f(a)− f(b)+ f(b) = a •r b.

Similarly, the second part of the statement holds for the quandle (X,▷s) and the
operation •s.

Remark 3.21. Let (X,+) be a group, (X,•) a Yang–Baxter algebra, and h,k ∈ X. Then, the
binary operation on X defined by a ·h,k b := h+ a • b+ k, for all a,b ∈ X, makes (X, ·h,k) a
Yang–Baxter algebra.

Example 3.22. From the expression of lemma 3.8 and expressions (3.14), (3.15) we conclude:

(1) a •s b= a ◦ z− z1 + b.
(2) a •r b= b− z2 + a ◦ z.

3.3. Pre-Lie skew braces

Motivated by the notion of pre-Lie algebras (also studied under the name chronological algeb-
ras) [2, 36, 63] (see also [5, 51] for a recent reviews) we introduce a novel algebraic structure
called a pre-Lie skew brace to describe the underlying structures associated to certain set-
theoretic solutions of the braid equation. In fact, we identify families of affine quandles that
generate pre-Lie skew braces.

16
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Definition 3.23. Let (X,+) be a group and • : X×X→ X be a binary operation. We say that
the triple (X,+,•) is a right pre-Lie skew brace if for all a,b,c ∈ X the following hold:
1. Distributivity

a • (b+ c) = a • b− a • 0+ a • c & (a+ b) • c= a • c− 0 • c+ b • c. (3.16)

2. Right pre-Lie condition

(a • b) • c− a • (b • c) = (a • c) • b− a • (c • b) . (3.17)

Moreover, we say that (X,+,•) is a left invertible right pre-Lie skew brace, if (X,•) has a
left identity, i.e. there exists e ∈ X such that for all b ∈ X e • b= b, and for all b ∈ X there exists
a unique left inverse b−1 ∈ X such that b−1 • b= e.

We note that the distributive condition in definition 3.23 appears naturally in skew braces,
also the right pre-Lie condition is satisfied in definition 3.23, hence the name right pre-Lie
skew braces is well justified for the structure described in definition 3.23.

Remark 3.24. Observe that in the case that (X,+) is an abelian group (pre-Lie brace), we get
a pre-Lie affgebra introduced in [12, definition 3.8].

Example 3.25. Every pre-Lie ring is a pre-Lie brace and any two-sided nearring is a skew
pre-Lie brace.

Example 3.26. If (R,+, ·) is a ring, then (R,+,◦), where a ◦ b= a+ b+ a · b is the adjoint
operation of R is a pre-Lie brace. In particular, if (R,+,◦), is a brace, then (R,+,◦) is a left
invertible right pre-Lie brace.

Remark 3.27. Let (X,+) be a group and • : X×X→ X be a binary operation such that (3.16)
holds. Then (X,+,•) is a right pre-Lie skew brace if and only if for all a,b,c ∈ X,

−op a • (b • c)+op (a • b) • c=−op a • (c • b)+op (a • c) • b, (3.18)

where a+op b= b+ a for all a,b ∈ X.

Theorem 3.28. Let (X,+) be a group and •s,•r : X×X→ X as given in lemma 3.20 for some
bijective f : X→ X. Then (X,+,•s) and (X,+op,•r) are left invertible right pre-Lie skew braces.

Proof. Let us show that (X,+,•s) is a left invertible right pre-Lie skew brace. One can easily
check that e := f−1(0) is a unique identity and b−1 := f−1(e− b) is the unique left inverse.
Thus it is enough to check that (3.16) and (3.17) hold. The equality (3.16) is a simple check.
For (3.17) let a,b,c ∈ X, then

(a •s b) •s c− a •s (b •s c) = f 2 (a)− f(0)− f(a) = (a •s c) •s b− a •s (c •s b) ,

i.e. the right pre-Lie condition holds. The proof for (X,+op,•r) is analogous, just instead of
(3.17), we show (3.18).

Remark 3.29. Recall that for the pre-Lie skew braces above: a • b= b • (b ▷ a), where the ▷
action is given in example 3.14. Because of the existence of the left inverse it follows:

b ▷ a=
(
b−1 • a

)
• b. (3.19)

Explicit computation of the RHS of expression (3.19) confirms (3.19).
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Since right pre-Lie skew braces with underlying abelian group (pre-Lie braces) are right
pre-Lie affgebras, by remark 3.24, the following Lemma and Proposition can be found in
[11, 12].

Lemma 3.30. Let (P,+,•) be a pre-Lie brace. Then a triple (P, [−,−,−],{−,−,−}) is a Lie
truss, where

[a,b,c] = a− b+ c & {a,b,c} := a • c− c • a+ b,

for all a,b,c ∈ P.

Proof. It is a simple check that (P, [−,−,−],{−,−,−}) satisfies conditions of [11, definition
3.1]

Proposition 3.31. Let (P,+,•) be a pre-Lie brace. Then for all o ∈ P, (P,+o, [−,−]) is a Lie
ring, where

a+o b= a− o+ b & [a,b] = a • b− b • a+ o • a− a • o+ b • o− o • b− o,

for all a,b ∈ P.We will denote the Lie ring associated to pre-Lie brace P in element o, by P(o).

Proof. Immediately follows by lemma 3.30 and [11, proposition 3.6].

Example 3.32. Let (R,+, ·) be a ring. Then (R,+, ·) is also a pre-Lie brace, and R(0) is a Lie
ring with a Lie bracket being the usual commutator.

In the following proposition, we show that some operations in remark 3.21 determine
right pre-Lie skew brace starting from given right pre-Lie skew braces as, for instance, those
provided in theorem 3.28.

Proposition 3.33. Let (X,+) be a group and f : X→ X a bijective. If h ∈ X, then (X,+, ·h,0)
is a left invertible right pre-Lie skew brace, where a ·h,0 b := h+ a •s b= h+ f(a)+ b, for all
a,b ∈ X. Similarly, if k ∈ X, then, (X,+op, ·0,k) is a left invertible right Pre-Lie skew brace,
where a ·0,k b := a •r b+ k= b+ f(a)+ k, for all a,b ∈ X.

Proof. Let us prove the statement for the structure (X,+, ·h,0), that for (X,+op, ·0,k) is analog-
ous. Let a,b,c ∈ X. Then,

a ·h,0 (b+ c) = h+ f(a)+ b− (h+ f(a))+ h+ f(a)+ c= a ·h,0 b− a ·h,0 0+ a ·h,0 c

and

(a+ b) ·h,0 c= h+ f(a)+ c− (h+ f(0)+ c)+ h+ f(b)+ c= a ·h,0 c− 0 ·h,0 c+ b ·h,0 c,

hence distributivity laws are satisfied. Furthermore,

(a ·h,0 b) ·h,0 c− a ·h,0 (b ·h,0 c) = h+ f(h+ f(a))− f(0)− h− f(a)− h

= (a ·h,0 c) ·h,0 b− a ·h,0 (c ·h,0 b) ,

hence the right pre-Lie condition holds.
For the left invertibility one can easily check that e= f−1(−h) is the left identity and, for

every b ∈ X, b∗ := f−1(−h+ e− b) is the left inverse of b.
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Example 3.34. Let (X,+,•r) be a pre-Lie skew brace introduced in lemma 3.20, such that
(X,+) is abelian. Then, for every o ∈ X, the Lie ring X(o) defined in proposition 3.31 has a
zero Lie bracket. Indeed, for all a,b ∈ G, a •r b= f(a)+ b, since + is abelian, and

[a,b] = f(a)+ b− f(b)− a+ f(o)+ a− f(a)− o+ f(b)+ o− f(o)− b− o=−o,

where o is the neutral element of the group (X,+o).

4. Deformed braided algebras & magmas

Motivated by the definition of braided groups and braidings in [49] as well as the relevant work
presented in [33] and the generic definition of deformed braided algebras and deformed braid-
ings that contain extra fixed parameters [23, 24] we provide a relevant definition associated to
magmas.

It is useful for the following definition to fix the arbitrary invertible maps for any setX :

r : X×X→ X×X, (x,y) 7→ (σx (y) , τy (x)) (4.1)

ξ : X×X→ X×X, (x,y) 7→ ( fx (y) ,gy (x)) (4.2)

ζ : X×X→ X×X, (x,y) 7→
(̂
fx (y) , ĝy (x)

)
. (4.3)

Definition 4.1 ([24]). Let (X,m) be a group. Amap r is called a ξ,ζ-deformed braiding operator
(and the group is called ξ,ζ-deformed braided group) if for all x,y,w ∈ X :

(1) m(x,y) = m(r(x,y)).
(2) ξ (m× idX)(x,y,w) = (idX×m)(r× idX)(idX× r)(x,y,w).
(3) ζ(idX×m)(x,y,w) = (m× idX)(idX× r)(r× idX)(x,y,w).

In the special case where r= ζ = ξ, we have a usual braiding and braided group.

Lemma 4.2 ([24]). Let (X,◦) be a deformed braided group and the map r : X×X→ X×X be
a an ξ,ζ-deformed braiding operator, then r satisfies the braid equation.

Proof. From the braid equation (1.1), with reference to (bI), (bII), and (bIII), let us set(
σσx(y)

(
στy(x) (w)

)
, τστy(x)(w)

(σx (y)) , τw (τy (x))
)
= (a1,b1,c1)(

σx (σy (w)) ,στσy(w)(x) (τw (y)) , ττw(y)
(
τσy(w) (x)

))
= (a2,b2,c2)

for all x,y,w ∈ X. Via condition (2) of definition 4.1, σx(σy(w)) = fx◦y(w), then from condition
(1), σσx(y)(στy(x)(w)) = σx(σy(w)), hence (bI) holds and a1 = a2. Via condition (3) of defin-
ition 4.1, τw(τy(x)) = ĝy◦w(x), then from condition (1), ττw(y)(τσy(w)(x) = τw(τy(x)), hence
(bIII) holds and c1 = c2. By using many times condition (1) of definition 4.1 it follows that
a1 ◦ b1 ◦ c1 = x ◦ y ◦w= a2 ◦ b2 ◦ c2, hence b1 = b2, i.e. (bII) holds.

We note that given the existence of an invertible, non-degenerate, set-theoretic solution of
the braid equation, together with the group (X,◦), the construction of a skew brace consistently
follows (see details of such a construction in [23, section 2.2].)
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Motivated by recent observations on deformed solutions and connections to Yang–Baxter
algebras from section 2, we introduce the following notion of a generalized braiding oper-
ator designed for Yang–Baxter algebras. Observe that, we put a condition on the form of the
braiding, but this condition naturally arises from the construction of a quandle/shelf solution.

Definition 4.3. Let (X,m) be a magma and for all x,y ∈ X,

(i) r(x,y) = (y, τy(x)), ξ (x,y) = (y,gy(x)) and ζ(x,y) = (y, ĝy(x)), or
(ii) r(x,y) = (σx(y),x), ξ (x,y) = ( fx(y),x) and ζ(x,y) = (̂fx(y),x).

The map r is called an S-deformed braiding operator (and the magma is called S-deformed
braided magma) if for all x,y,w ∈ X :

(1) m(x,y) = m(r(x,y)).
(2) ξ (m× idX)(x,y,w) = (idX×m)(r× idX)(idX× r)(x,y,w).
(3) ζ(idX×m)(x,y,w) = (m× idX)(idX× r)(r× idX)(x,y,w).

We note that definition 4.3 can be seen as special cases of definition 4.1, however the under-
lying algebraic structure in 4.3 does not have to be a group as in 4.1. In the special case where
r= ζ = ξ, we have S-braidings and S-type braid algebras.

Lemma 4.4. Let (X,•) be an S-deformed braided magma and the map r : X×X→ X×X, such
that r(x,y) = (y, τy(x)) be an S-deformed braiding operator, then r satisfies the braid equation.

Proof. From the braid equation:

(r× idX)(idX× r)(r× idX)(x,y,w) = (w, τw (y) , τw (τy (x))) (4.4)

(idX× r)(r× idX)(idX× r)(x,y,w) =
(
w, τw (y) , ττw(y) (τw (x))

)
. (4.5)

By comparing expressions (4.4) and (4.5) we conclude:
Via condition (3) of definition 4.3, τw(τy(x)) = ĝy•w(x), then from condition (1):

ττw(y)(τw(x) = τw(τy(x)).

The latter condition is the left self-distributivity (2.2) and the left shelf action is b ▷ a := τb(a).
Conditions (1) and (3) of definition 4.3 suffice to show that r satisfies the braid equation.

Lemma 4.5. Let (X,•) be an S-deformed braided magma and the map r : X×X→ X×X,
such that r(x,y) = (σx(y),x), be an S-deformed braiding operator, then r satisfies the braid
equation.

Proof. The proof is similar to that of lemma 4.4 by considering the left shelf action given by
a ▷ b := σa(b).

From the braid equation:

(r× idX)(idX× r)(r× idX)(x,y,w) =
(
σσx(y) (σx (w)) ,σx (y) ,x

)
(4.6)

(idX× r)(r× idX)(idX× r)(x,y,w) = (σx (σy (w)) ,σx (y) ,x) . (4.7)

By comparing expressions (4.6) and (4.7) we conclude:
Via condition (2) of definition 4.3, σx(σy(w)) = fx•y(y), then from condition (1):

σσx(y) (σx (w)) = σx (σy (w)) .
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The latter condition is the left self-distributivity (2.2) and the left shelf action is a ▷ b := σa(b).
Conditions (1) and (2) of definition 4.3 suffice to show that r satisfies the braid equation.

Definitions 4.1 and 4.3 encode essentially the notion of a quantum algebra, i.e. a (quasi)-
bialgebra. Several examples associated to structures of definition 4.1 are presented in [23,
24], whereas the underlying quantum algebra is studied in [21–23]. We present below several
examples related to the structures of the Definitions above.

Example 4.6. Let (X,+,◦) be a skew brace, σa(b) =−a+ a ◦ b, τb(a) = σa(b)−1 ◦ a ◦ b, and
r(a,b) = (σa(b), τb(a)). In this case σa(σb(c)) = σa◦b(c), similarly τc(τb(a)) = τb◦c(a), i.e.
σa = fa = f̂a. Thus r is a braiding and (X,◦) is a braided group.

Example 4.7. Let (X,+,◦) be a skew brace, σa(b) =−a ◦ z+ a ◦ b ◦ z, z ∈ X is a fixed ele-
ment, τb(a) = σa(b)−1 ◦ a ◦ b, and r(a,b) = (σa(b), τb(a)). In this case σza(σ

z
b(c)) = σz◦za◦b(c),

similarly τ zc (τ
z
b(a)) = τ zb◦c(a), i.e. fa = σz◦za and f̂a = σza. Then r is a deformed braiding and

(X,◦) is a deformed braided group.

Example 4.8. Let (X,+) be a group, τb(a) =−b+ a+ b and r(a,b) = (b, τb(a)). In this case
τc(τb(a)) = τb+c(a), i.e. ga = ĝa = τa.We obtain that r is an S-type braiding and (X,+) is an
S-type braided group.

Example 4.9. Let (X,+) be a group, (X,▷s) the quandle in example 3.14, and τb(a) := b ▷s a=
−f(b)+ f(a)+ b, for all a,b ∈ X, with f a bijective heap endomorphism of (X,+). We also
consider the binary operation on X in lemma 3.20 such that a • b= f(a)+ b, for all a,b ∈ X.
In this case τc(τb(a)) = τb•c(a • e), i.e. ĝb(a) = τb(a • e), where e= f−1(0) is the left neutral
element in (X,•). Then, r(a,b) = (b, τb(a)) is an S-deformed braiding and (X,•) is an S-
deformed braided magma.

5. Quasi triangular (quasi)-Hopf algebras

We discuss in this section the Yang–Baxter algebras associated to rack type and set-theoretic
solutions as quasitriangular (quasi)-Hopf algebras [27, 28]. The quasi Hopf algebra for set-
theoretic solutions has been partly discussed in [21–23] (see also [3, 29] in connection with
pointed Hopf algebras), whereas a discussion of bialgebras associated to racks is presented in
[19] (see also [4, 47] on Hopf algebras in connection to braces [38, 54–56]).

We start our analysis with the rack and quandle algebras and the construction of the asso-
ciated universal R-matrix. We then extend the algebra to the decorated rack algebra and via
a suitable admissible Drinfel’d twist we construct the corresponding universalR−matrix. We
note that in this section we consider finite or infinite countable sets.

5.1. The rack & quandle algebras

Wefirst define the rack and quandle algebras (see also [3, 19], where part of the defined algebra
below is studied).

Definition 5.1 (the rack algebra). Let (X,▷) be a finite magma, or such that a▷ is surject-
ive, for every a ∈ X. We say that the unital, associative algebra A, over a field k generated
by indeterminates 1A (the unit element), qa, q−1

a , ha ∈ A (ha = hb ⇔ a= b) and relations,
a,b ∈ X :

q−1
a qa = qaq

−1
a = 1A, qaqb = qbqb▷a, hahb = δa,bh

2
a, qbhb▷a = haqb, (5.1)

is a rack algebra.
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Definition 5.2 (the quandle algebra). A rack algebra is called a quandle algebra if there is a
left quasigroup (X,•) such that for all a,b ∈ X a • b= b • (b ▷ a).

The following proposition fully justifies the appellation rack and quandle algebras.

Proposition 5.3. LetA be the rack algebra, then c ▷ (b ▷ a) = (c ▷ b) ▷ (c ▷ a), and a▷ is biject-
ive for all a ∈ X, i.e. (X,▷) is a rack. If A is the quandle algebra, then in addition a ▷ a= a,
i.e. (X,▷) is a quandle.

Proof. We compute haqbqc using the associativity of the rack algebra:

haqbqc = qbhb▷aqc = qbqchc▷(b▷a) = qcqc▷bhc▷(b▷a), (5.2)

haqbqc = haqcqc▷b = qchc▷aqc▷b = qcqc▷bh(c▷b)▷(c▷a). (5.3)

Due to invertibility of qa for all a ∈ X we conclude from (5.2) and (5.3) that

hc▷(b▷a) = h(c▷b)▷(c▷a) ⇒ c ▷ (b ▷ a) = (c ▷ b) ▷ (c ▷ a) .

We assume c ▷ a= c ▷ b, then qchc▷a = qchc▷b, by the fourth relation in (5.1), we get haqc =
hbqc and by the invertibility of qc, ha = hb, hence a= b, i.e. a▷ is bijective and thus (X,▷) is a
rack.

Moreover, we recall for the quandle algebra a • b= b • (b ▷ a), then for a= b and by recall-
ing bijectivity and hence left cancellativity in (X,•) we conclude that a ▷ a= a, i.e. (X,▷) is a
quandle.

Note: In the case of a quandle algebraA (without assuming X to be finite), if (X,•) is a quasig-
roup, c▷ is surjective. Indeed, if b ∈ X, and rc and lc denotes right and left multiplication by c,
respectively, with respect to the binary operation •, then there exists X := r−1

c lc (b) such that
c ▷ x= l−1

c (x • c) = b. In this case, we also obtain injectivity without using relations (5.1).
Indeed, if x,y ∈ X are such that c ▷ x= c ▷ y, then l−1

c rc (x) = l−1
c rc (y), hence x= y. Finally, as

in the last part of the proof of proposition 5.3, we obtain that (X,▷) is a quandle.

Lemma 5.4. Let c=
∑

a∈X ha, then c is a central element of the rack algebraA. Also, h2a = ha,
for all a ∈ X.

Proof. The proof is direct by means of the definition of the algebra A and proposition 5.3.
Without loss of generality let c= 1A, then it also follows that h2a = ha, for all a ∈ X.

Definition 5.5. Let A be a quandle algebra, then q : X→A, a 7→ qa is called:

(1) Strong (X,•)−homomorphism if qaqb = qa•b, for all a,b ∈ X
(2) Weak (X,•)−homomorphism if there exists a map F : X→A, a 7→ Fa, such that qaqb =

Fa•b, for all a,b ∈ X (F 6= q; if F= q, then one recovers a strong homomorphism).
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Example 5.6. We provide below the basic cases examined in the previous sections.

(1) Let (X,•) be a Yang–Baxter algebra for a solution given by a quandle (X,▷). Let also (X,•)
be a group, then for all a,b ∈ X, b ▷ a := b−1 • a • b. One can easily check that the map
q : X→ End(V), a 7→ qa :=

∑
x∈X ex,a▷x is a strong group homomorphism, with V := CX

the free vector space on X (see the notation after remark 3.5).
(2) Let (X,•s) be a Yang–Baxter algebra from lemma 3.20, i.e. for all a,b ∈ X, a ▷s b :=

−f(a)+ f(b)+ a and a •s b= f(a)+ b, for some bijective f. Then q : X→ End(V), a 7→
qa :=

∑
x∈X ex,a▷s x is a weak algebra homomorphism.

Indeed, let us consider the map F : X→ End(V), a 7→ Fa :=
∑

x∈X ex,a▷s( f(x)+e) with e=
f−1 (0). Then, if f is a heap homomorphism, qaqb = Fa•sb, for all a,b ∈ X, and hence the
map q is a weak (X,•s)−homomorphism.

(3) We have a similar example as in (2) for the Yang–Baxter algebra (X,•r) lemma 3.20,
i.e. for all a,b ∈ X, a ▷r b := a+ f(b)− f(a) and a •r b= b+ f(a), for some bijective f.
Then q : X→ End(V), a 7→ qa :=

∑
x∈X ex,a▷r x is a weak algebra homomorphism. If we

consider the map F : X→ End(V), a 7→ Fa :=
∑

x∈X ex,a▷r(e+f(x)) with e= f−1 (0), if f is
a heap homomorphism, then qaqb = Fa•rb, for all a,b ∈ X, namely, the map q is a weak
(X,•r)−homomorphism.

Having defined the rack algebra we are now in the position to identify the associated uni-
versal R-matrix (solution of the Yang–Baxter equation).

Proposition 5.7. Let A be the rack algebra and R∈A⊗A be an invertible element, such
thatR=

∑
a∈X ha⊗ qa. ThenR satisfies the Yang–Baxter equation

R12R13R23 =R23R13R12,

whereR12 =
∑

a∈X ha⊗ qa⊗ 1A,R13 =
∑

a∈X ha⊗ 1A ⊗ qa, andR23 =
∑

a∈X 1A ⊗ ha⊗ qa.

Proof. The proof is a direct computation of the two sides of the Yang–Baxter equation (and
use of the fundamental relations (5.1)):

LHS :
∑

a,b,c∈X

hahb⊗ qahc⊗ qbqc =
∑

a,b,c∈X

ha⊗ qahc⊗ qaqc =
∑

a,b,c∈X

ha⊗ qaha▷c⊗ qaqa▷c

RHS :
∑

a,b,c∈X

hbha⊗ hcqa⊗ qcqb =
∑

a,b,c∈X

ha⊗ qaha▷c⊗ qcqa,

where we have used that a▷ is bijective. Then due to the basic relation qaqb = qbqb▷a,we show
that LHS=RHS, and this concludes our proof.

Remark 5.8. The universal R−matrix is obviously invertible, indeed from lemma 5.4,∑
a∈X ha = 1A, henceR−1 =

∑
a∈X ha⊗ q−1

a .
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Remark 5.9 (fundamental representation). Let A be the rack algebra and ρ :A→ End(V)
be the map defined by

qa 7→
∑
x∈X

ex,a▷x, ha 7→ ea,a. (5.4)

Then R 7→ R :=
∑

a,b∈X eb,b⊗ ea,b▷a.

Let P =
∑

a,b∈X ea,b⊗ eb,a be the permutation (flip) operator, then the solution of the braid
equation is the familiar rack solution, r= PR=

∑
a,b ea,b⊗ eb,b▷a.We note that R is invertible,

because a▷ : X→ X is a bijection from definition 5.1, then R−1 =
∑

a,b∈X eb,b⊗ eb▷a,a.
In general, from the universal R−matrix and the Yang–Baxter equation, and after recalling

the representations of remark 5.9 and setting:
(ρ⊗ id)R := L=

∑
a∈X ea,a⊗ qa, (id⊗ ρ)R := L̂=

∑
a,b∈X hb⊗ ea,b▷a, and (ρ⊗ ρ)R :=

R=
∑

a,b∈X eb,b⊗ ea,b▷a, consistent algebraic relations ensue:

R12L13L23 = L23L13R12, (5.5)

L̂12L̂13R23 = R23L̂13L̂12, (5.6)

L12R13L̂23 = L̂23R13L12, (5.7)

which lead to the rack algebra given in definition (5.1) and provide a consistency check on the
algebraic relations (5.1). This is the Faddeev-Reshetikhin-Takhtajan (FRT) construction [32].

Remark 5.10. In general, let R=
∑

i fi ⊗ gi ∈ C ⊗C (C is the associated unital universal
algebra) be a universal R-matrix. Let also, ρ : C → End(V), such that (ρ⊗ id)R=: L and
(ρ⊗ ρ)R=: R, then the Yang–Baxter equation reduces to (5.5). Expression (5.5) is equivalent
to (3.1), if a vector v=

∑
a faêa ∈ V, fa ∈ C exists, such that Rv⊗ v= v⊗ v. If the latter holds,

and if we set Lv=: q̂, we conclude

R12L13L23 (v1v2) = L23L13R12 (v1v2) ⇒ R12q̂1q̂2 = q̂2q̂1, (5.8)

where we recall the notation: v1 = v⊗ id⊗ 1C , v2 = id⊗ v⊗ 1C . And if r := PR, where P is
the permutation operator, then (5.8) reads as, r12q̂1q̂2 = q̂1q̂2.

In the case for instance of non-degenerate, invertible, set-theoretic (and quandle) solutions
we can just consider v :=

∑
a∈X êa.

Example 5.11. Let A be the quandle algebra and ρ :A→ End(V) the fundamental represent-
ation π :A→ End(V), qa 7→ qa :=

∑
b∈X eb,a▷b, ha 7→ ea,a :∑

x∈X
ex,a▷x

∑
x∈X

ey,b▷y =
∑
x∈X

ex,b▷(a▷x) (5.9)

(1) If (X,•,e) is a group with identity e and inverse denoted by a∗, for every a ∈ X, then
b ▷ (a ▷ x) = (a • b) ▷ x, for every x ∈ X, and consequently ρaρb = ρa•b, i.e. this is a strong
group homomorphism. In this case qa∗ = q−1

a and qe = ρ(1A) = idV.Notice also that qa =
qb ⇒ x • (a • b∗) = (a • b∗) • x, for every x ∈ X, i.e. a • b∗ is a central element in the group
(X,•).

(2) If (X,•s) is the pre-Lie skew brace studied in section 3.3, with a ▷s b=−f(a)+ f(b)+ a,
a •s b= f(a)+ b, then b ▷s (a ▷s x) = (a •s b) ▷s (x •s e), for every x ∈ X (recall e= f−1(0))
and consequently qaqb = Fa•sb :=

∑
x∈X ex,(a•sb)▷s(x•se), i.e. this is a weak algebra homo-

morphism. In this case qTa = q−1
a (T denotes transposition) and

∑
a∈x ea,a, = ρ(1A) = idV.

Notice also that if qa = qb ⇒ a− b=−f(x)+ f(a)− f(b)+ f(x), for every x ∈ X.
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Theorem 5.12. LetA be the quandle algebra (definition 5.2), with (X,•,e) being a group. Let
alsoR=

∑
a∈X ha⊗ qa be a solution of the Yang–Baxter equation and qa : X→A be a strong

group homomorphism (i.e. qaqb = qa•b).
Then the structure (A,∆, ϵ,S,R) is a quasi-triangular Hopf algebra:

• Co-product.∆ :A→A⊗A, ∆(q±1
a ) = q±1

a ⊗ q±1
a and ∆(ha) =

∑
b,c∈X hb⊗ hc

∣∣∣
b•c=a

.

• Co-unit. ϵ :A→ k, ϵ(q±1
a ) = 1, ϵ(ha) = δa,e.

• Antipode. S :A→A, S(q±1
a ) = q∓1

a , S(ha) = ha∗ , where a∗ is the inverse in (X,•) for all
a ∈ X.

Proof. We recall that the maps ∆, ϵ are algebra homomorphisms and S is an anti-
homomorphism, consistent with the relations of the quandle algebra. We are now going to
show all the axioms of a quasi-triangular Hopf algebra. We first identify,

R13R12 =
∑
a∈X

ha⊗ qa⊗ qa =:
∑
a∈X

ha⊗∆(qa) = (id⊗∆)R, (5.10)

R13R23 =
∑
a,b∈X

ha⊗ hb⊗ qc
∣∣∣
a•b=c

=:
∑
c∈X

∆(hc)⊗ qc = (∆⊗ id)R, (5.11)

hence we immediately read of∆(ha), ∆(qa) as (∆ :A→A⊗A should be an algebra homo-
morphism, but this can be explicitly checked via the distributivity condition a ▷ (b • c) =
(a ▷ b) • (a ▷ c), which readily follows from, a ▷ b= a∗ • b • a):

∆(qa) = qa⊗ qa, ∆
(
q−1
a

)
= q−1

a ⊗ q−1
a , ∆(ha) =

∑
b,c∈X

hb⊗ hc
∣∣∣
b•c=a

.

Moreover, from the Yang–Baxter equation and relation (5.10), (5.11) we obtain

∆(op) (qa)R=R∆(qa) ∆(op) (ha)R=R∆(ha) , (5.12)

where ∆(op) = π ◦∆, π is the flip map.
Given the co-products of the generators we have to check co-associativity and also uniquely

derive the counit ϵ :A→ k (homomorphism) and antipode S :A→A (anti-homomorphism).

(i) Co-associativity.: (id⊗∆)∆= (∆⊗ id).

(id⊗∆)∆(qa) = (∆⊗ id)∆(qa) = qa⊗ qa⊗ qa,

(id⊗∆)∆(ha) = (∆⊗ id)∆(ha) =
∑

b,c,d∈X

hb⊗ hc⊗ hd
∣∣∣
b•c•d=a

.

(ii) Counit: (ϵ⊗ id)∆(x) = (id⊗ ϵ)∆(x) = x, for all x ∈ {qa, q−1
a ,ha}.

The generators qa are group-like elements, so ϵ(qa) = 1, and∑
a,b∈X

ϵ(ha)hb =
∑
a,b

haϵ(hb)
∣∣∣
a•b=c

= hc ⇒ ϵ(ha) = δa,e. (5.13)

(iii) Antipode: m
(
(S⊗ id)∆(x)) = m

(
(id⊗ S)∆(x)) = ϵ(x)1A for all x ∈ {qa, q−1

a ,ha}.
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For qa, we immediately have S(qa) = q−1
a and (recall hahb = δa,bha and

∑
a∈X ha = 1A)∑

a,b∈X

S(ha)hb
∣∣∣
a•b=c

=
∑
a,b∈X

haS(hb)
∣∣∣
a•b=c

= δc,e1A ⇒ S(ha) = ha∗ ,

where a∗ is the inverse in (X,•) for all a ∈ X.
We conclude that (A,∆, ϵ,S,R) is a quasi-triangular Hopf algebra.

Corollary 5.13. Let A be the rack algebra, then the subalgebra consisting of the indetermin-
ates 1A, qa q−1

a , and relations for all a ∈ X
q−1
a qa = qaq

−1
a = 1A, qaqb = qbqb▷a, (5.14)

is a Hopf algebra with:

(1) Co-product.∆ :A→A⊗A, ∆(q±1
a ) = q±1

a ⊗ q±1
a .

(2) Co-unit. ϵ :A→ k, ϵ(q±1
a ) = 1.

(3) Antipode. S :A→A, S(q±1
a ) = q∓1

a .

Proof. The proof is straightforward by theorem 5.12.

Remark 5.14. Let (X,▷) be a quandle and (X,•) be a magma with a left neutral element, such
that a • b= b • (b ▷ a). Let also A be the quandle algebra (definition 5.2), R=

∑
a∈X ha⊗ qa

is a solution of the Yang–Baxter equation and qa : X→A is a weak algebra homomorphism
(definition 5.5) and a ▷ (b • c) = (a ▷ b) • (a ▷ c). Then the structure (A,∆, ϵ,R) is a quasi-
triangular quasi-bialgebra.

Indeed, we first recall that R is a solution of the Yang–Baxter equation, thus we identify
(recall we assumed qaqb = Fa•b, see definition 5.5)

R13R12 =
∑
a∈X

ha⊗ qa⊗ qa =:
∑
a

ha⊗∆(qa) = (id⊗∆)R, (5.15)

R13R23 =
∑
a,b∈X

ha⊗ hb⊗Fc
∣∣∣
a•b=c

=:
∑
c∈X

∆(hc)⊗Fc 6= (∆⊗ id)R, (F 6= q) . (5.16)

Hence we immediately read of ∆(ha), ∆(qa) as:

∆(qa) = qa⊗ qa, ∆(ha) =
∑
b,c∈X

hb⊗ hc
∣∣∣
b•c=a

.

From the Yang–Baxter equation and (5.15), (5.16) we conclude ∆(op)(qa)R=∆(qa)R,
∆(op)(ha)R=R∆(ha), where ∆(op) = π ◦∆, π is the flip map.

Given the co-products of the generators we have to check co-associativity and also uniquely
derive the counit ϵ :A→ k (homomorphism) and antipode S :A→A (anti-homomorphism).

(i) Co-associativity.: (id⊗∆)∆= (∆⊗ id)∆. Coassociativity for ∆(q±1
a ) is obvious, but

(∆⊗ id)∆(ha) =
∑

b,c,d∈X

hb⊗ hc⊗ hd
∣∣∣
(b•c)•d=a

, (id⊗∆)∆(ha) =
∑

b,c,d∈X

hb⊗ hc⊗ hd
∣∣∣
b•(c•d)=a

.

Notice that expressions above are in general distinct, given that the operation • is not
necessarily associative.
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(ii) Counit: (ϵ⊗ id)∆(x) = (id⊗ ϵ)∆(x) = x, for all x ∈ {qa, q−1
a ,ha}.

The generators qa are group-like elements, so ϵ(qa) = 1. For the generators ha, the follow-
ing must be computed:

∑
a,b∈X ϵ(ha)hb|a•b=c and

∑
a,b haϵ(hb)|a•b=c. Note that if a left

neutral element e exists and if ϵ(ha) = δa,e, then (ϵ⊗ id)∆(hc) =
∑

a,b∈X ϵ(ha)hb|a•b=c =
hc, which suggests that in this case we are dealing with a quasi-bialgebra.

Moreover, because of (5.15), (5.16) and the lack of coassociativity of ∆(ha) we conclude
that (A,∆, ϵ) is not a bialgebra, but rather a quasi-bialgebra, which needs to be fully identified
by deriving the coassociator (see also relevant study for the set-theoretic quasi-bialgebra [21,
22]). This analysis however will be presented in detail in a future work.

5.2. The set-theoretic algebras

In this subsection we suitably extend the rack and quandle algebras in order to construct the
universalR−matrix associated to general set-theoretic solutions of the Yang–Baxter equation.

We first define the decorated rack algebra and the set-theoretic Yang–Baxter algebra (see
also [4]).

Definition 5.15 (the decorated rack algebra). LetA be the rack algebra (definition 5.1). Let
also σa, τb : X→ X, and σa be bijective for all a ∈ X. We say that the unital, associative algebra
Â over k, generated by indeterminates 1Â,qa,q

−1
a ,ha,∈ A (ha = hb ⇔ a= b) and wa,w−1

a ∈
Â, a ∈ X, and relations, a,b ∈ X :

q−1
a qa = qaq

−1
a = 1Â, qaqb = qbqb▷a, hahb = δa,bha, qbhb▷a = haqb,

w−1
a wa = waw

−1
a = 1Â, wawb = wσa(b)wτb(a) wahb = hσa(b)wa, waqb = qσa(b)wa (5.17)

is a decorated rack algebra.

Lemma 5.16. Let c=
∑

a∈X ha, then c is a central element of the decorated rack algebra Â.

Proof. The proof is straightforward by means of the definition of the algebra Â.

We consider henceforth, without loss of generality, c= 1Â (see also lemma 5.4).

Proposition 5.17. Let Â be the decorated rack algebra, then for all a,b,c ∈ X,

σa (σb (c)) = σσa(b)
(
στb(a) (c)

)
& σc (b) ▷ σc (a) = σc (b ▷ a) .

Proof. We compute wawbhc using the associativity of the algebra,

wawbhc = wσa(b)wτb(a)hc = hσσa(b)(στb(a)
(c))wσa(b)wτb(a),

wawbhc = hσa(σb(c))wawb = hσa(σb(c))wσa(b)wτb(a).

From the equations above and the invertibility of wa for all a ∈ X we conclude

hσσa(b)(στb(a)
(c)) = hσa(σb(c)) ⇒ σσa(b)

(
στb(a) (c)

)
= σa (σb (c)) .

We also compute haqbwc:

haqbwc = hawcqσ−1
c (b) = wchσ−1

c (a)qσ−1
c (b) = wcqσ−1

c (b)hσ−1
c (b)▷σ−1

c (a)

haqbwc = qbhb▷awc = qbwchσ−1
c (b▷a) = wcqσ−1

c (b)hσ−1
c (b▷a).

27



J. Phys. A: Math. Theor. 57 (2024) 405203 A Doikou et al

From the equations above and the invertibility of qa, wa for all a ∈ X:

hσ−1
c (b)▷σ−1

c (a) = hσ−1
c (b▷a) ⇒ σ−1

c (b) ▷ σ−1
c (a) = σ−1

c (b ▷ a) ,

from the latter it immediately follows, σc(b) ▷ σc(a) = σc(b ▷ a).

It is worth pointing out the compatibility of the above proposition with definition 2.14,
which indicates the consistency of our construction.

Definition 5.18 (the set-theoretic Yang–Baxter algebra). Let A be the quandle algebra. Let
also σa, τb : X→ X, and σa be bijective for all a ∈ X.We say that the unital, associative algebra
Â over k, generated by indeterminates 1Â,qa,q

−1
a ,ha,∈ A (ha = hb ⇔ a= b) and wa,w−1

a ∈
Â, a ∈ X, and relations, (5.17) is a set-theoretic Yang–Baxter algebra.

Proposition 5.19 (Hopf algebra). Let Â be the set-theoretic Yang–Baxter algebra, R=∑
b∈X hb⊗ qb be the rack universalR-matrix, and (A,∆, ϵ,S,R) be the quasi-triangular Hopf

algebra of theorem 5.12. Let also for all a,b,x ∈ X,

σx (a) •σx (b) = σx (a • b) . (5.18)

Then,

(1) (Â,∆, ϵ,S) is a Hopf algebra with ∆(wa) = wa⊗wa, for all a ∈ X.
(2) ∆(wa)R=R∆(wa), for all a ∈ X.

Proof. In our proof below we are using the definition 5.18 and (5.18).

(1) The coproduct ∆ is an algebra homomorphism. It is sufficient to check below the con-
sistency of all algebraic relations of definition 5.18 for the corresponding coproducts and
(5.18). Then we have for Yb ∈ {hb, qb} and for all a ∈ X,

∆(wa)∆(wb) = ∆
(
wσa(b)

)
∆
(
wτb(a)

)
, ∆(wa)∆(Yb) = ∆

(
Yσa(b)

)
∆(wa) .

Also, wa is a group-like element, thus the counit and antipode are given as: ϵ(wa) = 1 and
S(wa) = w−1

a . Recall that the coproducts, counits and antipodes of the generators ha, qa
are given in theorem 5.12.

(2) By a direct computation and using the algebraic relations of the definition 5.18we conclude
for all a ∈ X, ∆(wa)R=R∆(wa).

Corollary 5.20. Let Â be the decorated rack algebra, then the subalgebra consisting of the
indeterminates 1Â, q

±1
a w±1

a , and relations for all a ∈ X

q−1
a qa = qaq

−1
a = 1A, qaqb = qbqb▷a,

w−1
a wa = waw

−1
a = 1Â wawb = wσa(b)wτb(a), waqb = qσa(b)wa (5.19)

is a Hopf algebra with:

(1) Co-product.∆ :A→A⊗A, ∆(q±1
a ) = q±1

a ⊗ q±1
a , ∆(w±1

a ) = w±1
a ⊗w±1

a .
(2) Co-unit. ϵ :A→ k, ϵ(q±1

a ) = 1, ϵ(w±1
a ) = 1.

(3) Antipode. S :A→A, S(q±1
a ) = q∓1

a .

Proof. The proof is straightforward by theorem 5.12 and proposition 5.19.
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Remark 5.21. Proposition 5.19 can be generalized for (X,•) being a magma, if for all x ∈
X, ∃gX : X→ X, a 7→ gx(a), being a bijection, such that for all a,b,x ∈ X, there exists e ∈ X,
σe(b) = b= ge(b) and

σx (a) •σx (b) = gx (a • b) . (5.20)

Note that in this case due to condition (5.20) we conclude that

∆(wa)∆(hb) = ∆
(
hga(b)

)
∆(wa) , (5.21)

that is in this case∆ : X→ X⊗X is not an Â algebra homomorphism anymore.

We now introduce some handy notation that can be used in the following: let i, j,k ∈
{1,2,3}, then Fjik = πij ◦Fijk and Fikj = πjk ◦Fijk, where π is the flip map.

Theorem 5.22 (Drinfel’d twist [27]). Let R=
∑

a∈X ha⊗ qa ∈ A⊗A be the rack univer-

sal R−matrix. Let also Â be the decorated rack algebra and F ∈ Â⊗ Â, such that F =∑
b∈X hb⊗w−1

b ,RF
ij := FjiRijF−1

ij , i, j ∈ {1,2,3}. We also define:

F1,23 :=
∑
a∈X

ha⊗w−1
a ⊗w−1

a =, F∗
12,3 :=

∑
a,b∈X

ha⊗ hσa(b) ⊗w−1
b w−1

a . (5.22)

Let also for every a,b ∈ X, b ▷ a= σb(τσ−1
a (b)(a)). Then, the following statements are true:

(1) F12F∗
12,3 = F23F1,23 =: F123.

(2) For i, j,k ∈ {1,2,3}: (i) FikjRjk =RF
jkFijk and (ii) FjikRij =RF

ijFijk.

That is, F is an admissible Drinfel’d twist.

Proof. The proof is straightforward based on the underlying algebra Â.

(1) Indeed, this is proved by a direct computation and use of the decorated rack algebra. In
fact, F123 =

∑
a,b∈X ha⊗ hbw−1

a ⊗w−1
b w−1

a .
(2) Given the notation introduced before the theorem it suffices to show that F132R23 =

RF
23F123 and F213R12 =RF

12F123.
(i) Due to the fact that for all a ∈ X,∆(wa)R=R∆(wa) (see proposition 5.19) we arrive

at F1,32R23 =R23F1,23, then

F132R23 = F32F1,32R23 = F32R23F1,23 =RF
23F123.

(ii) By means of the relations of the decorated rack algebra Â we compute:

F∗
21,3R12 =

∑
a,c∈X

ha⊗ qaha▷c⊗
(
wcwσ−1

c (a)

)−1
, R12F∗

12,3 =
∑
a,b∈X

ha⊗ qahσa(b) ⊗ (wawb)
−1 .

Due to the fact that b ▷ a= σb(τσ−1
a (b)(a)) and wawb = wσa(b)wτb(a) we conclude that

F∗
21,3R12 =R12F∗

12,3 and consequently (recall F213 = F21F∗
21,3)
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F213R12 = F21F∗
21,3R12 = F21R12F∗

12,3 =RF
12F123.

Corollary 5.23 ([27]). Let F be an admissible twist and R be a solution of the Yang–Baxter
equation. ThenRF := F (op)RF−1 (F (op) = π ◦F , π is the flip map) is also a solution of the
Yang–Baxter equation.

Proof. The proof is quite straightforward, [27] (see also proof in [21] for set-theoretic solu-
tions), we just give a brief outline here: if F is admissible, then from the YBE and due to
theorem 5.22:

F321R12R13R23 = F321R23R13R12 ⇒ RF
12RF

13RF
23F123 =RF

23RF
13RF

12F123.

But F123 is invertible, henceRF indeed satisfies the YBE.

We note the direct correspondence of the above Proposition and Corollary with theorem
2.15.

We are now going to examine the twistedR−matrix as well as the twisted co-products (see
also [21–23]). Henceforth, Â denotes the set-theoretic Yang–Baxter algebra.

Remark 5.24 (twisted universal R-matrix). It is worth extracting the explicit expressions
of the twisted universal R−matrix and the twisted coproducts of the algebra. We recall the
admissible twist F =

∑
b∈X hb⊗w−1

b .

• The twisted R−matriX:

RF = F (op)RF−1 =
∑
a,b∈X

hbw
−1
a ⊗ haqσa(b)wσa(b).

• The twisted coproduts: ∆F(y) = F∆(y)F−1, y ∈ Â and we recall, for a ∈ X,

∆(wa) = wa⊗wa, ∆(ha) =
∑
b,c∈X

hb⊗ hc
∣∣∣
b•c=a

, ∆(qa) = qa⊗ qa.

Then, the twisted coproducts read as: ∆F(wa) =
∑

b∈X hσa(b)wa⊗wτb(a),

∆F(ha) =
∑

b∈X hb⊗w−1
b hcwb

∣∣∣
b•c=a

, ∆F(qa) =
∑

b∈X qaha▷b⊗w−1
b qawa▷b,

and it immediately follows that RF∆F(Y) = ∆
(op)
F (Y)RF, Y ∈ Â.

Note that even if (X,•) is a group coassociativity for the above twisted coproducts does
not hold any more, that is (Â,∆F, ϵ,S) is not a Hopf algebra, but it is rather a quasi Hopf-
bialgebra (see also [22, 23] for a more detailed discussion on the issue). The identification of
the universal associator of the quasi-Hopf algebra will be presented elsewhere.

Remark 5.25 (fundamental representation & the set-theoretic solution). Let ρ : Â →
End(V), such that

qa 7→
∑
x∈X

ex,a▷x, ha 7→ ea,a, wa 7→
∑
b∈X

eσa(b),b, (5.23)

then RF 7→ RF :=
∑

a,b∈X eb,σa(b) ⊗ ea,τb(a), where we recall that τb(a) := σ−1
σa(b)

(σa(b) ▷ a)
(see also [23, 48, 60]).

30



J. Phys. A: Math. Theor. 57 (2024) 405203 A Doikou et al

Let P =
∑

a,b∈X ea,b⊗ eb,a be the permutation (flip) operator, then the solution of the braid
equation is the familiar set-theoretic solution, rF = PRF =

∑
a,b∈X ea,σa(b) ⊗ eb,τb(a). In gen-

eral, from the universal R-matrix and the Yang–Baxter equation, and after recalling the rep-
resentations (5.23) and setting fb,a := hbw−1

a , ga,b := haqσa(b)wσa(b):
(ρ⊗ id)RF := LF =

∑
a,b∈X eb,σa(b) ⊗ ga,b, (id⊗ ρ)RF := L̂F =

∑
a,b∈X fb,a⊗ ea,τb(a), and

(ρ⊗ ρ)RF := RF =
∑

a,b∈X eb,σa(b) ⊗ ea,τb(a), the consistent algebraic relations (5.5)–(5.7)
are satisfied (the interested reader is also referred to [23] for detailed computations). These lead
to the set-theoretic Yang–Baxter algebra and provide a consistency check on the associated
algebraic relations.

Example 5.26. We notice for the fundamental representation ρ : Â → End(V), qa 7→ qa :=∑
b∈X eb,a▷b, ha 7→ ea,a, wa 7→Wa :=

∑
b∈x eσa(b),b

WaWb =
∑
c∈X

eσa(σb(c)),c. (5.24)

(1) Let (X,+,◦) be a skew brace and σa(b) =−a+ a ◦ b. In this case Wa−1 =W−1
a , W1 =

idV and WaWb =Wa◦b =Wσa(b)Wτb(a), i.e. W is a strong (X,◦)−homomorhism. Notice
also that if X is two-sided brace, Wa =Wb ⇒ σa(c) = σb(c)⇒ (a− b) ◦ c−1 = a− b+
c−1, ∀c ∈ X, i.e. a− b ∈ Socle(X).We also note that if τb(a) := σ−1

σa(b)
(σa(b) ▷ a) and a •

b= a+ b, a ▷ b=−a+ b+ a, then τb(a) = (σa(b))−1 ◦ a ◦ b.
(2) Let (X,+,◦) be a skew brace and σza(b) =−a ◦ z+ a ◦ b ◦ z. In this case WT

a =
W−1
a (T denotes transposition),

∑
a∈X ea,a = idV and WaWb = Ga◦b :=

∑
c∈X eσz◦za◦b(c),c

=
Wσa(b)Wτb(a), i.e.W is a weak (X,◦)−homomorphism. Notice also that if X is a two-sided
brace,Wa =Wb ⇒ σa(c) = σb(c)⇒ (a− b) ◦ c= a− b+ c, ∀c ∈ X, i.e a− b ∈ Socle(X).

Proposition 5.27. Let (X,+,◦) be a skew brace, σfa, τ fb : X→ X, such that a ◦ b= σfa(b) ◦ τ fb(a)
and σfa is a bijection. Let also (X,•) be a magma, such that a • b= b • (b ▷ a), and for all
a,b ∈ X, a ◦ (σfa)−1(b) = a • b. We also assume that a bijection f : X→ X, such that for all
a,b,c ∈ X, f(a− b+ c) = f(a)− f(b)+ f(c) exists:

(i) If (1) a •s b= f(a)+ b, (2) b ▷s a=−f(b)+ f(a)+ b and (3) f(a ◦ b) = a ◦ f(b)− a+ f(a),
then, for all a,b ∈ X,
a. σfa(b) =−f(a)+ a ◦ b.
b. b ▷s a= σfb(τ

f

(σf)−1
a (b)

(a)).

c. σfa(b) ▷s σ
f
a(c) = σfa(b ▷s c).

d. σfa(σ
f
b(c)) = σfa◦b(c), τ

f
c(τ

f
b(a)) = τ f

2

b◦c(a).

e. σfa(b) •s σfa(c) = σf
2

a (b •s c).
(ii) If (1) a •r b= b+ f(a), (2) b ▷r a= b+ f(a)− f(b) and (3) f(a ◦ b) = f(a)− a+ a ◦ f(b),

then, for all a,b ∈ X,
a. σfa(b) = a ◦ b− f(a).
b. b ▷r a= σfb(τ

f

(σf)−1
a (b)

(a)).

c. σfa(b) ▷r σ
f
a(c) = σfa(b ▷r c).

d. σfa(σ
f
b(c)) = σfa◦b(c), τ

f
c(τ

f
b(a)) = τ f

2

b◦c(a).

e. σfa(b) •r σfa(c) = σf
2

a (b •r c).
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Proof. We first notice from condition (3) for a= b= 1 that f(1) = 0 (recall in every skew
brace 0= 1). We only prove part (i):

a. a ◦ (σfa)−1(b) = a • b ⇒ (σfa)−1(b) = a−1 ◦ (a • b) ⇒ (σfa)−1(b) = a−1 ◦ ( f(a)+ b).
But,(

σfa
)−1 (

σfa (b)
)
= b ⇒ a−1 ◦

(
f(a)+σfa (b)

)
= b ⇒ σfa (b) =−f(a)+ a ◦ b.

b. σfb(τ
f

(σfa)−1(b)
(a)) = σfb(b

−1 ◦ a ◦ (σfa)−1(b)) =−f(b)+ a ◦ (σfa)−1(b) =−f(b)+ f(a)+

b= b ▷ a.
c. σfa(b) ▷ σ

f
a(c) =−f(a ◦ b)+ f(a ◦ c)− f(a)+ a ◦ b and

σfa (b ▷s c) =−f(a)+ a− a ◦ f(b)+ a ◦ f(c)− a+ a ◦ b.

But via condition (3) we conclude that σfa(b) ▷s σ
f
a(c) = σfa(b ▷s c).

d. σfa(σ
f
b(c)) =−f(a)+ a− a ◦ f(b)+ a ◦ b ◦ c and via condition (3):

σfa

(
σfb (c)

)
=−f(a ◦ b)+ a ◦ b ◦ c= σfa◦b (c) .

Also, τ fc(τ
f
b(a)) = σf

τ fb(a)
(c)−1 ◦σfa(b)−1 ◦ a ◦ b ◦ c. Thus, it suffices to show that σfa(b) ◦

σf
τ fb(a)

(c) = σf
2

a (b ◦ c). Indeed,

σ
f
a (b) ◦σf

τ fb(a)
(c) = σ

f
a (b) ◦

(
−f

(
τ
f
b (a)

)
+ τ

f
b (a) ◦ c

)
= σ

f
a (b)−σ

f
a (b) ◦ f

(
τ
f
b (a)

)
+ a ◦ b ◦ c,

and via condition (3) we conclude that σfa(b) ◦σfτb(a)(c) = σf
2

a (b ◦ c)⇒ τ fc(τ
f
b(a)) =

τ f
2

b◦c(a).
e. σfa(b) •s σfa(c) = f(σfa(b)+σfa(c)) =

f(−f(a)+ a ◦ b)− f(a)+ a ◦ c=−f 2 (a)+ f(a ◦ b)− f(a)+ a ◦ c

and by means of condition (3) we arrive at σfa(b) •s σfa(c) = σf
2

a (b •s c).

Similarly for part (ii).

Corollary 5.28. Let σfa, τ
f
b : X→ X as derived in proposition 5.27, and r : X×X→ X×X,

such that for all a,b ∈ X, r(a,b) = (σfa(b), τ
f
b(a)). Then r is a solution of the set-theoretic braid

equation.

Proof. This immediately follows from proposition 5.27, specifically from part d of (i) and
(ii).

Lemma 5.29. Let σfa, τ
f
b : X→ X as derived in proposition 5.27, and r : X×X→ X×X, such

that for all a,b ∈ X, r(a,b) = (σfa(b), τ
f
b(a)) is a solution of the set-theoretic braid equation.

Then r−1(x,y) = (σ̂fa(b), τ̂
f
b(a)), where

(i) σ̂fa(b) ◦ τ̂ fb(a) = a ◦ b, σ̂fa(b) = f−1(a ◦ b− a).
(ii) σ̂fa(b) ◦ τ̂ fb(a) = a ◦ b, σ̂fa(b) = f−1(−a+ a ◦ b).
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Proof. The proof is direct by means of the relations σf
σ̂fa(b)

(τ̂ fb(a)) = a and τ f
τ̂ fb(a)

(σ̂fa(b)) = b.

Example 5.30. We provide below two simple examples. Let (X,+,◦) be a skew brace and:

(1) Let f(a) = a, for all a ∈ X, then (i) σa(b) =−a+ a ◦ b, (ii) σa(b) = a ◦ b− a.
(2) Let f(a) = a ◦ z− z, f ′(a) =−z+ a ◦ z for all a ∈ X, then (i) σfa(b) = z− a ◦ z+ a ◦ b, (ii)

σf
′

a (b) = a ◦ b− a ◦ z+ z.
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Salento. P S is a member of GNSAGA (INdAM) and the non-profit association ADV-AGTA.

ORCID iDs

Anastasia Doikou https://orcid.org/0000-0001-6869-9389
Bernard Rybołowicz https://orcid.org/0000-0002-2894-8288
Paola Stefanelli https://orcid.org/0000-0003-3899-3151

References

[1] Adler V E, Bobenko A I and Suris Y B 2003 Classification of integrable equations on quad-graphs.
The consistency approach Commun. Math. Phys. 233 513

[2] Agrachev A and Gamkrelidze R 1981 Chronological algebras and non-stationary vector fields J.
Sov. Math. 17 1650–75

[3] Andruskiewitsch N and Graña M 2003 From racks to pointed Hopf algebras Adv. Math.
178 177–243

[4] Angiono I, Galindo C and Vendramin L 2017 Hopf braces and Yang-Baxter operators Proc. Am.
Math. Soc. 145 1981–95

[5] Bai C 2021 Algebra and applications 1: non-associative algebras and categories An Introduction to
Pre-Lie Algebras (Wiley) ch 7 (available at: https://b-ok.org/book/2665901/384dc8)

[6] Baxter R 1982 Exactly Solved Models in Statistical Mechanics (Academic)
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[61] Stanovský D and Vojtěchovský P 2021 Idempotent solutions of the Yang-Baxter equation and twis-

ted group division Fund. Math. 255 51–68
[62] Takahashi D and Satsuma J 1990 A soliton cellular automaton J. Phys. Soc. Japan 59 3514
[63] Vinberg E B 1963 The theory of homogeneous convex cones Transl. Mosc. Math. Soc. 12 340–403
[64] Veselov A P 2003 Yang-Baxter maps and integrable dynamics Phys. Lett.A 314 214–21
[65] Yang C N 1967 Some exact results for the many-body problem in one dimension with repulsive

delta-function interaction Rev. Lett. 19 1312–5

35

https://doi.org/10.1007/BF01221646
https://doi.org/10.1007/BF01221646
https://doi.org/10.1016/0022-4049(82)90077-9
https://doi.org/10.1016/0022-4049(82)90077-9
https://doi.org/10.1006/eujc.1999.0314
https://doi.org/10.1006/eujc.1999.0314
https://doi.org/10.1017/S0013091518000548
https://doi.org/10.1017/S0013091518000548
https://doi.org/10.1016/j.jalgebra.2021.02.002
https://doi.org/10.1016/j.jalgebra.2021.02.002
https://doi.org/10.1215/S0012-7094-00-10411-5
https://doi.org/10.1215/S0012-7094-00-10411-5
https://doi.org/10.3842/SIGMA.2010.033
https://doi.org/10.3842/SIGMA.2010.033
https://doi.org/10.1016/j.jpaa.2018.11.020
https://doi.org/10.1016/j.jpaa.2018.11.020
https://doi.org/10.1016/j.aim.2004.03.019
https://doi.org/10.1016/j.aim.2004.03.019
https://doi.org/10.1016/j.jalgebra.2006.03.040
https://doi.org/10.1016/j.jalgebra.2006.03.040
https://doi.org/10.1016/j.jalgebra.2018.11.007
https://doi.org/10.1016/j.jalgebra.2018.11.007
https://doi.org/10.4171/jca/2-1-3
https://doi.org/10.4171/jca/2-1-3
https://doi.org/10.1016/j.laa.2018.02.001
https://doi.org/10.1016/j.laa.2018.02.001
https://doi.org/10.1016/j.aim.2022.108683
https://doi.org/10.1016/j.aim.2022.108683
https://doi.org/10.4310/MRL.2000.v7.n5.a4
https://doi.org/10.4310/MRL.2000.v7.n5.a4
https://doi.org/10.4064/fm872-2-2021
https://doi.org/10.4064/fm872-2-2021
https://doi.org/10.1143/JPSJ.59.3514
https://doi.org/10.1143/JPSJ.59.3514
https://doi.org/10.1016/S0375-9601(03)00915-0
https://doi.org/10.1016/S0375-9601(03)00915-0
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1103/PhysRevLett.19.1312

	Quandles as pre-Lie skew braces, set-theoretic Hopf algebras & universal R-matrices
	1. Introduction
	2. From left shelves to set-theoretic solutions and vice versa
	2.1. Left shelves
	2.2. Left-non degenerate solutions and left shelves

	3. Quandles & and pre-Lie skew braces
	3.1. Yang–Baxter algebras
	3.2. Generalized affine shelves and Yang–Baxter algebras
	3.3. Pre-Lie skew braces

	4. Deformed braided algebras & magmas
	5. Quasi triangular (quasi)-Hopf algebras
	5.1. The rack & quandle algebras
	5.2. The set-theoretic algebras

	References


